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Abstract

Given the positive real numbers z and y, let A(z,y), G(z,y), and I(z,y) denote
their arithmetic mean, geometric mean, and identric mean, respectively. It is
proved that for p > 2, the double inequality

aAP(z,y) + (1 - a)GP(x,y) < IP(z,y) < BAP(z,y) + (1 - B)GP(z,y)

holds true for all positive real numbers z # y if and only if a < ( ) and j> -
This result complements a similar one established by H. Alzer and S.-L. QIU
[Inequalities for means in two variables, Arch. Math. (Basel) 80 (2003), 201-
215].

2000 Mathematics Subject Classification: Primary: 26E60, 26D07.
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The means in two variables are special and they have found a number of ap-
plications (see, for instancel,[5] and the references therein). In this note we
focus on certain inequalities involving the arithmetic mean, the geometric mean,
and the identric mean of two positive real numberandy. Recall that these
means are defined by(z, y) = 3¢, G(,y) = \/zy, and

1 /z” =5 .
I(%y):g(@) if x#y,

I(z,x) =z,
respectively. It is well-known that
(1.1) G(x,y) < I(z,y) < A(z,y)

for all positive real numbers # y. On the other hand, J. Sandai proved
that

2 1
for all positive real numbers £ y. Note that inequalityX.2) is a refinement
of the first inequality in {.1). Also, (1.2) is sharp in the sense th§1tcannot be
replaced by any greater constant. An interesting counterpait &ftfas been
recently obtained by H. Alzer and S.-L. Qiiy, [Theorem 1]. Their result reads
as follows:
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Theorem 1.1. The double inequality

aA(z,y) + (1 — a)G(z,y) < I(z,y) < BA(z,y) + (1 - B)G(z,y)
holds true for all positive real numbers+ y, if and only ifa < § andg > %
Another counterpart ofl(2) has been obtained by J. Sandor and T. Tjf |
Theorem 2.5]. More precisely, they proved that
2 2 2 1 2

for all positive real numbers # y. We note that1.3) is a refinement of the
second inequality in1(1). Moreover, (L.3) is the best possible inequality of the

type

(1.4) Pa,y) < BA(z,y) + (1 = 5)G*(x,y)
in the sense thatl(4) holds true for all positive real numbers# y if and only
if 5> 2.

It should be mentioned thail (3) was derived in §] as a consequence of
certain power series expansions discovered by J. Sariflove present here
an alternative proof ofl(.3), based on the Gauss quadrature formula with two
knots (seed, pp. 343-344] ord, p. 36])

o=yl g i) vecs
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Choosingf(t) = log(tx + (1 — t)y) and taking into account that

/ 0
we get

1 (2 1
log I (2, y) = 7 log (gAQ(x,y) + gGQ(fB,y)) -

Consequently, it holds that

= log I(z,y),

(z —y)*

720(Sz + (1= Ey)*

r—Yy

1
P (% (max(:t, Y)

N\ 2A%(z,y) + 3G (2, y)
) ) ) (2, y)

<o (5 (i) )

This inequality yields 1.3) and estimates the sharpness bff|. However, we
note that the double inequality (2.33) i#] jprovides better bounds for the ratio

<§A2(x,y) + %GQ(SU,Z/)>/[2(W/>~

The next theorem is the main result of this note and it is motivated. I8y (
and Theorem..1

Theorem 1.2. Given the real numbey > 2, the double inequality
(1.5) aA?(z,y) + (1 — )G (z,y) < I’(z,y) < BA"(z,y) + (1 - B)G*(z,y)
holds true for all positive real numbers # y if and only ifa < (2)” and

B> 2
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1.2

Proof. In order to prove that the first inequality if.f) holds true forv = (E)p,
we will use the ingenious method of E.B. Leach and M.C. Sholanidisge
also [']). More precisely, we show that

(2.1) (Z)pAp (et,e_t) + (1 — (Z)p) G? (et,e_t)
<I? (e e, forall ¢ > 0.

It is easily seen that’(1) is equivalent tof,(¢) < 0 for all t > 0, wheref,, :
(0,00) — R is the function defined by

fp(t) = (2cosht)? + e — 2P — exp(pt coth t).

We have

, 4psinh® (2 cosh )P~ — p(sinh(2t) — 2t) exp(pt coth t)
fp(t) = ——
2sinh”¢

By means of the logarithmic mean of two variables,

x—y .
L = if
(7,9) gz —logy T # Yy,

L(z,z) = x,
the derivativef, may be expressed as

22) ity =p OO
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where

u(t) = 4sinh®£(2 cosh )P,

v(t) = (sinh(2t) — 2t) exp(pt coth ),

g(t) =logu(t) — log v(t)

= (p+1)log2 + 3log(sinht) + (p — 1) log(cosh t)
— log(sinh(2t) — 2t) — pt coth .

We have
_ 3cosht  (p—1)sinht 2cosh(2t) —2  pcosht pt

/
t) =
gt sinh ¢ cosht sinh(2t) — 2t sinh ¢ * sinh? ¢
~ 3cosh?t — sinh®¢ — p(cosh® ¢ — sinh?t) pt 2cosh(2t) — 2
B sinh ¢ cosh ¢ sinh?¢  sinh(2t) — 2t
_cosh(2t) +2—p pt 2 cosh(2t) — 2
~ sinhtcosht sinh®t  sinh(2t) — 2t~
hence
(2.3) g (t) = gi(t) + g2(2),
where
(t) cosh(2t) 2t 2 cosh(2t) — 2
I = Ginhtcosht | sinh?t sinh(2t) — 2t~
p—2)t p—2
alt) = 22

sinh?¢  sinhtcosht’
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But

p—2

m (t COSh t— Sinh t)
S1n COS

g2(t) =

p—2 S 1 1 2k+1
. = (2R
sinh?t cosh ¢ Z <(2k)! (2k + 1)!)

k=1

Taking into account that > 2, we deduce that

(2.4) g2(t) >0 forall ¢ > 0.

Further, leth : (0,00) — R be the function defined by
h(t) = sinh? ¢ cosh t(sinh(2t) — 2t) g, (t).

Then we have

h(t) = 2tsinht + sinh ¢ sinh 2t — 4¢>

1 1
= 2tsinht + 3 cosh(3t) — ) cosht — 4t*

e 2 +32k—1 2k
e\ 2k =D 2(2k)! ’

Thereforeh(t) > 0 for ¢ > 0, hence

(2.5) g1(t) >0 forall ¢ > 0.
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By (2.3), (2.4), and @.5 we conclude thay'(t) > 0 for ¢ > 0, henceg is
increasing or{0, co). Taking into account that

sinh® ¢
li t) = 1)log2 +1 li
tg?og( )= (p+1)log2+log (tgglo cosh ¢(sinh(2t) — 2t)>

+ ptlllglo(log(cosh t)—t)+ ptlirglo t(1 — cotht)

= (p+1)log2 —i—log% +plog%
=0,
it follows that g(¢) < 0 for all ¢ > 0. By virtue of 2.2), we deduce that
f,(t) < 0forallt > 0, hencef, is decreasing of0, o). Sinceli\r% f»(t) =0,
we conclude thaf,(¢) < 0 for all t > 0. This proves the validity of4.1).
Now letz # y be two arbitrary positive real numbers. Lettihg- log \/g
in (2.1) and multiplying the obtained inequality b{x/:c_y)p we obtain

(Z)p/l”(a:,y) + <1 - (%)p) G (z,y) < IP(2,y).

Consequently, the first inequality iti.€) holds true fora = (2)”.
Let us prove now that the second inequality in5f holds true forg = %
Indeed, taking into accouni (3) as well as the convexity of the functigne
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(0,00) >tz € (0, 00) (recall thatp > 2), we get

2 1 P
<3 [A@y)]* + 3 [Eley)?
2 1
=3 Ay 3 Gey).
Conversely, suppose thdt §) holds true for all positive real numbets# y. Tiberiu Trif
Then we have 1(e.y) — GP(a.y)
x,y)— x,y ;
. Title Page
O Ao(a,y) - Gr(a,y) v .
Content
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44 44
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