Journal of Inequalities in Pure and Applied Mathematics

Volume 6, Issue 2, Article 43, 2005

NOTE ON CERTAIN INEQUALITIES FOR MEANS IN TWO VARIABLES

TIBERIU TRIF
Universitatea Babeş-Bolyai
Facultatea de Matematică şi Informatică
Str. Kogălniceanu 1, 3400 Cluj-Napoca, Romania
ttrif@math.ubbcluj.ro

Received 13 October, 2004; accepted 16 March, 2005
Communicated by S.S. Dragomir

Abstract

Given the positive real numbers x and y, let $A(x, y), G(x, y)$, and $I(x, y)$ denote their arithmetic mean, geometric mean, and identric mean, respectively. It is proved that for $p \geq 2$, the double inequality $$
\alpha A^{p}(x, y)+(1-\alpha) G^{p}(x, y)<I^{p}(x, y)<\beta A^{p}(x, y)+(1-\beta) G^{p}(x, y)
$$ holds true for all positive real numbers $x \neq y$ if and only if $\alpha \leq\left(\frac{2}{e}\right)^{p}$ and $\beta \geq \frac{2}{3}$. This result complements a similar one established by H. Alzer and S.-L. Qiu [Inequalities for means in two variables, Arch. Math. (Basel) 80 (2003), 201-215].

Key words and phrases: Arithmetic mean, Geometric mean, Identric mean.
2000 Mathematics Subject Classification Primary: 26E60, 26D07.

1. Introduction and Main Result

The means in two variables are special and they have found a number of applications (see, for instance, [1, 5] and the references therein). In this note we focus on certain inequalities involving the arithmetic mean, the geometric mean, and the identric mean of two positive real numbers x and y. Recall that these means are defined by $A(x, y)=\frac{x+y}{2}, G(x, y)=\sqrt{x y}$, and

$$
\begin{aligned}
& I(x, y)=\frac{1}{e}\left(\frac{x^{x}}{y^{y}}\right)^{\frac{1}{x-y}} \quad \text { if } x \neq y \\
& I(x, x)=x
\end{aligned}
$$

respectively. It is well-known that

$$
\begin{equation*}
G(x, y)<I(x, y)<A(x, y) \tag{1.1}
\end{equation*}
$$

for all positive real numbers $x \neq y$. On the other hand, J. Sándor [6] proved that

$$
\begin{equation*}
\frac{2}{3} A(x, y)+\frac{1}{3} G(x, y)<I(x, y) \tag{1.2}
\end{equation*}
$$

[^0]for all positive real numbers $x \neq y$. Note that inequality (1.2) is a refinement of the first inequality in 1.1. Also, 1.2 is sharp in the sense that $\frac{2}{3}$ cannot be replaced by any greater constant. An interesting counterpart of (1.2) has been recently obtained by H. Alzer and S.-L. Qiu [1, Theorem 1]. Their result reads as follows:

Theorem 1.1. The double inequality

$$
\alpha A(x, y)+(1-\alpha) G(x, y)<I(x, y)<\beta A(x, y)+(1-\beta) G(x, y)
$$

holds true for all positive real numbers $x \neq y$, if and only if $\alpha \leq \frac{2}{3}$ and $\beta \geq \frac{2}{e}$.
Another counterpart of (1.2) has been obtained by J. Sándor and T. Trif [8, Theorem 2.5]. More precisely, they proved that

$$
\begin{equation*}
I^{2}(x, y)<\frac{2}{3} A^{2}(x, y)+\frac{1}{3} G^{2}(x, y) \tag{1.3}
\end{equation*}
$$

for all positive real numbers $x \neq y$. We note that 1.3 is a refinement of the second inequality in (1.1). Moreover, (1.3) is the best possible inequality of the type

$$
\begin{equation*}
I^{2}(x, y)<\beta A^{2}(x, y)+(1-\beta) G^{2}(x, y) \tag{1.4}
\end{equation*}
$$

in the sense that 1.4 holds true for all positive real numbers $x \neq y$ if and only if $\beta \geq \frac{2}{3}$.
It should be mentioned that (1.3) was derived in [8] as a consequence of certain power series expansions discovered by J. Sándor [7]. We present here an alternative proof of (1.3), based on the Gauss quadrature formula with two knots (see [2, pp. 343-344] or [3, p. 36])

$$
\int_{0}^{1} f(t) d t=\frac{1}{2} f\left(\frac{1}{2}+\frac{1}{2 \sqrt{3}}\right)+\frac{1}{2} f\left(\frac{1}{2}-\frac{1}{2 \sqrt{3}}\right)+\frac{1}{4320} f^{(4)}(\xi), \quad 0<\xi<1
$$

Choosing $f(t)=\log (t x+(1-t) y)$ and taking into account that

$$
\int_{0}^{1} f(t) d t=\log I(x, y)
$$

we get

$$
\log I(x, y)=\frac{1}{2} \log \left(\frac{2}{3} A^{2}(x, y)+\frac{1}{3} G^{2}(x, y)\right)-\frac{(x-y)^{4}}{720(\xi x+(1-\xi) y)^{4}} .
$$

Consequently, it holds that

$$
\begin{aligned}
\exp \left(\frac{1}{360}\left(\frac{x-y}{\max (x, y)}\right)^{4}\right) & <\frac{\frac{2}{3} A^{2}(x, y)+\frac{1}{3} G^{2}(x, y)}{I^{2}(x, y)} \\
& <\exp \left(\frac{1}{360}\left(\frac{x-y}{\min (x, y)}\right)^{4}\right)
\end{aligned}
$$

This inequality yields (1.3) and estimates the sharpness of (1.3). However, we note that the double inequality (2.33) in [8] provides better bounds for the ratio

$$
\left(\frac{2}{3} A^{2}(x, y)+\frac{1}{3} G^{2}(x, y)\right) / I^{2}(x, y)
$$

The next theorem is the main result of this note and it is motivated by (1.3) and Theorem 1.1 .
Theorem 1.2. Given the real number $p \geq 2$, the double inequality

$$
\begin{equation*}
\alpha A^{p}(x, y)+(1-\alpha) G^{p}(x, y)<I^{p}(x, y)<\beta A^{p}(x, y)+(1-\beta) G^{p}(x, y) \tag{1.5}
\end{equation*}
$$

holds true for all positive real numbers $x \neq y$ if and only if $\alpha \leq\left(\frac{2}{e}\right)^{p}$ and $\beta \geq \frac{2}{3}$.

2. Proof of Theorem 1.2

Proof. In order to prove that the first inequality in (1.5) holds true for $\alpha=\left(\frac{2}{e}\right)^{p}$, we will use the ingenious method of E.B. Leach and M.C. Sholander [4] (see also [1]). More precisely, we show that

$$
\begin{equation*}
\left(\frac{2}{e}\right)^{p} A^{p}\left(e^{t}, e^{-t}\right)+\left(1-\left(\frac{2}{e}\right)^{p}\right) G^{p}\left(e^{t}, e^{-t}\right)<I^{p}\left(e^{t}, e^{-t}\right), \quad \text { for all } t>0 \tag{2.1}
\end{equation*}
$$

It is easily seen that 2.1 is equivalent to $f_{p}(t)<0$ for all $t>0$, where $f_{p}:(0, \infty) \rightarrow \mathbb{R}$ is the function defined by

$$
f_{p}(t)=(2 \cosh t)^{p}+e^{p}-2^{p}-\exp (p t \operatorname{coth} t) .
$$

We have

$$
f_{p}^{\prime}(t)=\frac{4 p \sinh ^{3} t(2 \cosh t)^{p-1}-p(\sinh (2 t)-2 t) \exp (p t \operatorname{coth} t)}{2 \sinh ^{2} t}
$$

By means of the logarithmic mean of two variables,

$$
\begin{aligned}
& L(x, y)=\frac{x-y}{\log x-\log y} \quad \text { if } x \neq y \\
& L(x, x)=x
\end{aligned}
$$

the derivative f_{p}^{\prime} may be expressed as

$$
\begin{equation*}
f_{p}^{\prime}(t)=p \frac{L(u(t), v(t))}{2 \sinh ^{2} t} g(t), \tag{2.2}
\end{equation*}
$$

where

$$
\begin{aligned}
u(t) & =4 \sinh ^{3} t(2 \cosh t)^{p-1} \\
v(t) & =(\sinh (2 t)-2 t) \exp (p t \operatorname{coth} t) \\
g(t) & =\log u(t)-\log v(t) \\
& =(p+1) \log 2+3 \log (\sinh t)+(p-1) \log (\cosh t)-\log (\sinh (2 t)-2 t)-p t \operatorname{coth} t .
\end{aligned}
$$

We have

$$
\begin{aligned}
g^{\prime}(t) & =\frac{3 \cosh t}{\sinh t}+\frac{(p-1) \sinh t}{\cosh t}-\frac{2 \cosh (2 t)-2}{\sinh (2 t)-2 t}-\frac{p \cosh t}{\sinh t}+\frac{p t}{\sinh ^{2} t} \\
& =\frac{3 \cosh ^{2} t-\sinh ^{2} t-p\left(\cosh ^{2} t-\sinh ^{2} t\right)}{\sinh t \cosh t}+\frac{p t}{\sinh ^{2} t}-\frac{2 \cosh (2 t)-2}{\sinh (2 t)-2 t} \\
& =\frac{\cosh (2 t)+2-p}{\sinh t \cosh t}+\frac{p t}{\sinh ^{2} t}-\frac{2 \cosh (2 t)-2}{\sinh (2 t)-2 t},
\end{aligned}
$$

hence

$$
\begin{equation*}
g^{\prime}(t)=g_{1}(t)+g_{2}(t), \tag{2.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& g_{1}(t)=\frac{\cosh (2 t)}{\sinh t \cosh t}+\frac{2 t}{\sinh ^{2} t}-\frac{2 \cosh (2 t)-2}{\sinh (2 t)-2 t}, \\
& g_{2}(t)=\frac{(p-2) t}{\sinh ^{2} t}-\frac{p-2}{\sinh t \cosh t}
\end{aligned}
$$

But

$$
\begin{aligned}
g_{2}(t) & =\frac{p-2}{\sinh ^{2} t \cosh t}(t \cosh t-\sinh t) \\
& =\frac{p-2}{\sinh ^{2} t \cosh t} \sum_{k=1}^{\infty}\left(\frac{1}{(2 k)!}-\frac{1}{(2 k+1)!}\right) t^{2 k+1} .
\end{aligned}
$$

Taking into account that $p \geq 2$, we deduce that

$$
\begin{equation*}
g_{2}(t) \geq 0 \quad \text { for all } t>0 \tag{2.4}
\end{equation*}
$$

Further, let $h:(0, \infty) \rightarrow \mathbb{R}$ be the function defined by

$$
h(t)=\sinh ^{2} t \cosh t(\sinh (2 t)-2 t) g_{1}(t) .
$$

Then we have

$$
\begin{aligned}
h(t) & =2 t \sinh t+\sinh t \sinh 2 t-4 t^{2} \\
& =2 t \sinh t+\frac{1}{2} \cosh (3 t)-\frac{1}{2} \cosh t-4 t^{2} \\
& =\sum_{k=2}^{\infty}\left(\frac{2}{(2 k-1)!}+\frac{3^{2 k}-1}{2(2 k)!}\right) t^{2 k} .
\end{aligned}
$$

Therefore $h(t)>0$ for $t>0$, hence

$$
\begin{equation*}
g_{1}(t)>0 \quad \text { for all } t>0 . \tag{2.5}
\end{equation*}
$$

By (2.3), (2.4), and (2.5) we conclude that $g^{\prime}(t)>0$ for $t>0$, hence g is increasing on $(0, \infty)$. Taking into account that

$$
\begin{aligned}
\lim _{t \rightarrow \infty} g(t)= & (p+1) \log 2+\log \left(\lim _{t \rightarrow \infty} \frac{\sinh ^{3} t}{\cosh t(\sinh (2 t)-2 t)}\right) \\
& +p \lim _{t \rightarrow \infty}(\log (\cosh t)-t)+p \lim _{t \rightarrow \infty} t(1-\operatorname{coth} t) \\
= & (p+1) \log 2+\log \frac{1}{2}+p \log \frac{1}{2} \\
= & 0
\end{aligned}
$$

it follows that $g(t)<0$ for all $t>0$. By virtue of $\sqrt{2.2}$, we deduce that $f_{p}^{\prime}(t)<0$ for all $t>0$, hence f_{p} is decreasing on $(0, \infty)$. Since $\lim _{t \backslash 0} f_{p}(t)=0$, we conclude that $f_{p}(t)<0$ for all $t>0$. This proves the validity of (2.1).

Now let $x \neq y$ be two arbitrary positive real numbers. Letting $t=\log \sqrt{\frac{x}{y}}$ in 2.1 and multiplying the obtained inequality by $(\sqrt{x y})^{p}$, we obtain

$$
\left(\frac{2}{e}\right)^{p} A^{p}(x, y)+\left(1-\left(\frac{2}{e}\right)^{p}\right) G^{p}(x, y)<I^{p}(x, y) .
$$

Consequently, the first inequality in $\sqrt{1.5}$ holds true for $\alpha=\left(\frac{2}{e}\right)^{p}$.
Let us prove now that the second inequality in $\left(1.5\right.$ holds true for $\beta=\frac{2}{3}$. Indeed, taking into account (1.3) as well as the convexity of the function $t \in(0, \infty) \mapsto t^{\frac{p}{2}} \in(0, \infty)$ (recall that
$p \geq 2$), we get

$$
\begin{aligned}
I^{p}(x, y) & =\left[I^{2}(x, y)\right]^{\frac{p}{2}} \\
& <\left[\frac{2}{3} A^{2}(x, y)+\frac{1}{3} G^{2}(x, y)\right]^{\frac{p}{2}} \\
& \leq \frac{2}{3}\left[A^{2}(x, y)\right]^{\frac{p}{2}}+\frac{1}{3}\left[G^{2}(x, y)\right]^{\frac{p}{2}} \\
& =\frac{2}{3} A^{p}(x, y)+\frac{1}{3} G^{p}(x, y) .
\end{aligned}
$$

Conversely, suppose that (1.5) holds true for all positive real numbers $x \neq y$. Then we have

$$
\alpha<\frac{I^{p}(x, y)-G^{p}(x, y)}{A^{p}(x, y)-G^{p}(x, y)}<\beta .
$$

The limits

$$
\lim _{x \rightarrow 0} \frac{I^{p}(x, 1)-G^{p}(x, 1)}{A^{p}(x, 1)-G^{p}(x, 1)}=\left(\frac{2}{e}\right)^{p} \quad \text { and } \quad \lim _{x \rightarrow 1} \frac{I^{p}(x, 1)-G^{p}(x, 1)}{A^{p}(x, 1)-G^{p}(x, 1)}=\frac{2}{3}
$$

yield $\alpha \leq\left(\frac{2}{e}\right)^{p}$ and $\beta \geq \frac{2}{3}$.

References

[1] H. ALZER And S.-L. QIU, Inequalities for means in two variables, Arch. Math. (Basel), 80 (2003), 201-215.
[2] P.J. DAVIS, Interpolation and Approximation, Blaisdell, New York, 1963.
[3] P.J. DAVIS and P. RABINOWITZ, Numerical Integration, Blaisdell, Massachusetts-TorontoLondon, 1967.
[4] E.B. LEACH AND M.C. SHOLANDER, Extended mean values II, J. Math. Anal. Appl., 92 (1983), 207-223.
[5] G. LORENZEN, Why means in two arguments are special, Elem. Math., 49 (1994), 32-37.
[6] J. SÁNDOR, A note on some inequalities for means, Arch. Math. (Basel) 56 (1991), 471-473.
[7] J. SÁNDOR, On certain identities for means, Studia Univ. Babeş-Bolyai, Ser. Math., 38(4) (1993), 7-14.
[8] J. SÁNDOR AND T. TRIF, Some new inequalities for means of two arguments, Int. J. Math. Math. Sci., 25 (2001), 525-532.

[^0]: ISSN (electronic): 1443-5756
 (c) 2005 Victoria University. All rights reserved.

 192-04

