GEOMETRIC CONVEXITY OF A FUNCTION INVOLVING GAMMA FUNCTION AND APPLICATIONS TO INEQUALITY THEORY

XIAO-MING ZHANG, TIE-QUAN XU, AND LING-BO SITU
Haining TV University, Haining City, Zhejiang Province, 314400, China
zjzxm79@sohu.com
Qingdao Vocational and Technical College, Qingdao City, 266071, China
Canguiang Middle School, Kaiping City, Guangdong Province, 529300, CHINA
Received 25 July, 2006; accepted 24 February, 2007
Communicated by F. Qi

AbSTRACT. In this paper, the geometric convexity of a function involving gamma function is studied, as applications to inequality theory, some important inequalities which improve some known inequalities, including Wallis' inequality, are obtained.

Key words and phrases: Gamma function, Geometrically Convex function, Wallis' inequality, Application, Inequality.
2000 Mathematics Subject Classification. Primary 33B15, 65R10; Secondary 26A48, 26A51, 26D20.

1. Introduction and main results

The geometrically convex functions are as defined below.
Definition $1.1([10,11,12])$. Let $f: I \subseteq(0, \infty) \rightarrow(0, \infty)$ be a continuous function. Then f is called a geometrically convex function on I if there exists an integer $n \geq 2$ such that one of the following two inequalities holds:

$$
\begin{align*}
& f\left(\sqrt{x_{1} x_{2}}\right) \leq \sqrt{f\left(x_{1}\right) f\left(x_{2}\right)}, \tag{1.1}\\
& f\left(\prod_{i=1}^{n} x_{i}^{\lambda_{i}}\right) \leq \prod_{i=1}^{n}\left[f\left(x_{i}\right)\right]^{\lambda_{i}}, \tag{1.2}
\end{align*}
$$

where $x_{1}, x_{2}, \ldots, x_{n} \in I$ and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}>0$ with $\sum_{i=1}^{n} \lambda_{i}=1$. If inequalities (1.1) and (1.2) are reversed, then f is called a geometrically concave function on I.

For more literature on geometrically convex functions and their properties, see [12, 29, 30 , 31, 32] and the references therein.

It is well known that Euler's gamma function $\Gamma(x)$ and the psi function $\psi(x)$ are defined for $x>0$ respectively by $\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} \mathrm{~d} t$ and $\psi(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}$. For $x>0$, let

$$
\begin{equation*}
f(x)=\frac{e^{x} \Gamma(x)}{x^{x}} . \tag{1.3}
\end{equation*}
$$

This function has been studied extensively by many mathematicians, for example, see [6] and the references therein.

In this article, we would like to discuss the geometric convexity of the function f defined by (1.3) and apply this property to obtain, from a new viewpoint, some new inequalities related to the gamma function.

Our main results are as follows.
Theorem 1.1. The function f defined by (1.3) is geometrically convex.
Theorem 1.2. For $x>0$ and $y>0$, the double inequality

$$
\begin{equation*}
\frac{x^{x}}{y^{y}}\left(\frac{x}{y}\right)^{y[\psi(y)-\ln y]} e^{y-x} \leq \frac{\Gamma(x)}{\Gamma(y)} \leq \frac{x^{x}}{y^{y}}\left(\frac{x}{y}\right)^{x[\psi(x)-\ln x]} e^{y-x} \tag{1.4}
\end{equation*}
$$

holds.
As consequences of above theorems, the following corollaries can be deduced.
Corollary 1.3. The function f is logarithmically convex.
Remark 1.4. More generally, the function f is logarithmically completely monotonic in $(0, \infty)$. See [6].

Corollary 1.5 ([7], 13]). For $0<y<x$ and $0<s<1$, inequalities

$$
\begin{equation*}
e^{(x-y) \psi(y)}<\frac{\Gamma(x)}{\Gamma(y)}<e^{(x-y) \psi(x)} \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{x^{x-1}}{y^{y-1}} e^{y-x}<\frac{\Gamma(x)}{\Gamma(y)}<\frac{x^{x-\frac{1}{2}}}{y^{y-\frac{1}{2}}} e^{y-x} \tag{1.6}
\end{equation*}
$$

are valid.
Remark 1.6. Note that inequality (1.4) is better than (1.5) and (1.6). The lower and upper bounds for $\frac{\Gamma(x)}{\Gamma(y)}$ have been established in many papers such as [14, 15, 16, 17, 18, 19, 20, 21, [23, 24, 25, 26].

Corollary 1.7. For $x>0$ and $n \in \mathbb{N}$, the following double inequalities hold:

$$
\begin{equation*}
\sqrt{e x}\left(1+\frac{1}{2 x}\right)^{-x}<\frac{\Gamma(x+1)}{\Gamma(x+1 / 2)}<\sqrt{e x}\left(1+\frac{1}{2 x}\right)^{\frac{1}{12 x}-x} \tag{1.7}
\end{equation*}
$$

and

$$
\begin{align*}
& \sqrt{e(x+n)}\left(1+\frac{1}{2 x+2 n}\right)^{-x-n} \prod_{k=1}^{n}\left(1-\frac{1}{2 x+2 k}\right) \tag{1.8}\\
& \quad<\frac{\Gamma(x+1)}{\Gamma(x+1 / 2)}<\sqrt{e(x+n)}\left(1+\frac{1}{2 x+2 n}\right)^{\frac{1}{12 x+12 n}-x-n} \prod_{k=1}^{n}\left(1-\frac{1}{2 x+2 k}\right) .
\end{align*}
$$

Corollary 1.8. For $n \in \mathbb{N}$, the double inequality

$$
\begin{equation*}
\frac{1}{\sqrt{e \pi n}}\left(1+\frac{1}{2 n}\right)^{n-\frac{1}{12 n}}<\frac{(2 n-1)!!}{(2 n)!!}<\frac{1}{\sqrt{e \pi n}}\left(1+\frac{1}{2 n}\right)^{n-\frac{1}{12 n+16}} \tag{1.9}
\end{equation*}
$$

is valid.
Remark 1.9. Inequality (1.9) is related to the well known Wallis inequality. If $n \geq 2$, inequality (1.9) is better than

$$
\begin{equation*}
\frac{1}{\sqrt{\pi(n+4 / \pi-1)}} \leq \frac{(2 n-1)!!}{(2 n)!!} \leq \frac{1}{\sqrt{\pi(n+1 / 4)}} \tag{1.10}
\end{equation*}
$$

in [3]. For more details, please refer to [2, 8, 33, 34, 35] and the references therein.
Corollary 1.10 ([28]). Let $S_{n}=\sum_{k=1}^{n} \frac{1}{k}$ for $n \in \mathbb{N}$. Then

$$
\begin{equation*}
\frac{2^{n+1} n!}{(2 n+1)!!}\left(\frac{2 n+3}{2 n+2}\right)^{3 / 2+n} e^{\left(S_{n}-1-\gamma\right) / 2}<\sqrt{\pi} . \tag{1.11}
\end{equation*}
$$

2. Lemmas

In order to prove our main results, the following lemmas are necessary.
Lemma 2.1 ([1, 5, 22]). For $x>0$,

$$
\begin{gather*}
\ln x-\frac{1}{x}<\psi(x)<\ln x-\frac{1}{2 x} \tag{2.1}\\
\psi(x)>\ln x-\frac{1}{2 x}-\frac{1}{12 x^{2}}, \quad \psi^{\prime}(x)>\frac{1}{x}+\frac{1}{2 x^{2}} .
\end{gather*}
$$

Lemma 2.2. For $x>0$,

$$
\begin{equation*}
2 \psi^{\prime}(x)+x \psi^{\prime \prime}(x)<\frac{1}{x} . \tag{2.2}
\end{equation*}
$$

Remark 2.3. The complete monotonicity of the function $2 \psi^{\prime}(x)+x \psi^{\prime \prime}(x)$ was obtained in [27]. Proof. It is a well known fact that

$$
\begin{equation*}
\psi^{\prime}(x)=\sum_{k=1}^{\infty} \frac{1}{(k-1+x)^{2}} \quad \text { and } \quad \psi^{\prime \prime}(x)=-\sum_{k=1}^{\infty} \frac{2}{(k-1+x)^{3}} . \tag{2.3}
\end{equation*}
$$

From this, it follows that

$$
\begin{aligned}
2 \psi^{\prime}(x)+x \psi^{\prime \prime}(x)-\frac{1}{x} & =2 \sum_{k=1}^{\infty} \frac{k}{(k+x)^{3}}-\frac{1}{x} \\
& <2 \sum_{k=1}^{\infty} \frac{k}{(k-1+x)(k+x)(k+1+x)}-\frac{1}{x} \\
& =\sum_{k=1}^{\infty}\left[\frac{k}{(k-1+x)(k+x)}-\frac{k}{(k+x)(k+1+x)}\right]-\frac{1}{x} \\
& =\sum_{k=1}^{\infty} \frac{1}{(k-1+x)(k+x)}-\frac{1}{x} \\
& =\sum_{k=1}^{\infty}\left(\frac{1}{k-1+x}-\frac{1}{k+x}\right)-\frac{1}{x}=0 .
\end{aligned}
$$

Thus the proof of Lemma 2.2 is completed.

Lemma $2.4([12])$. Let $(a, b) \subset(0, \infty)$ and $f:(a, b) \rightarrow(0, \infty)$ be a differentiable function. Then f is a geometrically convex function if and only if the function $\frac{x f^{\prime}(x)}{f(x)}$ is nondecreasing.

Lemma $2.5([12])$. Let $(a, b) \subset(0, \infty)$ and $f:(a, b) \rightarrow(0, \infty)$ be a differentiable function. Then f is a geometrically convex function if and only if $\frac{f(x)}{f(y)} \geq\left(\frac{x}{y}\right)^{y f^{\prime}(y) / f(y)}$ holds for any $x, y \in(a, b)$.
Lemma 2.6 ([4, (9]). Let $S_{n}=\sum_{k=1}^{n} \frac{1}{k}$ and $C_{n}=S_{n}-\ln \left(n+\frac{1}{2}\right)-\gamma$ for $n \in \mathbb{N}$, where $\gamma=0.5772156 \ldots$ is Euler-Mascheroni's constant. Then

$$
\begin{equation*}
\frac{1}{24(n+1)^{2}}<C_{n}<\frac{1}{24 n^{2}} . \tag{2.4}
\end{equation*}
$$

3. Proofs of Theorems and Corollaries

Now we are in a position to prove our main results.
Proof of Theorem 1.1. Easy calculation yields

$$
\begin{equation*}
\ln f(x)=\ln \Gamma(x)-x \ln x+x \quad \text { and } \quad \frac{f^{\prime}(x)}{f(x)}=\psi(x)-\ln x \tag{3.1}
\end{equation*}
$$

Let $F(x)=\left[\frac{x f^{\prime}(x)}{f(x)}\right]^{\prime}$. Then

$$
F(x)=\psi(x)+x \psi^{\prime}(x)-\ln x-1, \quad \text { and } \quad F^{\prime}(x)=2 \psi^{\prime}(x)+x \psi^{\prime \prime}(x)-\frac{1}{x}
$$

By virtue of Lemma 2.2, it follows that $F^{\prime}(x)<0$, thus F is decreasing in $x>0$. By Lemma 2.1. we deduce that

$$
F(x)=\psi(x)+x \psi^{\prime}(x)-\ln x-1>\ln x-\frac{1}{x}+x\left(\frac{1}{x}+\frac{1}{2 x^{2}}\right)-\ln x-1=-\frac{1}{2 x} .
$$

Hence $\lim _{x \rightarrow \infty} F(x) \geq 0$. This implies that $F(x)>0$ and, by Lemma 2.4, the function f is geometrically convex. The proof is completed.
Proof of Theorem 1.2. Combining Theorem 1.1, Lemma 2.5 and (3.1) leads to

$$
\frac{e^{x} \Gamma(x)}{x^{x}} \geq\left(\frac{x}{y}\right)^{y[\psi(y)-\ln y]} \frac{e^{y} \Gamma(y)}{y^{y}} \quad \text { and } \quad \frac{e^{y} \Gamma(y)}{y^{y}} \geq\left(\frac{y}{x}\right)^{x[\psi(x)-\ln x]} \frac{e^{x} \Gamma(x)}{x^{x}}
$$

Inequality (1.4) is established.
Proof of Corollary 1.3. A combination of (3.1) with Lemma 2.1 reveals the decreasing monotonicity of f in $(0, \infty)$. Considering the geometric convexity and the decreasing monotonicity of f and the arithmetic-geometric mean inequality, we have

$$
f\left(\frac{x_{1}+x_{2}}{2}\right) \leq f\left(\sqrt{x_{1} x_{2}}\right) \leq \sqrt{f\left(x_{1}\right) f\left(x_{2}\right)} \leq \frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2}
$$

Hence, f is convex and logarithmic convex in $(0, \infty)$.
Proof of Corollary 1.5. A property of mean values [9] and direct argument gives

$$
\begin{gather*}
\frac{1}{x}<\frac{\ln x-\ln y}{x-y}<\frac{1}{y}, \quad \ln x-\ln y>1-\frac{y}{x} \tag{3.2}\\
-1+\ln x+\frac{y}{x}>\psi(y)+y[\ln y-\psi(y)] \frac{1}{y}
\end{gather*}
$$

Hence,

$$
\begin{gather*}
-1+\ln x+y \frac{\ln x-\ln y}{x-y}>\psi(y)+y[\ln y-\psi(y)] \frac{\ln x-\ln y}{x-y} \tag{3.3}\\
(y-x)+(x-y) \ln x+y(\ln x-\ln y)>(x-y) \psi(y)+y[\ln y-\psi(y)](\ln x-\ln y) \\
(y-x)+x \ln x-y \ln y+y[\psi(y)-\ln y](\ln x-\ln y)>(x-y) \psi(y) \\
\left(\frac{x}{y}\right)^{y[\psi(y)-\ln y]} \frac{e^{y} x^{x}}{e^{x} y^{y}}>e^{(x-y) \psi(y)}
\end{gather*}
$$

Similarly,

$$
\begin{gather*}
-1+\ln x+y \frac{1}{y}=x[\ln x-\psi(x)] \frac{1}{x}+\psi(x) \tag{3.4}\\
-1+\ln x+y \frac{\ln x-\ln y}{x-y}<x[\ln x-\psi(x)] \frac{\ln x-\ln y}{x-y}+\psi(x) \\
(y-x)+(x-y) \ln x+y(\ln x-\ln y)<x[\ln x-\psi(x)](\ln x-\ln y)+(x-y) \psi(x), \\
(y-x)+x \ln x-y \ln y+x[\psi(x)-\ln x](\ln x-\ln y)<(x-y) \psi(x) \\
\left(\frac{x}{y}\right)^{x[\psi(x)-\ln x]} \frac{e^{y} x^{x}}{e^{x} y^{y}}<e^{(x-y) \psi(x)}
\end{gather*}
$$

Combination of (3.3) and (3.4) leads to (1.5).
By (2.1), it is easy to see that

$$
1<\left(\frac{x}{y}\right)^{y[\ln y-\psi(y)]} \frac{x}{y}, \quad \frac{x^{x-1}}{y^{y-1}} e^{y-x}<\left(\frac{x}{y}\right)^{y[\ln y-\psi(y)]} \frac{e^{y} x^{x}}{e^{x} y^{y}}
$$

Similarly,

$$
\frac{e^{y} x^{x}}{e^{x} y^{y}}\left(\frac{x}{y}\right)^{x[\ln x-\psi(x)]}<\frac{x^{x-\frac{1}{2}}}{y^{y-\frac{1}{2}}} e^{y-x}
$$

By virtue of (1.4), inequality (1.6) follows.
Proof of Corollary 1.7. Let $y=x+\frac{1}{2}$ in inequality (1.4). Then

$$
\begin{align*}
\frac{e^{\frac{1}{2}} x^{x}}{\left(x+\frac{1}{2}\right)^{x+\frac{1}{2}}}\left(\frac{x}{x+\frac{1}{2}}\right)^{\left(x+\frac{1}{2}\right)\left[\psi\left(x+\frac{1}{2}\right)-\ln \left(x+\frac{1}{2}\right)\right]} & \leq \frac{\Gamma(x)}{\Gamma\left(x+\frac{1}{2}\right)} \tag{3.5}\\
& \leq \frac{e^{\frac{1}{2}} x^{x}}{\left(x+\frac{1}{2}\right)^{x+\frac{1}{2}}}\left(\frac{x}{x+\frac{1}{2}}\right)^{x[\psi(x)-\ln x]} \\
\frac{e^{\frac{1}{2}} x^{x+1}}{\left(x+\frac{1}{2}\right)^{x+\frac{1}{2}}}\left(\frac{x+\frac{1}{2}}{x}\right)^{\left(x+\frac{1}{2}\right)\left[\ln \left(x+\frac{1}{2}\right)-\psi\left(x+\frac{1}{2}\right)\right]} & \leq \frac{x \Gamma(x)}{\Gamma\left(x+\frac{1}{2}\right)} \\
& \leq \frac{e^{\frac{1}{2}} x^{x+1}}{\left(x+\frac{1}{2}\right)^{x+\frac{1}{2}}}\left(\frac{x+\frac{1}{2}}{x}\right)^{x[\ln x-\psi(x)]}
\end{align*}
$$

From inequality (2.2), we obtain

$$
\begin{gathered}
\frac{\sqrt{e x} x^{x+\frac{1}{2}}}{\left(x+\frac{1}{2}\right)^{x+\frac{1}{2}}}\left(1+\frac{1}{2 x}\right)^{\frac{1}{2}}<\frac{\Gamma(x+1)}{\Gamma\left(x+\frac{1}{2}\right)}<\frac{\sqrt{e x} x^{x+\frac{1}{2}}}{\left(x+\frac{1}{2}\right)^{x+\frac{1}{2}}}\left(1+\frac{1}{2 x}\right)^{\frac{1}{2}+\frac{1}{12 x}} \\
\sqrt{e x}\left(1+\frac{1}{2 x}\right)^{-x}<\frac{\Gamma(x+1)}{\Gamma\left(x+\frac{1}{2}\right)}<\sqrt{e x}\left(1+\frac{1}{2 x}\right)^{\frac{1}{12 x}-x}
\end{gathered}
$$

The proof of inequality (1.7) is completed.
Substituting

$$
\frac{\Gamma(x+n+1)}{\Gamma\left(x+n+\frac{1}{2}\right)}=\frac{(x+n) \Gamma(x+n)}{\left(x+n-\frac{1}{2}\right) \Gamma\left(x+n-\frac{1}{2}\right)}=\cdots=\frac{\Gamma(x+1) \prod_{k=1}^{n}(x+k)}{\Gamma\left(x+\frac{1}{2}\right) \prod_{k=1}^{n}\left(x+k-\frac{1}{2}\right)}
$$

into (1.7) shows that inequality (1.8) is valid.

Proof of Corollary 1.8. For $n=1,2$, inequality (1.9) can be verified readily.
For $n \geq 3$, in view of formulas $\Gamma(n+1)=n!, \Gamma\left(n+\frac{1}{2}\right)=\frac{(2 n-1)!!}{2^{n}} \sqrt{\pi}$ and inequality (1.7), we have

$$
\frac{\Gamma(n+1)}{\Gamma\left(n+\frac{1}{2}\right)}<\sqrt{e n}\left(1+\frac{1}{2 n}\right)^{\frac{1}{12 n}-n}, \quad \frac{2^{n} n!}{(2 n-1)!!}<\sqrt{e \pi n}\left(1+\frac{1}{2 n}\right)^{\frac{1}{12 n}-n}
$$

and

$$
\begin{equation*}
\frac{(2 n-1)!!}{(2 n)!!}>\frac{1}{\sqrt{e \pi n}}\left(1+\frac{1}{2 n}\right)^{n-\frac{1}{12 n}} \tag{3.6}
\end{equation*}
$$

Further, taking $x=n$ in inequality (3.5) reveals

$$
\begin{aligned}
& \frac{e^{\frac{1}{2}} n^{n+1}}{\left(n+\frac{1}{2}\right)^{n+\frac{1}{2}}}\left(\frac{n+\frac{1}{2}}{n}\right)^{\left(n+\frac{1}{2}\right)\left(\ln \left(n+\frac{1}{2}\right)-\psi\left(n+\frac{1}{2}\right)\right)} \leq \frac{n \Gamma(n)}{\Gamma\left(n+\frac{1}{2}\right)}, \\
& \frac{2^{n} n!}{(2 n-1)!!} \geq \sqrt{e \pi n}\left(1+\frac{1}{2 n}\right)^{\left(n+\frac{1}{2}\right)\left[\ln \left(n+\frac{1}{2}\right)-\psi\left(n+\frac{1}{2}\right)-1\right]} \\
& \frac{2^{n} n!}{(2 n-1)!!} \geq \sqrt{e \pi n}\left(1+\frac{1}{2 n}\right)^{\left(n+\frac{1}{2}\right)\left[\ln \left(n+\frac{1}{2}\right)-\psi\left(n+\frac{1}{2}\right)-1\right]}
\end{aligned}
$$

Employing formulas

$$
\begin{equation*}
\psi(x+1)=\psi(x)+\frac{1}{x}, \quad \psi\left(\frac{1}{2}\right)=-\gamma-2 \ln 2, \quad C_{n}=S_{n}-\ln \left(n+\frac{1}{2}\right)-\gamma \tag{3.7}
\end{equation*}
$$

yields

$$
\begin{align*}
\frac{2^{n} n!}{(2 n-1)!!} & \geq \sqrt{e \pi n}\left(1+\frac{1}{2 n}\right)^{\left(n+\frac{1}{2}\right)\left[\ln \left(n+\frac{1}{2}\right)-\psi\left(n-\frac{1}{2}\right)-\frac{1}{n-\frac{1}{2}}-1\right]} \\
& =\sqrt{e \pi n}\left(1+\frac{1}{2 n}\right)^{\left(n+\frac{1}{2}\right)\left[\ln \left(n+\frac{1}{2}\right)-\psi\left(\frac{1}{2}\right)-\frac{1}{n-\frac{1}{2}}-\cdots-\frac{1}{\frac{1}{2}}-1\right]} \\
& =\sqrt{e \pi n}\left(1+\frac{1}{2 n}\right)^{\left(n+\frac{1}{2}\right)\left[\ln \left(n+\frac{1}{2}\right)+2 \ln 2+\gamma-2 \sum_{k=1}^{n} \frac{1}{2 k-1}-1\right]} \tag{3.8}\\
& =\sqrt{e \pi n}\left(1+\frac{1}{2 n}\right)^{\left(n+\frac{1}{2}\right)\left[\ln \left(n+\frac{1}{2}\right)+2 \ln 2+\gamma-2 \sum_{k=1}^{2 n} \frac{1}{k}+\sum_{k=1}^{n} \frac{1}{k}-1\right]} \\
& =\sqrt{e \pi n}\left(1+\frac{1}{2 n}\right)^{\left(n+\frac{1}{2}\right)\left[2 \ln (2 n+1)-2 C_{2 n}-2 \ln \left(2 n+\frac{1}{2}\right)+C_{n}-1\right]}
\end{align*}
$$

Letting $x=\frac{1}{1+4 n}$ in $\ln (1+x)>\frac{x}{1+\frac{x}{2}}$ for $x>0$, we obtain

$$
\begin{equation*}
\ln \left(1+\frac{1}{1+4 n}\right)>\frac{2}{8 n+3} \tag{3.9}
\end{equation*}
$$

In view of Lemma 2.6 and inequalities (3.8) and (3.9), we have

$$
\begin{equation*}
\frac{2^{n} n!}{(2 n-1)!!}>\sqrt{e \pi n}\left(1+\frac{1}{2 n}\right)^{\left(n+\frac{1}{2}\right)\left[\frac{4}{8 n+3}-\frac{1}{48 n^{2}}+\frac{1}{24(n+1)^{2}}-1\right]} . \tag{3.10}
\end{equation*}
$$

It is easy to verify that

$$
\begin{equation*}
\left(n+\frac{1}{2}\right)\left[\frac{4}{8 n+3}-\frac{1}{48 n^{2}}+\frac{1}{24(n+1)^{2}}-1\right]>-n+\frac{1}{12 n+16} \tag{3.11}
\end{equation*}
$$

with $n \geq 3$. By virtue of (3.6), (3.10) and (3.11), Corollary 1.8 is proved.
Proof of Corollary 1.10 Letting $x=n+\frac{3}{2}$ and $y=n+1$ in inequality (1.4) yields

$$
\begin{equation*}
\frac{1}{\sqrt{e \pi(n+1)}}\left(1+\frac{1}{2 n+2}\right)^{(n+1)[\psi(n+1)-\ln (n+1)+1]+\frac{1}{2}} \leq \frac{(2 n+1)!!}{(2 n+2)!!} \tag{3.12}
\end{equation*}
$$

By using inequality (2.1), $\psi(n+1)=\sum_{k=1}^{n} \frac{1}{k}-\gamma$ and $\frac{1}{\sqrt{e}}\left(\frac{2 n+3}{2 n+2}\right)^{n+1}<1$ for $n \in \mathbb{N}$, we have

$$
\begin{aligned}
& \frac{(2 n+1)!!}{(2 n)!!}\left(\frac{2 n+2}{2 n+3}\right)^{\frac{3}{2}+n} e^{-\frac{1}{2}\left(S_{n}-1-\gamma\right)} \\
& =(2 n+2) \frac{(2 n+1)!!}{(2 n+2)!!}\left(\frac{2 n+2}{2 n+3}\right)^{\frac{3}{2}+n} e^{-\frac{1}{2}[\psi(n+1)-1]} \\
& >\frac{2 \sqrt{n+1}}{\sqrt{\pi}}\left(\frac{2 n+3}{2 n+2}\right)^{-(n+1) \ln (n+1)}\left[\frac{1}{\sqrt{e}}\left(\frac{2 n+3}{2 n+2}\right)^{n+1}\right]^{\ln (n+1)-\frac{1}{2(n+1)}} \\
& =\frac{2 \sqrt{n+1}}{\sqrt{\pi}} \sqrt{\frac{2 n+2}{2 n+3}} e^{-\frac{1}{2} \ln (n+1)+\frac{1}{4(n+1)}}=\frac{2}{\sqrt{\pi}} \sqrt{\frac{2 n+2}{2 n+3}} e^{\frac{1}{4(n+1)}}>\frac{2}{\sqrt{\pi}} .
\end{aligned}
$$

The proof of Corollary 1.10 is completed.

REFERENCES

[1] G.D. ANDERSON AND S.L. QIU, A monotoneity property of the gamma function, Proc. Amer. Math. Soc., 125(11) (1997), 3355-3362.
[2] J. CAO, D.-W. NIU AND F. QI, A Wallis type inequality and a double inequality for probability integral, Austral. J. Math. Anal. Appl., 4(1) (2007), Art. 3. [ONLINE: http://a jmaa . org/ cgi-bin/paper.pl?string=v4n1/V4I1P3.tex].
[3] C.P. CHEN AND F. QI, The best bounds in Wallis' inequality, Proc. Amer. Math., Soc., 133(2) (2005), 397-401.
[4] D.W. DE TEMPLE, A quicker convergence to Euler's constant, Amer. Math. Monthly, 100(5) (1993), 468-470.
[5] Á. ELBERT AND A. LAFORGIA, On some properties of the gamma function, Proc. Amer. Math. Soc., 128(9) (2000), 2667-2673.
[6] S. GUO, Monotonicity and concavity properties of some functions involving the gamma function with applications, J. Inequal. Pure Appl. Math., 7(2) (2006), Art. 45. [ONLINE: http://jipam. vu.edu.au/article.php?sid=662].
[7] J. D. KEČLIĆ AND P. M. VASIĆ, Some inequalities for the gamma function, Publ. Inst. Math. (Beograd) (N.S.), 11 (1971), 107-114.
[8] S. KOUMANDOS, Remarks on a paper by Chao-Ping Chen and Feng Qi, Proc. Amer. Math. Soc., 134 (2006), 1365-1367.
[9] J.-Ch. KUANG, Chángyòng Bùděngshì (Applied Inequalities), 3rd ed., Shāndōng Kēxué Jìshù Chūbǎn Shè, Jinan City, Shandong Province, China, 2004. (Chinese)
[10] J. MATKOWSKI, L^{p}-like paranorms, Selected topics in functional equations and iteration theory (Graz, 1991), 103-138, Grazer Math. Ber., 316, Karl-Franzens-Univ. Graz, Graz, 1992.
[11] P. MONTEL, Sur les functions convexes et les fonctions sousharmoniques, J. de Math., 9(7) (1928), 29-60.
[12] C.P. NICULESCU, Convexity according to the geometric mean, Math. Inequal. Appl., 2(2) (2000), 155-167.
[13] J. PEČARIĆ, G. ALLASIA AND C. GIORDANO, Convexity and the gamma function, Indian J. Math., 41(1) (1999), 79-93.
[14] F. QI, A class of logarithmically completely monotonic functions and application to the best bounds in the second Gautschi-Kershaw's inequality, RGMIA Res. Rep. Coll., 9(4) (2006), Art. 11. [ONLINE: http://rgmia.vu.edu.au/v9n4.html].
[15] F. QI, A class of logarithmically completely monotonic functions and the best bounds in the first Kershaw's double inequality, J. Comput. Appl. Math., (2007), in press. [ONLINE: http://dx. doi.org/10.1016/j.cam.2006.09.005]. RGMIA Res. Rep. Coll., 9(2) (2006), Art. 16. [ONLINE: http://rgmia.vu.edu.au/v9n2.html].
[16] F. QI, A completely monotonic function involving divided difference of psi function and an equivalent inequality involving sum, RGMIA Res. Rep. Coll., 9(4) (2006), Art. 5. [ONLINE: http://rgmia.vu.edu.au/v9n4.html].
[17] F. QI, A completely monotonic function involving divided differences of psi and polygamma functions and an application, RGMIA Res. Rep. Coll., 9(4) (2006), Art. 8. [ONLINE: http: //rgmia.vu.edu.au/v9n4.html.
[18] F. QI, A new lower bound in the second Kershaw's double inequality, RGMIA Res. Rep. Coll., 10(1) (2007), Art. 9. [ONLINE: http://rgmia.vu.edu.au/v10n1.html].
[19] F. QI, Monotonicity results and inequalities for the gamma and incomplete gamma functions, Math. Inequal. Appl., 5 (1) (2002), 61-67. RGMIA Res. Rep. Coll., 2(7) (1999), Art. 7, 1027-1034. [ONLINE: http://rgmia.vu.edu.au/v2n7.html].
[20] F. QI, Refinements, extensions and generalizations of the second Kershaw's double inequality, RGMIA Res. Rep. Coll., 10 (2) (2007), Art. 8. [ONLINE: http://rgmia.vu.edu.au/ v10n2.html].
[21] F. QI, The best bounds in Kershaw's inequality and two completely monotonic functions, RGMIA Res. Rep. Coll., 9(4) (2006), Art. 2. [ONLINE: http: / /rgmia.vu. edu. au/v9n4.html].
[22] F. QI, R.-Q. CUI AND Ch.-P. CHEN, AND B.-N. GUO, Some completely monotonic functions involving polygamma functions and an application, J. Math. Anal. Appl., 310(1) (2005), 303-308.
[23] F. QI AND B.-N. GUO, A class of logarithmically completely monotonic functions and the best bounds in the second Kershaw's double inequality, J. Comput. Appl. Math., (2007), in press. [ONLINE: http://dx.doi.org/10.1016/j.cam.2006.12.022].
[24] F. QI AND B.-N. GUO, Wendel-Gautschi-Kershaw's inequalities and sufficient and necessary conditions that a class of functions involving ratio of gamma functions are logarithmically completely monotonic, RGMIA Res. Rep. Coll., 10(1) (2007), Art 2. [ONLINE: http://rgmia • vu . edu. au/v10n1.html].
[25] F. QI, B.-N. GUO AND Ch.-P. CHEN, The best bounds in Gautschi-Kershaw inequalities, Math. Inequal. Appl., 9 (3) (2006), 427-436. RGMIA Res. Rep. Coll., 8(2) (2005), Art. 17. . [ONLINE: http://rgmia.vu.edu.au/v8n2.html].
[26] F. QI AND S. GUO, New upper bounds in the second Kershaw's double inequality and its generalizations, RGMIA Res. Rep. Coll., 10(2) (2007), Art. 1. [ONLINE: http: / /rgmia.vu. edu. au/v10n2.html.
[27] F. QI, S. GUO and B.-N. GUO, Note on a class of completely monotonic functions involving the polygamma functions, RGMIA Res. Rep. Coll., 10(1) (2006), Art. 5. [ONLINE: http://rgmia. vu.edu.au/v10n1.html].
[28] Z. STARC, Power product inequalities for the Gamma function, Kragujevac J. Math., 24 (2002), 81-84.
[29] L. YANG, Some inequalities on geometric convex function, Héběi Dàxué Xuébào (Zìrán Kēxué Băn) (J. Hebei Univ. (Nat. Sci. Ed.)), 22(4) (2002), 325-328. (Chinese)
[30] X.-M. ZHANG, Some theorem on geometric convex function and its applications, Shǒudū Shīfàn Dàxué Xuébào (Zìrán Kēxué Băn) (J. Capital Norm. Univ. (Nat. Sci. Ed.)), 25(2) (2004), 11-13. (Chinese)
[31] X.-M. ZHANG AND Y.-D. WU, Geometrically convex functions and solution of a question, RGMIA Res. Rep. Coll., 7(4) (2004), Art. 11. [ONLINE: http: / /rgmia.vu.edu. au/v7n4.html].
[32] N.-G. ZHENG AND X.-M. ZHANG, An important property and application of geometrically concave functions, Shùxué de Shíjiàn yǔ Rènshí (Math. Practice Theory), 35(8) (2005), 200-205. (Chinese)
[33] D.-J. ZHAO, On a two-sided inequality involving Wallis’ formula, Shùxué de Shíjiàn yǔ Rènshí (Mathematics in Practice and Theory), 34(7) (2004), 166-168. (Chinese)
[34] Y.-Q. ZHAO AND Q.-B. WU, An improvement of the Wallis inequality, Zhējiāng Dàxué Xuébào (Lixué Bǎn) (Journal of Zhejiang University (Science Edition)), 33(2) (2006), 372-375. (Chinese)
[35] Y.-Q. ZHAO AND Q.-B. WU, Wallis inequality with a parameter, J. Inequal. Pure Appl. Math., 7(2) (2006), Art. 56. [ONLINE: http://jipam.vu.edu.au/article.php?sid=673].

