Journal of Inequalities in Pure and Applied Mathematics

NOTE ON CERTAIN INEQUALITIES FOR MEANS IN TWO VARIABLES

TIBERIU TRIF

Universitatea Babeş-Bolyai Facultatea de Matematică și Informatică Str. Kogălniceanu 1 3400 Cluj-Napoca, Romania

EMail: ttrif@math.ubbcluj.ro

volume 6, issue 2, article 43, 2005.

Received 13 October, 2004; accepted 16 March, 2005.

Communicated by: S.S. Dragomir

©2000 Victoria University ISSN (electronic): 1443-5756 192-04

Abstract

Given the positive real numbers x and y, let A(x,y), G(x,y), and I(x,y) denote their arithmetic mean, geometric mean, and identric mean, respectively. It is proved that for $p \geq 2$, the double inequality

$$\alpha A^{p}(x,y) + (1-\alpha)G^{p}(x,y) < I^{p}(x,y) < \beta A^{p}(x,y) + (1-\beta)G^{p}(x,y)$$

holds true for all positive real numbers $x \neq y$ if and only if $\alpha \leq \left(\frac{2}{e}\right)^p$ and $\beta \geq \frac{2}{3}$. This result complements a similar one established by H. Alzer and S.-L. Qiu [Inequalities for means in two variables, *Arch. Math. (Basel)* **80** (2003), 201–215].

2000 Mathematics Subject Classification: Primary: 26E60, 26D07. Key words: Arithmetic mean, Geometric mean, Identric mean.

Contents

1	Introduction and Main Result	3
2	Proof of Theorem 1.2	6
References		

Note on Certain Inequalities for Means in Two Variables

Tiberiu Trif

Title Page

Contents

Go Back

Close

Quit

Page 2 of 11

1. Introduction and Main Result

The means in two variables are special and they have found a number of applications (see, for instance, [1, 5] and the references therein). In this note we focus on certain inequalities involving the arithmetic mean, the geometric mean, and the identric mean of two positive real numbers x and y. Recall that these means are defined by $A(x,y) = \frac{x+y}{2}$, $G(x,y) = \sqrt{xy}$, and

$$I(x,y) = \frac{1}{e} \left(\frac{x^x}{y^y}\right)^{\frac{1}{x-y}} \quad \text{if } x \neq y,$$

$$I(x,x) = x,$$

respectively. It is well-known that

(1.1)
$$G(x,y) < I(x,y) < A(x,y)$$

for all positive real numbers $x \neq y$. On the other hand, J. Sándor [6] proved that

(1.2)
$$\frac{2}{3}A(x,y) + \frac{1}{3}G(x,y) < I(x,y)$$

for all positive real numbers $x \neq y$. Note that inequality (1.2) is a refinement of the first inequality in (1.1). Also, (1.2) is sharp in the sense that $\frac{2}{3}$ cannot be replaced by any greater constant. An interesting counterpart of (1.2) has been recently obtained by H. Alzer and S.-L. Qiu [1, Theorem 1]. Their result reads as follows:

Note on Certain Inequalities for Means in Two Variables

Tiberiu Trif

Title Page

Contents

Close

Quit

Page 3 of 11

Theorem 1.1. *The double inequality*

$$\alpha A(x,y) + (1-\alpha)G(x,y) < I(x,y) < \beta A(x,y) + (1-\beta)G(x,y)$$

holds true for all positive real numbers $x \neq y$, if and only if $\alpha \leq \frac{2}{3}$ and $\beta \geq \frac{2}{e}$.

Another counterpart of (1.2) has been obtained by J. Sándor and T. Trif [8, Theorem 2.5]. More precisely, they proved that

(1.3)
$$I^{2}(x,y) < \frac{2}{3}A^{2}(x,y) + \frac{1}{3}G^{2}(x,y)$$

for all positive real numbers $x \neq y$. We note that (1.3) is a refinement of the second inequality in (1.1). Moreover, (1.3) is the best possible inequality of the type

(1.4)
$$I^{2}(x,y) < \beta A^{2}(x,y) + (1-\beta)G^{2}(x,y)$$

in the sense that (1.4) holds true for all positive real numbers $x \neq y$ if and only if $\beta \geq \frac{2}{3}$.

It should be mentioned that (1.3) was derived in [8] as a consequence of certain power series expansions discovered by J. Sándor [7]. We present here an alternative proof of (1.3), based on the Gauss quadrature formula with two knots (see [2, pp. 343–344] or [3, p. 36])

$$\int_0^1 f(t)dt = \frac{1}{2}f\left(\frac{1}{2} + \frac{1}{2\sqrt{3}}\right) + \frac{1}{2}f\left(\frac{1}{2} - \frac{1}{2\sqrt{3}}\right) + \frac{1}{4320}f^{(4)}(\xi), \quad 0 < \xi < 1.$$

Note on Certain Inequalities for Means in Two Variables

Tiberiu Trif

Title Page

Contents

Go Back

Close

Quit

Page 4 of 11

Choosing $f(t) = \log(tx + (1-t)y)$ and taking into account that

$$\int_0^1 f(t)dt = \log I(x, y),$$

we get

$$\log I(x,y) = \frac{1}{2} \log \left(\frac{2}{3} A^2(x,y) + \frac{1}{3} G^2(x,y) \right) - \frac{(x-y)^4}{720(\xi x + (1-\xi)y)^4}.$$

Consequently, it holds that

$$\exp\left(\frac{1}{360} \left(\frac{x-y}{\max(x,y)}\right)^{4}\right) < \frac{\frac{2}{3}A^{2}(x,y) + \frac{1}{3}G^{2}(x,y)}{I^{2}(x,y)}$$
$$< \exp\left(\frac{1}{360} \left(\frac{x-y}{\min(x,y)}\right)^{4}\right).$$

This inequality yields (1.3) and estimates the sharpness of (1.3). However, we note that the double inequality (2.33) in [8] provides better bounds for the ratio

$$\left(\frac{2}{3}A^{2}(x,y) + \frac{1}{3}G^{2}(x,y)\right) / I^{2}(x,y).$$

The next theorem is the main result of this note and it is motivated by (1.3) and Theorem 1.1.

Theorem 1.2. Given the real number $p \ge 2$, the double inequality

(1.5)
$$\alpha A^p(x,y) + (1-\alpha)G^p(x,y) < I^p(x,y) < \beta A^p(x,y) + (1-\beta)G^p(x,y)$$
 holds true for all positive real numbers $x \neq y$ if and only if $\alpha \leq \left(\frac{2}{e}\right)^p$ and $\beta \geq \frac{2}{3}$.

Note on Certain Inequalities for Means in Two Variables

Tiberiu Trif

Title Page

Contents

Go Back

Close

Quit

Page 5 of 11

2. Proof of Theorem 1.2

Proof. In order to prove that the first inequality in (1.5) holds true for $\alpha = \left(\frac{2}{e}\right)^p$, we will use the ingenious method of E.B. Leach and M.C. Sholander [4] (see also [1]). More precisely, we show that

$$(2.1) \quad \left(\frac{2}{e}\right)^{p} A^{p} \left(e^{t}, e^{-t}\right) + \left(1 - \left(\frac{2}{e}\right)^{p}\right) G^{p} \left(e^{t}, e^{-t}\right)$$

$$< I^{p} \left(e^{t}, e^{-t}\right), \quad \text{for all } t > 0.$$

It is easily seen that (2.1) is equivalent to $f_p(t) < 0$ for all t > 0, where $f_p: (0, \infty) \to \mathbb{R}$ is the function defined by

$$f_p(t) = (2\cosh t)^p + e^p - 2^p - \exp(pt \coth t).$$

We have

$$f_p'(t) = \frac{4p\sinh^3 t(2\cosh t)^{p-1} - p(\sinh(2t) - 2t)\exp(pt\coth t)}{2\sinh^2 t}.$$

By means of the logarithmic mean of two variables,

$$L(x,y) = \frac{x-y}{\log x - \log y} \quad \text{if } x \neq y,$$

$$L(x,x) = x,$$

the derivative f'_p may be expressed as

(2.2)
$$f'_p(t) = p \frac{L(u(t), v(t))}{2 \sinh^2 t} g(t),$$

Note on Certain Inequalities for Means in Two Variables

Tiberiu Trif

Title Page

Contents

Go Back

Close

Quit

Page 6 of 11

where

$$\begin{split} u(t) &= 4 \sinh^3 t (2 \cosh t)^{p-1}, \\ v(t) &= (\sinh(2t) - 2t) \exp(pt \coth t), \\ g(t) &= \log u(t) - \log v(t) \\ &= (p+1) \log 2 + 3 \log(\sinh t) + (p-1) \log(\cosh t) \\ &- \log(\sinh(2t) - 2t) - pt \coth t. \end{split}$$

We have

$$g'(t) = \frac{3\cosh t}{\sinh t} + \frac{(p-1)\sinh t}{\cosh t} - \frac{2\cosh(2t) - 2}{\sinh(2t) - 2t} - \frac{p\cosh t}{\sinh t} + \frac{pt}{\sinh^2 t}$$

$$= \frac{3\cosh^2 t - \sinh^2 t - p(\cosh^2 t - \sinh^2 t)}{\sinh t \cosh t} + \frac{pt}{\sinh^2 t} - \frac{2\cosh(2t) - 2}{\sinh(2t) - 2t}$$

$$= \frac{\cosh(2t) + 2 - p}{\sinh t \cosh t} + \frac{pt}{\sinh^2 t} - \frac{2\cosh(2t) - 2}{\sinh(2t) - 2t},$$

hence

$$(2.3) g'(t) = g_1(t) + g_2(t),$$

where

$$g_1(t) = \frac{\cosh(2t)}{\sinh t \cosh t} + \frac{2t}{\sinh^2 t} - \frac{2\cosh(2t) - 2}{\sinh(2t) - 2t},$$

$$g_2(t) = \frac{(p-2)t}{\sinh^2 t} - \frac{p-2}{\sinh t \cosh t}.$$

Note on Certain Inequalities for Means in Two Variables

Tiberiu Trif

Title Page

Contents

Go Back

Close

Quit

Page 7 of 11

But

$$g_2(t) = \frac{p-2}{\sinh^2 t \cosh t} (t \cosh t - \sinh t)$$
$$= \frac{p-2}{\sinh^2 t \cosh t} \sum_{k=1}^{\infty} \left(\frac{1}{(2k)!} - \frac{1}{(2k+1)!} \right) t^{2k+1}.$$

Taking into account that $p \ge 2$, we deduce that

(2.4)
$$g_2(t) \ge 0$$
 for all $t > 0$.

Further, let $h:(0,\infty)\to\mathbb{R}$ be the function defined by

$$h(t) = \sinh^2 t \cosh t (\sinh(2t) - 2t) g_1(t).$$

Then we have

$$h(t) = 2t \sinh t + \sinh t \sinh 2t - 4t^{2}$$

$$= 2t \sinh t + \frac{1}{2} \cosh(3t) - \frac{1}{2} \cosh t - 4t^{2}$$

$$= \sum_{k=2}^{\infty} \left(\frac{2}{(2k-1)!} + \frac{3^{2k} - 1}{2(2k)!} \right) t^{2k}.$$

Therefore h(t) > 0 for t > 0, hence

(2.5)
$$g_1(t) > 0$$
 for all $t > 0$.

Note on Certain Inequalities for Means in Two Variables

Tiberiu Trif

Title Page

Contents

Close

Quit

Page 8 of 11

By (2.3), (2.4), and (2.5) we conclude that g'(t) > 0 for t > 0, hence g is increasing on $(0, \infty)$. Taking into account that

$$\lim_{t \to \infty} g(t) = (p+1)\log 2 + \log \left(\lim_{t \to \infty} \frac{\sinh^3 t}{\cosh t (\sinh(2t) - 2t)} \right)$$
$$+ p \lim_{t \to \infty} (\log(\cosh t) - t) + p \lim_{t \to \infty} t (1 - \coth t)$$
$$= (p+1)\log 2 + \log \frac{1}{2} + p \log \frac{1}{2}$$
$$= 0,$$

it follows that g(t) < 0 for all t > 0. By virtue of (2.2), we deduce that $f_p'(t) < 0$ for all t > 0, hence f_p is decreasing on $(0, \infty)$. Since $\lim_{t \searrow 0} f_p(t) = 0$, we conclude that $f_p(t) < 0$ for all t > 0. This proves the validity of (2.1).

Now let $x \neq y$ be two arbitrary positive real numbers. Letting $t = \log \sqrt{\frac{x}{y}}$ in (2.1) and multiplying the obtained inequality by $(\sqrt{xy})^p$, we obtain

$$\left(\frac{2}{e}\right)^p A^p(x,y) + \left(1 - \left(\frac{2}{e}\right)^p\right) G^p(x,y) < I^p(x,y).$$

Consequently, the first inequality in (1.5) holds true for $\alpha = \left(\frac{2}{e}\right)^p$.

Let us prove now that the second inequality in (1.5) holds true for $\beta = \frac{2}{3}$. Indeed, taking into account (1.3) as well as the convexity of the function $t \in$

Note on Certain Inequalities for Means in Two Variables

Tiberiu Trif

Title Page

Contents

Go Back

Close

Quit

Page 9 of 11

 $(0,\infty)\mapsto t^{\frac{p}{2}}\in (0,\infty)$ (recall that $p\geq 2$), we get

$$\begin{split} I^p(x,y) &= \left[I^2(x,y)\right]^{\frac{p}{2}} \\ &< \left[\frac{2}{3}A^2(x,y) + \frac{1}{3}G^2(x,y)\right]^{\frac{p}{2}} \\ &\leq \frac{2}{3}\left[A^2(x,y)\right]^{\frac{p}{2}} + \frac{1}{3}\left[G^2(x,y)\right]^{\frac{p}{2}} \\ &= \frac{2}{3}A^p(x,y) + \frac{1}{3}G^p(x,y). \end{split}$$

Conversely, suppose that (1.5) holds true for all positive real numbers $x \neq y$. Then we have

$$\alpha < \frac{I^p(x,y) - G^p(x,y)}{A^p(x,y) - G^p(x,y)} < \beta.$$

The limits

$$\lim_{x\to 0} \frac{I^p(x,1)-G^p(x,1)}{A^p(x,1)-G^p(x,1)} = \left(\frac{2}{e}\right)^p \quad \text{ and } \quad \lim_{x\to 1} \frac{I^p(x,1)-G^p(x,1)}{A^p(x,1)-G^p(x,1)} = \frac{2}{3}$$

yield
$$\alpha \leq \left(\frac{2}{e}\right)^p$$
 and $\beta \geq \frac{2}{3}$.

Note on Certain Inequalities for Means in Two Variables

Tiberiu Trif

Title Page

Contents

Go Back

Close

Quit

Page 10 of 11

References

- [1] H. ALZER AND S.-L. QIU, Inequalities for means in two variables, *Arch. Math. (Basel)*, **80** (2003), 201–215.
- [2] P.J. DAVIS, *Interpolation and Approximation*, Blaisdell, New York, 1963.
- [3] P.J. DAVIS AND P. RABINOWITZ, *Numerical Integration*, Blaisdell, Massachusetts–Toronto–London, 1967.
- [4] E.B. LEACH AND M.C. SHOLANDER, Extended mean values II, *J. Math. Anal. Appl.*, **92** (1983), 207–223.
- [5] G. LORENZEN, Why means in two arguments are special, *Elem. Math.*, **49** (1994), 32–37.
- [6] J. SÁNDOR, A note on some inequalities for means, *Arch. Math. (Basel)* **56** (1991), 471–473.
- [7] J. SÁNDOR, On certain identities for means, *Studia Univ. Babeş-Bolyai*, *Ser. Math.*, **38**(4) (1993), 7–14.
- [8] J. SÁNDOR AND T. TRIF, Some new inequalities for means of two arguments, *Int. J. Math. Math. Sci.*, **25** (2001), 525–532.

Note on Certain Inequalities for Means in Two Variables

Tiberiu Trif

Title Page

Contents

Go Back

Close

Quit

Page 11 of 11