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Abstract

In the present note we establish two new integral inequalities similar to that of
the Griss integral inequality via Pompeiu’s mean value theorem.

2000 Mathematics Subject Classification: 26D15, 26D20.
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In 1935 G. Gruss4]] proved the following integral inequality (see alsg p.
296)):
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provided thatf andg are two integrable functions dn, b] such that

Title Page
p<f(z) <P q<g(r)<Q, 2
Contents
forall z € [a,b] , wherep, P, q, ) are constants. « N

The inequality {.1) has evoked the interest of many researchers and numer-
ous generalizations, variants and extensions have appeared in the literature, see < >
[1], [3], [5] = [10C] and the references cited therein. The main aim of this note is

. . . . . . Go Back
to establish two new integral inequalities similar to the inequality)(by us-
ing a variant of Lagrange’s mean value theorem, now known as the Pompeiu’s Close
mean value theoren [] (see also ]2, p. 83] and P]). Quit
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In what follows, R and’ denote the set of real numbers and derivative of a
function respectively. For continuous functiops; : [a,b] — R which are
differentiable on(a, b), we use the notations

G[p,q]—/p(m)q(x)dx

1 b b On Griss Like Integral
o b2 — g2 {(/ p (‘T) dl’) (/ rq (I) dl’) Inequalities via Pompeiu’s Mean
a a

Value Theorem

+ ( / @ dx) ( /  ip (2) dw)] , .G, Pachpatte

Hlp,q] = /abp(I)Q(x) dz — ﬁ </j$p (z) dx) (/ab 24 (2) dx) ’ T;t(')em:?:

to simplify the details of presentation and defingl = sup;c(, ) [P ()]

In the proofs of our results we make use of the following theorem, which is
a variant of the well known Lagrange’s mean value theorem given by Pompeiu < 4
in[11] (see also?, 17)).

<4< 44

Go Back
Theorem 2.1 (Pompeiu).For every real valued functioyi differentiable on an Close
interval [a, b] not containing) and for all pairsz; # z5 in [a, b] there exists a Quit
pointcin (z1,x2) such that
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z1f (29) — 2o f (1)
= f(e)—cf' ().
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Our main result is given in the following theorem.

Theorem 2.2.Let f,g : [a,b] — R be continuous oru, b] and differentiable
on (a, b) with [a, b] not containingd. Then

’ 1
@D (GIal < 17 [ o] - | e
’ 1
o= 1d e [ 17 @5 - 75| s

wherel(t) =t,t € [a, b].
A slight variant of Theoren2.2is embodied in the following theorem.

Theorem 2.3.Let f,g : [a,b] — R be continuous oru, b] and differentiable
on (a, b) with [a, b] not containingd. Then

(2.2) [H gl < If =1 g = 19l 1M1

wherel(t) =t ,t € [a, b] and

B 3 (a+b)’
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2.2 2.3

From the hypotheses of Theore® and2.3 and using Theorerf.1 for ¢ #
x, x,t € |a, b, there exist points andd betweenr andt such that

(3.1) tf(@)—xf(t)=[f(c)=cf ()t —2),

(3.2) tg(x)—zg(t) =lg(d) —dg' (d)](t — ). oGS LTSl
Inequalities via Pompeiu’s Mean
Value Theorem

Multiplying (3.1) and @.2) by g(z) and f(x) respectively and adding the result-

ing identities we have B.G. Pachpatte
(3.3) 2tf(r)g(x)—zg(x)f(t)—xf(x)g(t) Title Page
=[fle)=cf (]t —2)g(z) +[g(d) —dg ()] (t — ) f (z). Contents
Integrating both sides oB(3) with respect ta over|a, b] we have <4 >
b b < 4
@4) (P~ a) f@)g(e) ~g() [ Ot —of@) [ g0ar o
(e v — a? 2 o) (b g Close
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Now, integrating both sides 08(4) with respect ta: over|[a, b] we have

(3.5) (b —a?) /f:v)g

([ ([ i) ([ 08) (04
() - of (c { / dx—b—a)/xg(a:)dw}

+[g(d) - dg' (d {

Rewriting 3.5 we have

a+b

@8 Glral = —er' 0] [ 9 {3~ b

+[g(d)—dg’(d)]/abf(:p){%— ’ }dm.

a+b

Using the properties of modulus, fror.¢) we have

T

b 1
Gl <1 =17l [ a3 - -5

b 1
Hlo=1gl [ 17 @) |5 -

This completes the proof of Theorent.

’dx

xb dz.

— @) / z)dr — b—a)a/abxf(x)dx}.
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Multiplying the left sides and right sides d3.(l) and 3.2) we get
(3.7) £f (z) g(x) — (af (2)) (tg (t)) — (zg () (tf (£)) +2*f () g (t)

=[f () = cf ()9 (d) — dg ()] (t —2)*.

Integrating both sides oB(7) with respect ta over|a, b] we have

¥~ a)
(38)

f(x) g (z)

—:cf(w)/ tg<t>dt—xg<x>/ tf(t)dt+x2/ £ () g (t) de

¥ —a)

— Q= ef @l (@ - g @1 {5 @) 200}

Now, integrating both sides 08(8) with respect ta: over|a, b] we have

AT )
</a[f<<>dx> (o).

c) —cf ()l g (d) — dg' (d)]

(3.9)

(v* = a®) 2 oy (¥ —a?) (b* = a®)
X{T(b_a)_(b —a’)———=+(b—a) }

2

Rewriting 3.9) we have

(3.10) H{[f,g] = [f (c) = cf" (¢)] [g (d) — dg (d)] M.

On Griss Like Integral
Inequalities via Pompeiu’s Mean
Value Theorem

B.G. Pachpatte

Title Page

Contents
44 44
< >
Go Back
Close
Quit
Page 8 of 11

J. Ineq. Pure and Appl. Math. 6(3) Art. 82, 2005

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:bgpachpatte@hotmail.com
http://jipam.vu.edu.au/

Using the properties of modulus, frord.(0 we have

H gl < If =1 g = 19l 1M1

The proof of Theoren2.3is complete.
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