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ABSTRACT. A more complete Young’s integral inequality on arbitrary time scales (unbounded
above) is presented.
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1. I NTRODUCTION

The unification and extension of continuous calculus, discrete calculus,q-calculus, and in-
deed arbitrary real-number calculus to time-scale calculus was first accomplished by Hilger in
his Ph.D. thesis [4]. Since then, time-scale calculus has made steady inroads in explaining the
interconnections that exist among the various calculuses, and in extending our understanding to
a new, more general and overarching theory.

The purpose of this note is to illustrate this new understanding by extending a continuous
result, Young’s inequality [3, 6], to arbitrary time scales. Throughout this note a knowledge and
understanding of time scales and time-scale notation is assumed; for an excellent introduction
to calculus on time scales, see Bohner and Peterson [1].

2. REVISITING YOUNG’ S I NEQUALITY ON T IME SCALES

Recently Wong, Yeh, Yu, and Hong [5] presented a version of Young’s inequality on time
scales. An important subplot in the story of Young’s inequality includes an if and only if clause
concerning an actual equality; this is missing in the formulation in [5]. Moreover, in [5] the
authors implicitly assume that the integrand function in the proposed integral inequality is delta
differentiable, an unnecessarily strong assumption. In this note we will rectify these shortcom-
ings by presenting a more complete version of Young’s inequality on time scales with standard
assumptions on the integrand function. To this end, letT be any time scale (unbounded above)
that contains0. Then we have the following extension of Young’s inequality to arbitrary time
scales, whose statement and proof are quite different from that found in [5].
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Theorem 2.1(Young’s Inequality I). Let T be any time scale (unbounded above) with0 ∈ T.
Further, suppose thatf : [0,∞)T → R is a real-valued function satisfying

(1) f(0) = 0;
(2) f is continuous on[0,∞)T, right-dense continuous at0;
(3) f is strictly increasing on[0,∞)T such thatf(T) is also a time scale.

Then for anya ∈ [0,∞)T andb ∈ [0,∞) ∩ f(T), we have

(2.1)
∫ a

0

f(t)∆t +

∫ a

0

f(t)∇t +

∫ b

0

f−1(y)∆y +

∫ b

0

f−1(y)∇y ≥ 2ab,

with equality if and only ifb = f(a).

Proof. The proof is modelled after the one given onR in [2]. Note thatf is both delta and nabla
integrable by the continuity assumption in (ii). For simplicity, define

F (a, b) :=

∫ a

0

f(t)∆t +

∫ a

0

f(t)∇t +

∫ b

0

f−1(y)∆y +

∫ b

0

f−1(y)∇y − 2ab.

Then, the inequality to be shown is justF (a, b) ≥ 0.
(I). We will first show that

F (a, b) ≥ F (a, f(a)), a ∈ [0,∞)T, b ∈ [0,∞) ∩ f(T),

with equality if and only ifb = f(a). For any sucha andb, we have

F (a, b)− F (a, f(a)) =

∫ b

f(a)

[
f−1(y)− a

]
∆y +

∫ b

f(a)

[
f−1(y)− a

]
∇y

=

∫ f(a)

b

[
a− f−1(y)

]
∆y +

∫ f(a)

b

[
a− f−1(y)

]
∇y.

There are two cases to consider. The first case isb ≥ f(a). Here, whenevery ∈ [f(a), b]∩f(T),
we havef−1(b) ≥ f−1(y) ≥ f−1(f(a)) = a. Consequently,

F (a, b)− F (a, f(a)) =

∫ b

f(a)

[
f−1(y)− a

]
∆y +

∫ b

f(a)

[
f−1(y)− a

]
∇y ≥ 0.

Sincef−1(y) − a is continuous and strictly increasing fory ∈ [f(a), b] ∩ f(T), equality will
hold if and only ifb = f(a). The second case isb ≤ f(a). Here, whenevery ∈ [b, f(a)]∩f(T),
we havef−1(b) ≤ f−1(y) ≤ f−1(f(a)) = a. Consequently,

F (a, b)− F (a, f(a)) =

∫ f(a)

b

[
a− f−1(y)

]
∆y +

∫ f(a)

b

[
a− f−1(y)

]
∇y ≥ 0.

Sincea − f−1(y) is continuous and strictly decreasing fory ∈ [b, f(a)] ∩ f(T), equality will
hold if and only ifb = f(a).

(II). We will next show thatF (a, f(a)) = 0. For brevity, putδ(a) = F (a, f(a)), that is

δ(a) :=

∫ a

0

f(t)∆t +

∫ a

0

f(t)∇t +

∫ f(a)

0

f−1(y)∆y +

∫ f(a)

0

f−1(y)∇y − 2af(a).
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First, assumea is a right-scattered point. Then

δσ(a)− δ(a) = [σ(a)− a]f(a) + [σ(a)− a]fσ(a) + [fσ(a)− f(a)] f−1(f(a))

+ [fσ(a)− f(a)] f−1 (fσ(a))− 2 [σ(a)fσ(a)− af(a)]

= [σ(a)− a] [f(a) + fσ(a)] + [fσ(a)− f(a)] [a + σ(a)]

− 2 [σ(a)fσ(a)− af(a)]

= 0.

Therefore, ifa is a right-scattered point, thenδ∆(a) = 0. Next, assumea is a right-dense point.
Let {an}n∈N ⊂ [a,∞)T be a decreasing sequence converging toa. Then

δ(an)− δ(a) =

∫ an

a

f(t)∆t +

∫ an

a

f(t)∇t +

∫ f(an)

f(a)

f−1(y)∆y

+

∫ f(an)

f(a)

f−1(y)∇y − 2anf(an) + 2af(a)

=

∫ an

a

[f(t)− f(an)] ∆t +

∫ an

a

[f(t)− f(an)]∇t

+

∫ f(an)

f(a)

[
f−1(y)− a

]
∆y +

∫ f(an)

f(a)

[
f−1(y)− a

]
∇y.

Since the functionsf andf−1 are strictly increasing,

δ(an)− δ(a) ≥
∫ an

a

[f(a)− f(an)] ∆t +

∫ an

a

[f(a)− f(an)]∇t

+

∫ f(an)

f(a)

[
f−1(f(a))− a

]
∆y +

∫ f(an)

f(a)

[
f−1(f(a))− a

]
∇y

= 2(an − a) [f(a)− f(an)] .

Similarly,

δ(an)− δ(a) ≤
∫ an

a

[f(an)− f(an)] ∆t +

∫ an

a

[f(an)− f(an)]∇t

+

∫ f(an)

f(a)

[
f−1(f(an))− a

]
∆y +

∫ f(an)

f(a)

[
f−1(f(an))− a

]
∇y

= 2 [f(an)− f(a)] (an − a).

Therefore,

0 = lim
n→∞

2 [f(a)− f(an)] ≤ lim
n→∞

δ(an)− δ(a)

an − a
≤ lim

n→∞
2 [f(an)− f(a)] = 0.

It follows thatδ∆(a) exists, andδ∆(a) = 0 for right-densea as well. In other words, in either
case,δ∆(a) = 0 for a ∈ (0,∞)T. As δ(0) = 0, by the uniqueness theorem for initial value
problems, we have thatδ(a) = 0 for all a ∈ [0,∞)T.

As an overall result, we have that

F (a, b) ≥ F (a, f(a)) = 0,

with equality if and only ifb = f(a), as claimed. �

Theorem 2.2(Young’s Inequality II). Let T be any time scale (unbounded above) with0 ∈ T.
Further, suppose thatf : [0,∞)T → R is a real-valued function satisfying
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(1) f(0) = 0;
(2) f is continuous on[0,∞)T, right-dense continuous at0;
(3) f is strictly increasing on[0,∞)T such thatf(T) is also a time scale.

Then for anya ∈ [0,∞)T andb ∈ [0,∞) ∩ f(T), we have

(2.2)
∫ a

0

[f(t) + f(σ(t))] ∆t +

∫ b

0

[
f−1(y) + f−1(σ(y))

]
∆y ≥ 2ab,

with equality if and only ifb = f(a).

Proof. For a continuous functiong anda ∈ [0,∞)T, define the function

G(a) :=

∫ a

0

g(t)∆t +

∫ a

0

g(t)∇t−
∫ a

0

[g(t) + g(σ(t))] ∆t.

ThenG(0) = 0, and

G∆(a) := g(a) + g(σ(a))− [g(a) + g(σ(a))] = 0.

ThereforeG ≡ 0, and Theorem 2.2 follows from Theorem 2.1. �

Remark 2.3. Consider (2.2). IfT = R, thenσ(t) = t and the theorem yields the classic Young
inequality, ∫ a

0

f(t)dt +

∫ b

0

f−1(y)dy ≥ ab.

If T = Z, thenσ(t) = t + 1 and the theorem yields Young’s discrete inequality,
a−1∑
t=0

[f(t) + f(t + 1)] +
∑

y∈[0,b)∩f(Z)

µ(y)
[
2f−1(y) + 1

]
≥ 2ab,

since by the discrete nature of the expression,f−1(σ(y)) = σ (f−1(y)) = f−1(y) + 1. If
T = Tr, wherer > 1 andTr := {0} ∪ {rz}z∈Z, then we have Young’s quantum inequality

(r − 1)
α−1∑

τ=−∞

rτ
[
f(rτ ) + f(rτ+1)

]
+ (r + 1)

∑
y∈[0,b)∩f(Tr)

µ(y)f−1(y) ≥ 2ab,

wherea = rα andt = rτ for α, τ ∈ Z.

Corollary 2.4. AssumeT is any time scale with0 ∈ T. Let p, q > 1 be real numbers with
1
p

+ 1
q

= 1. Then for anya ∈ [0,∞)T andb ∈ [0,∞)T∗, whereT∗ := {tp−1 : t ∈ T}, we have∫ a

0

tp−1∆t +

∫ a

0

tp−1∇t +

∫ b

0

yq−1∆y +

∫ b

0

yq−1∇y ≥ 2ab,

with equality if and only ifb = ap−1.

Proof. Let f(t) := tp−1 for t ∈ [0,∞)T. Thenf−1(y) = yq−1 for y ∈ T∗, and all the hypotheses
of Theorem 2.1 are satisfied; the result follows. �
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