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ABSTRACT. Given the positive real numbersx andy, let A(x, y), G(x, y), andI(x, y) denote
their arithmetic mean, geometric mean, and identric mean, respectively. It is proved that for
p ≥ 2, the double inequality

αAp(x, y) + (1− α)Gp(x, y) < Ip(x, y) < βAp(x, y) + (1− β)Gp(x, y)

holds true for all positive real numbersx 6= y if and only if α ≤
(

2
e

)p
andβ ≥ 2

3 . This result
complements a similar one established by H. Alzer and S.-L. Qiu [Inequalities for means in two
variables,Arch. Math. (Basel)80 (2003), 201–215].
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1. I NTRODUCTION AND M AIN RESULT

The means in two variables are special and they have found a number of applications (see,
for instance, [1, 5] and the references therein). In this note we focus on certain inequalities
involving the arithmetic mean, the geometric mean, and the identric mean of two positive real
numbersx andy. Recall that these means are defined byA(x, y) = x+y

2
, G(x, y) =

√
xy, and

I(x, y) =
1

e

(
xx

yy

) 1
x−y

if x 6= y,

I(x, x) = x,

respectively. It is well-known that

(1.1) G(x, y) < I(x, y) < A(x, y)

for all positive real numbersx 6= y. On the other hand, J. Sándor [6] proved that

(1.2)
2

3
A(x, y) +

1

3
G(x, y) < I(x, y)
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for all positive real numbersx 6= y. Note that inequality (1.2) is a refinement of the first
inequality in (1.1). Also, (1.2) is sharp in the sense that2

3
cannot be replaced by any greater

constant. An interesting counterpart of (1.2) has been recently obtained by H. Alzer and S.-L.
Qiu [1, Theorem 1]. Their result reads as follows:

Theorem 1.1.The double inequality

αA(x, y) + (1− α)G(x, y) < I(x, y) < βA(x, y) + (1− β)G(x, y)

holds true for all positive real numbersx 6= y, if and only ifα ≤ 2
3

andβ ≥ 2
e
.

Another counterpart of (1.2) has been obtained by J. Sándor and T. Trif [8, Theorem 2.5].
More precisely, they proved that

(1.3) I2(x, y) <
2

3
A2(x, y) +

1

3
G2(x, y)

for all positive real numbersx 6= y. We note that (1.3) is a refinement of the second inequality
in (1.1). Moreover, (1.3) is the best possible inequality of the type

(1.4) I2(x, y) < βA2(x, y) + (1− β)G2(x, y)

in the sense that (1.4) holds true for all positive real numbersx 6= y if and only if β ≥ 2
3
.

It should be mentioned that (1.3) was derived in [8] as a consequence of certain power series
expansions discovered by J. Sándor [7]. We present here an alternative proof of (1.3), based on
the Gauss quadrature formula with two knots (see [2, pp. 343–344] or [3, p. 36])∫ 1

0

f(t)dt =
1

2
f

(
1

2
+

1

2
√

3

)
+

1

2
f

(
1

2
− 1

2
√

3

)
+

1

4320
f (4)(ξ), 0 < ξ < 1.

Choosingf(t) = log(tx + (1− t)y) and taking into account that∫ 1

0

f(t)dt = log I(x, y),

we get

log I(x, y) =
1

2
log

(
2

3
A2(x, y) +

1

3
G2(x, y)

)
− (x− y)4

720(ξx + (1− ξ)y)4
.

Consequently, it holds that

exp

(
1

360

(
x− y

max(x, y)

)4
)

<
2
3
A2(x, y) + 1

3
G2(x, y)

I2(x, y)

< exp

(
1

360

(
x− y

min(x, y)

)4
)

.

This inequality yields (1.3) and estimates the sharpness of (1.3). However, we note that the
double inequality (2.33) in [8] provides better bounds for the ratio(

2

3
A2(x, y) +

1

3
G2(x, y)

)/
I2(x, y).

The next theorem is the main result of this note and it is motivated by (1.3) and Theorem 1.1.

Theorem 1.2.Given the real numberp ≥ 2, the double inequality

(1.5) αAp(x, y) + (1− α)Gp(x, y) < Ip(x, y) < βAp(x, y) + (1− β)Gp(x, y)

holds true for all positive real numbersx 6= y if and only ifα ≤
(

2
e

)p
andβ ≥ 2

3
.
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2. PROOF OF THEOREM 1.2

Proof. In order to prove that the first inequality in (1.5) holds true forα =
(

2
e

)p
, we will use

the ingenious method of E.B. Leach and M.C. Sholander [4] (see also [1]). More precisely, we
show that

(2.1)

(
2

e

)p

Ap
(
et, e−t

)
+

(
1−

(
2

e

)p)
Gp
(
et, e−t

)
< Ip

(
et, e−t

)
, for all t > 0.

It is easily seen that (2.1) is equivalent tofp(t) < 0 for all t > 0, wherefp : (0,∞)→ R is the
function defined by

fp(t) = (2 cosh t)p + ep − 2p − exp(pt coth t).

We have

f ′p(t) =
4p sinh3 t(2 cosh t)p−1 − p(sinh(2t)− 2t) exp(pt coth t)

2 sinh2 t
.

By means of the logarithmic mean of two variables,

L(x, y) =
x− y

log x− log y
if x 6= y,

L(x, x) = x,

the derivativef ′p may be expressed as

(2.2) f ′p(t) = p
L(u(t), v(t))

2 sinh2 t
g(t),

where

u(t) = 4 sinh3 t(2 cosh t)p−1,

v(t) = (sinh(2t)− 2t) exp(pt coth t),

g(t) = log u(t)− log v(t)

= (p + 1) log 2 + 3 log(sinh t) + (p− 1) log(cosh t)− log(sinh(2t)− 2t)− pt coth t.

We have

g′(t) =
3 cosh t

sinh t
+

(p− 1) sinh t

cosh t
− 2 cosh(2t)− 2

sinh(2t)− 2t
− p cosh t

sinh t
+

pt

sinh2 t

=
3 cosh2 t− sinh2 t− p(cosh2 t− sinh2 t)

sinh t cosh t
+

pt

sinh2 t
− 2 cosh(2t)− 2

sinh(2t)− 2t

=
cosh(2t) + 2− p

sinh t cosh t
+

pt

sinh2 t
− 2 cosh(2t)− 2

sinh(2t)− 2t
,

hence

(2.3) g′(t) = g1(t) + g2(t),

where

g1(t) =
cosh(2t)

sinh t cosh t
+

2t

sinh2 t
− 2 cosh(2t)− 2

sinh(2t)− 2t
,

g2(t) =
(p− 2)t

sinh2 t
− p− 2

sinh t cosh t
.
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But

g2(t) =
p− 2

sinh2 t cosh t
(t cosh t− sinh t)

=
p− 2

sinh2 t cosh t

∞∑
k=1

(
1

(2k)!
− 1

(2k + 1)!

)
t2k+1.

Taking into account thatp ≥ 2, we deduce that

(2.4) g2(t) ≥ 0 for all t > 0.

Further, leth : (0,∞)→ R be the function defined by

h(t) = sinh2 t cosh t(sinh(2t)− 2t)g1(t).

Then we have

h(t) = 2t sinh t + sinh t sinh 2t− 4t2

= 2t sinh t +
1

2
cosh(3t)− 1

2
cosh t− 4t2

=
∞∑

k=2

(
2

(2k − 1)!
+

32k − 1

2(2k)!

)
t2k.

Thereforeh(t) > 0 for t > 0, hence

(2.5) g1(t) > 0 for all t > 0.

By (2.3), (2.4), and (2.5) we conclude thatg′(t) > 0 for t > 0, henceg is increasing on(0,∞).
Taking into account that

lim
t→∞

g(t) = (p + 1) log 2 + log

(
lim
t→∞

sinh3 t

cosh t(sinh(2t)− 2t)

)
+ p lim

t→∞
(log(cosh t)− t) + p lim

t→∞
t(1− coth t)

= (p + 1) log 2 + log
1

2
+ p log

1

2
= 0,

it follows thatg(t) < 0 for all t > 0. By virtue of (2.2), we deduce thatf ′p(t) < 0 for all t > 0,
hencefp is decreasing on(0,∞). Sincelim

t↘0
fp(t) = 0, we conclude thatfp(t) < 0 for all t > 0.

This proves the validity of (2.1).
Now let x 6= y be two arbitrary positive real numbers. Lettingt = log

√
x
y

in (2.1) and

multiplying the obtained inequality by
(√

xy
)p

, we obtain(
2

e

)p

Ap(x, y) +

(
1−

(
2

e

)p)
Gp(x, y) < Ip(x, y).

Consequently, the first inequality in (1.5) holds true forα =
(

2
e

)p
.

Let us prove now that the second inequality in (1.5) holds true forβ = 2
3
. Indeed, taking into

account (1.3) as well as the convexity of the functiont ∈ (0,∞) 7→ t
p
2 ∈ (0,∞) (recall that
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p ≥ 2), we get

Ip(x, y) =
[
I2(x, y)

] p
2

<

[
2

3
A2(x, y) +

1

3
G2(x, y)

] p
2

≤ 2

3

[
A2(x, y)

] p
2 +

1

3

[
G2(x, y)

] p
2

=
2

3
Ap(x, y) +

1

3
Gp(x, y).

Conversely, suppose that (1.5) holds true for all positive real numbersx 6= y. Then we have

α <
Ip(x, y)−Gp(x, y)

Ap(x, y)−Gp(x, y)
< β.

The limits

lim
x→0

Ip(x, 1)−Gp(x, 1)

Ap(x, 1)−Gp(x, 1)
=

(
2

e

)p

and lim
x→1

Ip(x, 1)−Gp(x, 1)

Ap(x, 1)−Gp(x, 1)
=

2

3

yield α ≤
(

2
e

)p
andβ ≥ 2

3
. �
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