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Abstract

Given the positive real numbers x and y, let A(x, y), G(x, y), and I(x, y) denote
their arithmetic mean, geometric mean, and identric mean, respectively. It is
proved that for p ≥ 2, the double inequality

αAp(x, y) + (1− α)Gp(x, y) < Ip(x, y) < βAp(x, y) + (1− β)Gp(x, y)

holds true for all positive real numbers x 6= y if and only if α ≤
(

2
e

)p and β ≥ 2
3 .

This result complements a similar one established by H. Alzer and S.-L. Qiu
[Inequalities for means in two variables, Arch. Math. (Basel) 80 (2003), 201–
215].

2000 Mathematics Subject Classification: Primary: 26E60, 26D07.
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1. Introduction and Main Result
The means in two variables are special and they have found a number of ap-
plications (see, for instance, [1, 5] and the references therein). In this note we
focus on certain inequalities involving the arithmetic mean, the geometric mean,
and the identric mean of two positive real numbersx andy. Recall that these
means are defined byA(x, y) = x+y

2
, G(x, y) =

√
xy, and

I(x, y) =
1

e

(
xx

yy

) 1
x−y

if x 6= y,

I(x, x) = x,

respectively. It is well-known that

(1.1) G(x, y) < I(x, y) < A(x, y)

for all positive real numbersx 6= y. On the other hand, J. Sándor [6] proved
that

(1.2)
2

3
A(x, y) +

1

3
G(x, y) < I(x, y)

for all positive real numbersx 6= y. Note that inequality (1.2) is a refinement
of the first inequality in (1.1). Also, (1.2) is sharp in the sense that2

3
cannot be

replaced by any greater constant. An interesting counterpart of (1.2) has been
recently obtained by H. Alzer and S.-L. Qiu [1, Theorem 1]. Their result reads
as follows:
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Theorem 1.1.The double inequality

αA(x, y) + (1− α)G(x, y) < I(x, y) < βA(x, y) + (1− β)G(x, y)

holds true for all positive real numbersx 6= y, if and only ifα ≤ 2
3

andβ ≥ 2
e
.

Another counterpart of (1.2) has been obtained by J. Sándor and T. Trif [8,
Theorem 2.5]. More precisely, they proved that

(1.3) I2(x, y) <
2

3
A2(x, y) +

1

3
G2(x, y)

for all positive real numbersx 6= y. We note that (1.3) is a refinement of the
second inequality in (1.1). Moreover, (1.3) is the best possible inequality of the
type

(1.4) I2(x, y) < βA2(x, y) + (1− β)G2(x, y)

in the sense that (1.4) holds true for all positive real numbersx 6= y if and only
if β ≥ 2

3
.

It should be mentioned that (1.3) was derived in [8] as a consequence of
certain power series expansions discovered by J. Sándor [7]. We present here
an alternative proof of (1.3), based on the Gauss quadrature formula with two
knots (see [2, pp. 343–344] or [3, p. 36])∫ 1

0

f(t)dt =
1

2
f

(
1

2
+

1

2
√

3

)
+

1

2
f

(
1

2
− 1

2
√

3

)
+

1

4320
f (4)(ξ), 0 < ξ < 1.
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Choosingf(t) = log(tx + (1− t)y) and taking into account that∫ 1

0

f(t)dt = log I(x, y),

we get

log I(x, y) =
1

2
log

(
2

3
A2(x, y) +

1

3
G2(x, y)

)
− (x− y)4

720(ξx + (1− ξ)y)4
.

Consequently, it holds that

exp

(
1

360

(
x− y

max(x, y)

)4
)

<
2
3
A2(x, y) + 1

3
G2(x, y)

I2(x, y)

< exp

(
1

360

(
x− y

min(x, y)

)4
)

.

This inequality yields (1.3) and estimates the sharpness of (1.3). However, we
note that the double inequality (2.33) in [8] provides better bounds for the ratio(

2

3
A2(x, y) +

1

3
G2(x, y)

)/
I2(x, y).

The next theorem is the main result of this note and it is motivated by (1.3)
and Theorem1.1.

Theorem 1.2.Given the real numberp ≥ 2, the double inequality

(1.5) αAp(x, y)+ (1−α)Gp(x, y) < Ip(x, y) < βAp(x, y)+ (1−β)Gp(x, y)

holds true for all positive real numbersx 6= y if and only if α ≤
(

2
e

)p
and

β ≥ 2
3
.
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2. Proof of Theorem1.2
Proof. In order to prove that the first inequality in (1.5) holds true forα =

(
2
e

)p
,

we will use the ingenious method of E.B. Leach and M.C. Sholander [4] (see
also [1]). More precisely, we show that

(2.1)

(
2

e

)p

Ap
(
et, e−t

)
+

(
1−

(
2

e

)p)
Gp
(
et, e−t

)
< Ip

(
et, e−t

)
, for all t > 0.

It is easily seen that (2.1) is equivalent tofp(t) < 0 for all t > 0, wherefp :
(0,∞)→ R is the function defined by

fp(t) = (2 cosh t)p + ep − 2p − exp(pt coth t).

We have

f ′p(t) =
4p sinh3 t(2 cosh t)p−1 − p(sinh(2t)− 2t) exp(pt coth t)

2 sinh2 t
.

By means of the logarithmic mean of two variables,

L(x, y) =
x− y

log x− log y
if x 6= y,

L(x, x) = x,

the derivativef ′p may be expressed as

(2.2) f ′p(t) = p
L(u(t), v(t))

2 sinh2 t
g(t),
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where

u(t) = 4 sinh3 t(2 cosh t)p−1,

v(t) = (sinh(2t)− 2t) exp(pt coth t),

g(t) = log u(t)− log v(t)

= (p + 1) log 2 + 3 log(sinh t) + (p− 1) log(cosh t)

− log(sinh(2t)− 2t)− pt coth t.

We have

g′(t) =
3 cosh t

sinh t
+

(p− 1) sinh t

cosh t
− 2 cosh(2t)− 2

sinh(2t)− 2t
− p cosh t

sinh t
+

pt

sinh2 t

=
3 cosh2 t− sinh2 t− p(cosh2 t− sinh2 t)

sinh t cosh t
+

pt

sinh2 t
− 2 cosh(2t)− 2

sinh(2t)− 2t

=
cosh(2t) + 2− p

sinh t cosh t
+

pt

sinh2 t
− 2 cosh(2t)− 2

sinh(2t)− 2t
,

hence

(2.3) g′(t) = g1(t) + g2(t),

where

g1(t) =
cosh(2t)

sinh t cosh t
+

2t

sinh2 t
− 2 cosh(2t)− 2

sinh(2t)− 2t
,

g2(t) =
(p− 2)t

sinh2 t
− p− 2

sinh t cosh t
.
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But

g2(t) =
p− 2

sinh2 t cosh t
(t cosh t− sinh t)

=
p− 2

sinh2 t cosh t

∞∑
k=1

(
1

(2k)!
− 1

(2k + 1)!

)
t2k+1.

Taking into account thatp ≥ 2, we deduce that

(2.4) g2(t) ≥ 0 for all t > 0.

Further, leth : (0,∞)→ R be the function defined by

h(t) = sinh2 t cosh t(sinh(2t)− 2t)g1(t).

Then we have

h(t) = 2t sinh t + sinh t sinh 2t− 4t2

= 2t sinh t +
1

2
cosh(3t)− 1

2
cosh t− 4t2

=
∞∑

k=2

(
2

(2k − 1)!
+

32k − 1

2(2k)!

)
t2k.

Thereforeh(t) > 0 for t > 0, hence

(2.5) g1(t) > 0 for all t > 0.
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By (2.3), (2.4), and (2.5) we conclude thatg′(t) > 0 for t > 0, henceg is
increasing on(0,∞). Taking into account that

lim
t→∞

g(t) = (p + 1) log 2 + log

(
lim
t→∞

sinh3 t

cosh t(sinh(2t)− 2t)

)
+ p lim

t→∞
(log(cosh t)− t) + p lim

t→∞
t(1− coth t)

= (p + 1) log 2 + log
1

2
+ p log

1

2
= 0,

it follows that g(t) < 0 for all t > 0. By virtue of (2.2), we deduce that
f ′p(t) < 0 for all t > 0, hencefp is decreasing on(0,∞). Sincelim

t↘0
fp(t) = 0,

we conclude thatfp(t) < 0 for all t > 0. This proves the validity of (2.1).

Now let x 6= y be two arbitrary positive real numbers. Lettingt = log
√

x
y

in (2.1) and multiplying the obtained inequality by
(√

xy
)p

, we obtain(
2

e

)p

Ap(x, y) +

(
1−

(
2

e

)p)
Gp(x, y) < Ip(x, y).

Consequently, the first inequality in (1.5) holds true forα =
(

2
e

)p
.

Let us prove now that the second inequality in (1.5) holds true forβ = 2
3
.

Indeed, taking into account (1.3) as well as the convexity of the functiont ∈
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(0,∞) 7→ t
p
2 ∈ (0,∞) (recall thatp ≥ 2), we get

Ip(x, y) =
[
I2(x, y)

] p
2

<

[
2

3
A2(x, y) +

1

3
G2(x, y)

] p
2

≤ 2

3

[
A2(x, y)

] p
2 +

1

3

[
G2(x, y)

] p
2

=
2

3
Ap(x, y) +

1

3
Gp(x, y).

Conversely, suppose that (1.5) holds true for all positive real numbersx 6= y.
Then we have

α <
Ip(x, y)−Gp(x, y)

Ap(x, y)−Gp(x, y)
< β.

The limits

lim
x→0

Ip(x, 1)−Gp(x, 1)

Ap(x, 1)−Gp(x, 1)
=

(
2

e

)p

and lim
x→1

Ip(x, 1)−Gp(x, 1)

Ap(x, 1)−Gp(x, 1)
=

2

3

yield α ≤
(

2
e

)p
andβ ≥ 2

3
.
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