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1. Introduction

In the paper]], V. Cirtoaje posted 5 conjectures on inequalities with power-exponential
functions. In this paper, we prove Conjecture 4.6.

Conjecture 4.6.Letr be a positive real number. The inequality
(1.1) a’t b <2

holds for all nonnegative real numbetsand b witha + b = 2, if and only if » < 3.
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2. Proof of Conjecture 4.6

First, we prove the necessary condition. Rut 2 — 2, b= < r = 3z for z > 1.
Then we have

(2.1) a”t + b > 2.

1\ 3 1 3z(2-1) 19 6 1 1 623
o2 o (220 )
T T T T T T

)6&:—3

In fact,

and if we show thaf! > —6 + 2 — & + & then the inequalityd.1) will be
fulfilled for all z > 1. Put¢ = 1, then0 < ¢ < 1. The inequality 2.1) becomes

t0 > 313 — 612 + 12t — 6) = £33(1),

wheref(t) = t* — 6t + 12t — 6. From3'(t) = 3(t — 2)?, 5(0) = —6, and from that
there is only one redl, = 0.7401 such that3(¢,) = 0 and we have that(¢) < 0 for

0 < t < t,. Thus, it suffices to show that > t33(t) for ty < t < 1. Rewriting the
previous inequality we get

6
aft) = <Z - 3> Int — In(t> — 62 + 12t — 6) > 0.

Froma(1) = 0, it suffices to show that/(¢) < 0 for ¢ty < ¢t < 1, where

6 6 1 3212t 412
)= ——Int+(~—3)- - .
o) = —pln +(t )t £3 62+ 12t — 6
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a/(t) < 0is equivalent to
t2(t — 2)?
3 — 62412t — 6
From~(1) = 0, it suffices to show that/(¢) < 0 for ¢y < ¢ < 1, where
(1) = (483 — 12t2 + 8t)(t3 — 6t2 + 12t — 6) — (t* — 4t% + 4¢%)(3t2 — 12t + 12)
T (5 — 612 + 12 — 6)2

v(t)=2Int —2+t+ > 0.

2
+o+1
_ 10— 127 4 56 — 120 +1202 — 48t 2
B (13 — 612 4 12t — 6)2 PRI
v'(t) < 0is equivalent to

p(t) = 2t7 — 22t° + 92t — 156t* + 24+ + 240t* — 252t + 72 < 0.

From

p(t) = 2(t — 1)(t° — 10> + 36t* — 42¢> — 30¢* + 90t — 36),
it suffices to show that
(2.2) q(t) =% — 10> + 36t* — 42> — 30t* + 90t — 36 > 0.

Sinceq(0.74) = 5.893, ¢(1) = 9 it suffices to show thaj”(t) < 0 and ¢.2) will be
proved. Indeed, fof, < t < 1, we have

q"(t) = 2(15t* — 100t + 216t* — 126t — 30)
< 2(40t* — 100#* + 216t* — 126t — 30)
= 4(t — 1)(20t> — 30> 4 78t + 15)
At —

< 1)(—30t* + 78t) < 0.
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This completes the proof of the necessary condition.

We prove the sufficient condition. Put=1—xz andb = 14z, where) < = < 1.
Since the desired inequality is true fer= 0 and forx = 1, we only need to show
that

(2.3) (1—2)W) (142079 <2 for 0<z<1, 0<7r<3.
Denotegp(m) = (1 —.I')T(H_m) + (1 —|—$)T(1_$). We show that@l(l’) <0for0 <z <1, Solution Of One Conjecture
0 < r < 3 which gives thatZ.3) is valid (p(0) = 2). Ladislav Matejicka

vol. 10, iss. 3, art. 72, 2009

(@) = (1—z)7 0+ (r In(1 — ) ~r it D (1)) (7»1 —% (14 x)) |

— 1+ )
Title Page
: L, : ,
The inequalityy’(z) < 0 is equivalent to Contents
1+z2\" [(1—x I
2.4 —In(1 < (1 —2zHr —In(1 - . « 4
e (152) (Fh-muso) <a-a (72 -ma-a)
< >
If §(2) = 175 —In(1+x) < 0, then @.4) is evident. Sincé'(z) = — 54m — 15 <0 page 6 of 12
for0 < x < 1,0(0) =1andi(l) = —In2, we haved(z) > 0for0 < z < zy =
0.4547. Therefore, it suffices to show thafz) > 0 for 0 < = < xy, where Go Back
1 1 Full Screen
h(z) =rzIn(l —2%) —rln (1 ii) +In (1 j:i —1In(1 — :p)) Close
11—z
—1In (1 e In(1+ a:)) . journal of inequalities
r in pure and applied
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h(z) > 0for 0 < z < xy and it implies that the inequality (4) is valid.

/ ) 1 4 22 3—=x
W) =il =) = 2 i h e~ (- ) (1 — )
3+

o —e—(+o)m(+2)

PutA = In(1 + z) andB = In(1 — x). The inequalityh’(z) > 0,0 < = < xg IS
equivalent to

3 — 2 — 22 3+ 2z — a*
2.5) r(22° +2— (1 —2?)(A+ B)) < |
(2.5) r(22"+2—-(1-2")(A+ ))—1—x—(1+$)f4+1+x_(1_x>3

Since2z? + 2 — (1 — 2?)(A + B) > 0 for 0 < x < 1, it suffices to prove that

3—2x —2a? 3+ 2z — a2
2 2
_ (11— <
(2.6) 322" +2—-(1 x)(A+B))_1—x—(1+m)A+1+x—(1—x)B

and then the inequality?(5) will be fulfilled for 0 < » < 3. The inequality 2.6) for
0 < x < xg IS equivalent to
(2.7) 62°—62"—(92*+132° +52° + 7w +6) A— (92 —132° +52° — T2 +6) B
— (32* + 62% — 62 — 3)A? — (32* — 62° + 62 — 3) B?
— (122" —12)AB — (32* — 62> + 3)AB(A+ B) < 0.
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T B L N I N =2
ﬁ222231<2b>xﬂ WIELHJ<

n=1 i=1 n=1
o) 2n+1 :
1 ( 1)z+1
AB — 2n+2
Since
4 "1
Aip= Y (Z _,) 2
n=1,3,5,... n+1 i=1 v
and
4 531 PRI Rt A N
n+l\<i) " n+l 2 ) 7
we have
1
A2 BQ — - n+1
e > ()
n=1,3,5,... =1
11 137 4 "1
92 oty 1206 -
11 137
<24 =ty =542 Z "t
6 90 n="7,9,...
11 137 228
-9 2 -4 —<',..6 )
x° + 6 x 90 Tz + 1_ 2
From this and from the previous Taylor’s formulas we have
1 1 1 8
2.8 A+B>—a?——at ——a% — - [ ——
(2.8) * oot Tyt T\ —a2)
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2 2 2
(2.9) A—B>2x+ 5333 + 5235 + ?gﬂ,

1, 137 , 28

2.10 AP+ B <22+ —at 4+ — —
(2.10) + <x+6x+90x+1_x2,
(2.11) A? — B* < —22% — §x5,

(2.12) AB<—x2—%x4 for 0<z<1.

Now, having in view £.12) and the obvious inequality + B < 0, to prove £.7) it
suffices to show that

62 — 62" — (6 + 52 +92*) (A + B) + (Tx +132%) (B — A) + (3 — 32*) (A% + B?)

5
+ (62 — 62°)(A* — B?) — (12 — 12z) (;[,2 + E”’A)

5
+ (x2 + Ex‘l) (3 — 622 +32%)(A+ B) <0.

By using the inequalities?(10), (2.11), the previous inequality will be proved if we
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show that

62 — 62! — (6 + 52 + 92*) (A + B) + (Tz + 132°)(B — A)

11 137 228 5
4 4 3 3 5
—|—(3—31;)(2x —|——6x —|——90 —|—1 x2>—(6x—6x)(2x +—3x>

— (12 — 122%) (a: + 3:54) + (x + D ) (3 =622 +32Y)(B+ A) <0,

12 12

which can be rewritten as

1 1
(2.13) — %x‘l + %xﬁ + ?9:1:8 - %xm +6(2® + 2'9)

55 1 5
~(A+B 202 + gt — —ab — =48
(A+ )<6+x+4x 57 4:5)

+ (7o + 132°)(B — A) < 0.

To prove .13 it suffices to show

250 4, 357 o 1841 ¢ 337 ;) 19 ,, 5

2.14) — g2 — 224 206 2000 272 2
(214) =8 = —mat 4 opa o T gt Tt T Rt
@ (3 1., 55, 1, 5 4
1—x2<§+§x+1_6x_§x_1_6x)<0

It follows from (2.8) and @.9). Since0 < z < ; we have < 3. If we show

6 20 120 420 24
55 12 1 14 3 16

5 14 8 2 10
- — 2 — — - = - — <0
12x + 227 + Bx + 12x 6:1: 12x ,

e(r) = —82% — 12
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then the inequality4.14) will be proved. Fromz® < 2*, 2% < 2%, 2% < 2* and
z'? < z*, we obtain that

19 7 5
o224 U a9 a6
e(xr) < —8z — 8~ 5% T < 0.

This completes the proof.
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