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ABSTRACT. Given the positive real numbegsandy, let A(z,y), G(x,y), andI(x,y) denote
their arithmetic mean, geometric mean, and identric mean, respectively. It is proved that for
p > 2, the double inequality

aAP(z,y) + (1 — a)GP(z,y) < IP(z,y) < BAP(z,y) + (1 - B)G"(x,y)
holds true for all positive real numbets# y if and only ifa < (2)” and > 2. This result

complements a similar one established by H. Alzer and S.-L. Qiu [Inequalities for means in two
variables Arch. Math. (Basel80(2003), 201-215].
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1. INTRODUCTION AND MAIN RESULT

The means in two variables are special and they have found a number of applications (see,
for instance, [[1, 5] and the references therein). In this note we focus on certain inequalities
involving the arithmetic mean, the geometric mean, and the identric mean of two positive real
numberse andy. Recall that these means are defineddty, y) = 3¢, G(z,y) = \/zy, and

I(x7y):1(xx)zy if x+#y,

e \y
I(z,z) =z,
respectively. It is well-known that
(1.1) G(r,y) < I(z,y) < A(z,y)
for all positive real numbers # y. On the other hand, J. Sandor [6] proved that
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for all positive real numbers # y. Note that inequality[(I]2) is a refinement of the first
inequality in [1.] n) Also,[(1]2) is sharp in the sense thatannot be replaced by any greater
constant. An interesting counterpart pf (1.2) has been recently obtained by H. Alzer and S.-L.
Qiu [L, Theorem 1]. Their result reads as follows:

Theorem 1.1. The double inequality
aA(z,y) + (1 — a)G(z,y) < I(z,y) < BA(2,y) + (1 - B)G(z,y)
holds true for all positive real numbers y, if and only ifa < % andg > %

Another counterpart of (1.2) has been obtained by J. Sandor and T.[Trif [8, Theorem 2.5].
More precisely, they proved that

(13) Pe,y) < 2 4(z.) + 3G%(,y)

for all positive real numbers # y. We note that/ (113) is a refinement of the second inequality
in (I.1). Moreover,[(1]3) is the best possible inequality of the type
(1.4) Pa,y) < BA%(z,y) + (1 - B)G*(z,y)

in the sense th.4) holds true for all positive real numbegsy if and only if 3 > §

It should be mentioned that (1.3) was derived_in [8] as a consequence of certain power series
expansions discovered by J. Sandor [7]. We present here an alternative pfoof of (1.3), based on
the Gauss quadrature formula with two knots (ee [2, pp. 343-344] or [3, p. 36])

e e A

Choosingf(t) = log(tx + (1 — t)y) and taking into account that

/ F(H)dt = log I(x,y),

we get
4

1 2 ) 1 9 (ZL’ - y)
log I(z,y) = 5 log <§A (z,9) + 3G (Ly)) - 720(Ex + (1 —&y)*

Consequently, it holds that

1 (a—y VY A%y + 3Gy
P 360 max(z,y) I?(x,y)

- (3é0 (%)) |

This inequality yields[(1]3) and estimates the sharpness df (1.3). However, we note that the
double inequality (2.33) ir 8] provides better bounds for the ratio

(;Az(:v,y) + %Gz(m,y))/ﬂ(ﬂ%y}-

The next theorem is the main result of this note and it is motivated bl (1.3) and Thgotem 1.1.

Theorem 1.2. Given the real number > 2, the double inequality
(15  ad’(z,y)+ (1 —a)GP(z,y) < IP(x,y) < BA"(z,y) + (1 — B)G"(z,y)
holds true for all positive real numbers+ y if and only ifa < (%)p andg > %
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2. PROOF OF THEOREM [1.2

Proof. In order to prove that the first inequality in (1.5) holds true doe= (2)”, we will use
the ingenious method of E.B. Leach and M.C. Sholander [4] (seelalso [1]). More precisely, we
show that

2.1) (Z)pm (ehe™!) + (1 _ (%)p) G (et < P (e ), forall ¢ 0.

Itis easily seen thak (2.1) is equivalentfigt) < 0 for all ¢ > 0, wheref, : (0,00) — Ris the
function defined by

fo(t) = (2cosht)? 4 e — 2P — exp(pt coth t).
P

We have
(1) = 4psinh® (2 cosh t)P~! — p(sinh(2t) — 2t) exp(pt coth t)
e 2sinh? ¢ '
By means of the logarithmic mean of two variables,
Lizy) = ———Y it ay,
logz —logy

L(z,x) = x,
the derivativef, may be expressed as

22 fate) = p P2

where
u(t) = 4sinh® (2 cosh )P,
v(t) = (sinh(2t) — 2t) exp(pt coth t),
g(t) = logu(t) —logv(t)
= (p+1)log 2+ 3log(sinht) + (p — 1) log(cosh t) — log(sinh(2t) — 2t) — pt coth .

We have
J(t) = 3cosht (p—1)sinht  2cosh(2t) —2 pcosht N pt
sinh ¢ cosht sinh(2t) — 2t sinht  sinh®¢
_ 3cosh®t — sinh®¢ — p(cosh® ¢t — sinh” t) pt  2cosh(2t) —2
B sinh ¢ cosht sinh®¢  sinh(2t) — 2t
_cosh(2t) +2—p pt 2 cosh(2t) — 2
~ sinhtcosht sinh?t  sinh(2t) — 2t ’
hence
(2.3) g (t) = 91(t) + g2(1),
where
() = cosh(2t) 2t 2 cosh(2t) — 2
I = Gnhtcosht | sinh?¢ sinh(2t) — 2t~
p—2)t p—2
92(t) = ( )

sinh?¢  sinhtcosht’
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But

p—2
sinh? ¢ cosh ¢

p—2 - 1 1 2%k+1
pu— - t .
sinh? ¢ cosh ¢ ; ((Qk)! (2k + 1)!)

ga(t) = (tcosht — sinh t)

Taking into account that > 2, we deduce that
(2.4) g2(t) >0 forall ¢ > 0.
Further, leth : (0, 00) — R be the function defined by
h(t) = sinh? ¢ cosh t(sinh(2t) — 2t) g (t).
Then we have
h(t) = 2tsinht + sinh ¢ sinh 2t — 4¢>

1 1
= 2tsinht + 5 cosh(3t) — 5 cosht — 4t?

R 2 N 3%k —1 2k
e \2k-D T 2(2k)! '

Thereforeh(t) > 0 for ¢ > 0, hence

(2.5) g1(t) >0 forall ¢t > 0.

By (2.3), [2.4), and (2]5) we conclude thatt) > 0 for ¢t > 0, hencey is increasing orf0, o).
Taking into account that

sinh® ¢
li t) = 1)log2 +1 li
ti»nolog( )= (p+1)log2+log <ti>lgo cosh t(sinh(2t) — Qt))

+ ptlirilo(log(cosh t)—1t)+ ptlirgo t(1 — cotht)

1 1
= (p+1)log2+log§+plog§
— 0,

it follows thatg(t) < 0 for all t > 0. By virtue of (2.2), we deduce thgf(t) < 0 forall ¢ > 0,
hencef, is decreasing of0, o). Since%i\n% f»(t) = 0, we conclude thaf,(t) < 0 forall ¢ > 0.

This proves the validity of (2]1).
Now let x # y be two arbitrary positive real numbers. Letting- log \/% in ) and

multiplying the obtained inequality bf,/zy)", we obtain

@)pz‘l”(x,y) + (1 - (z)p) GP(z,y) < IP(z,y).

Consequently, the first inequality in (1.5) holds truedor (2)”.
Let us prove now that the second inequality{in {1.5) holds trugifer2. Indeed, taking into
account) as well as the convexity of the functioa (0,00) — t% € (0,00) (recall that
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p > 2), we get
b
2

IP(z,y) = [IP(z,y)]

1
< A2(‘T7y)+§G2(ZL‘7Iy)

2
3
(42, 0)]F + 5 (@)

= §Ap(x7y) + %Gp(l',y)

Conversely, suppose that ([L.5) holds true for all positive real numbgrg. Then we have
[p(x’ y) _ Gp($, y)

S Wy - Gy <

ya
2

<

DN W Do

The limits

i P(z,1) = GP(x,1) (2 P and lim P(z,1) = GP(z,1) 2
o0 AP(z,1) — GP(2,1)  \e o1 AP(z,1) — Gr(x,1) 3

yielda < (2)" andg > 2. O
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