YOUNG'S INTEGRAL INEQUALITY ON TIME SCALES REVISITED

DOUGLAS R. ANDERSON
Concordia College
Department of Mathematics and Computer Science
Moorhead, MN 56562 USA
andersod@cord.edu

Received 09 June, 2007; accepted 22 August, 2007
Communicated by D. Hinton

Abstract. A more complete Young's integral inequality on arbitrary time scales (unbounded above) is presented.

Key words and phrases: Dynamic equations, Integral inequalities.
2000 Mathematics Subject Classification. 26D15, 39A12.

1. Introduction

The unification and extension of continuous calculus, discrete calculus, q-calculus, and indeed arbitrary real-number calculus to time-scale calculus was first accomplished by Hilger in his Ph.D. thesis [4]. Since then, time-scale calculus has made steady inroads in explaining the interconnections that exist among the various calculuses, and in extending our understanding to a new, more general and overarching theory.

The purpose of this note is to illustrate this new understanding by extending a continuous result, Young's inequality [3, 6], to arbitrary time scales. Throughout this note a knowledge and understanding of time scales and time-scale notation is assumed; for an excellent introduction to calculus on time scales, see Bohner and Peterson [1].

2. Revisiting Young's Inequality on Time Scales

Recently Wong, Yeh, Yu, and Hong [5] presented a version of Young's inequality on time scales. An important subplot in the story of Young's inequality includes an if and only if clause concerning an actual equality; this is missing in the formulation in [5]. Moreover, in [5] the authors implicitly assume that the integrand function in the proposed integral inequality is delta differentiable, an unnecessarily strong assumption. In this note we will rectify these shortcomings by presenting a more complete version of Young's inequality on time scales with standard assumptions on the integrand function. To this end, let \mathbb{T} be any time scale (unbounded above) that contains 0 . Then we have the following extension of Young's inequality to arbitrary time scales, whose statement and proof are quite different from that found in [5].

Theorem 2.1 (Young's Inequality I). Let \mathbb{T} be any time scale (unbounded above) with $0 \in \mathbb{T}$. Further, suppose that $f:[0, \infty)_{\mathbb{T}} \rightarrow \mathbb{R}$ is a real-valued function satisfying
(1) $f(0)=0$;
(2) f is continuous on $[0, \infty)_{\mathbb{T}}$, right-dense continuous at 0 ;
(3) f is strictly increasing on $[0, \infty)_{\mathbb{T}}$ such that $f(\mathbb{T})$ is also a time scale.

Then for any $a \in[0, \infty)_{\mathbb{T}}$ and $b \in[0, \infty) \cap f(\mathbb{T})$, we have

$$
\begin{equation*}
\int_{0}^{a} f(t) \Delta t+\int_{0}^{a} f(t) \nabla t+\int_{0}^{b} f^{-1}(y) \Delta y+\int_{0}^{b} f^{-1}(y) \nabla y \geq 2 a b \tag{2.1}
\end{equation*}
$$

with equality if and only if $b=f(a)$.
Proof. The proof is modelled after the one given on \mathbb{R} in [2]. Note that f is both delta and nabla integrable by the continuity assumption in (ii). For simplicity, define

$$
F(a, b):=\int_{0}^{a} f(t) \Delta t+\int_{0}^{a} f(t) \nabla t+\int_{0}^{b} f^{-1}(y) \Delta y+\int_{0}^{b} f^{-1}(y) \nabla y-2 a b
$$

Then, the inequality to be shown is just $F(a, b) \geq 0$.
(I). We will first show that

$$
F(a, b) \geq F(a, f(a)), \quad a \in[0, \infty)_{\mathbb{T}}, \quad b \in[0, \infty) \cap f(\mathbb{T})
$$

with equality if and only if $b=f(a)$. For any such a and b, we have

$$
\begin{aligned}
F(a, b)-F(a, f(a)) & =\int_{f(a)}^{b}\left[f^{-1}(y)-a\right] \Delta y+\int_{f(a)}^{b}\left[f^{-1}(y)-a\right] \nabla y \\
& =\int_{b}^{f(a)}\left[a-f^{-1}(y)\right] \Delta y+\int_{b}^{f(a)}\left[a-f^{-1}(y)\right] \nabla y
\end{aligned}
$$

There are two cases to consider. The first case is $b \geq f(a)$. Here, whenever $y \in[f(a), b] \cap f(\mathbb{T})$, we have $f^{-1}(b) \geq f^{-1}(y) \geq f^{-1}(f(a))=a$. Consequently,

$$
F(a, b)-F(a, f(a))=\int_{f(a)}^{b}\left[f^{-1}(y)-a\right] \Delta y+\int_{f(a)}^{b}\left[f^{-1}(y)-a\right] \nabla y \geq 0
$$

Since $f^{-1}(y)-a$ is continuous and strictly increasing for $y \in[f(a), b] \cap f(\mathbb{T})$, equality will hold if and only if $b=f(a)$. The second case is $b \leq f(a)$. Here, whenever $y \in[b, f(a)] \cap f(\mathbb{T})$, we have $f^{-1}(b) \leq f^{-1}(y) \leq f^{-1}(f(a))=a$. Consequently,

$$
F(a, b)-F(a, f(a))=\int_{b}^{f(a)}\left[a-f^{-1}(y)\right] \Delta y+\int_{b}^{f(a)}\left[a-f^{-1}(y)\right] \nabla y \geq 0
$$

Since $a-f^{-1}(y)$ is continuous and strictly decreasing for $y \in[b, f(a)] \cap f(\mathbb{T})$, equality will hold if and only if $b=f(a)$.
(II). We will next show that $F(a, f(a))=0$. For brevity, put $\delta(a)=F(a, f(a))$, that is

$$
\delta(a):=\int_{0}^{a} f(t) \Delta t+\int_{0}^{a} f(t) \nabla t+\int_{0}^{f(a)} f^{-1}(y) \Delta y+\int_{0}^{f(a)} f^{-1}(y) \nabla y-2 a f(a)
$$

First, assume a is a right-scattered point. Then

$$
\begin{aligned}
& \delta^{\sigma}(a)-\delta(a)= {[\sigma(a)-a] f(a)+[\sigma(a)-a] f^{\sigma}(a)+\left[f^{\sigma}(a)-f(a)\right] f^{-1}(f(a)) } \\
& \quad+\left[f^{\sigma}(a)-f(a)\right] f^{-1}\left(f^{\sigma}(a)\right)-2\left[\sigma(a) f^{\sigma}(a)-a f(a)\right] \\
&=[{[\sigma(a)-a]\left[f(a)+f^{\sigma}(a)\right]+\left[f^{\sigma}(a)-f(a)\right][a+\sigma(a)] } \\
& \quad-2\left[\sigma(a) f^{\sigma}(a)-a f(a)\right] \\
&=0 .
\end{aligned}
$$

Therefore, if a is a right-scattered point, then $\delta^{\Delta}(a)=0$. Next, assume a is a right-dense point. Let $\left\{a_{n}\right\}_{n \in \mathbb{N}} \subset[a, \infty)_{\mathbb{T}}$ be a decreasing sequence converging to a. Then

$$
\begin{aligned}
\delta\left(a_{n}\right)-\delta(a)= & \int_{a}^{a_{n}} f(t) \Delta t+\int_{a}^{a_{n}} f(t) \nabla t+\int_{f(a)}^{f\left(a_{n}\right)} f^{-1}(y) \Delta y \\
& +\int_{f(a)}^{f\left(a_{n}\right)} f^{-1}(y) \nabla y-2 a_{n} f\left(a_{n}\right)+2 a f(a) \\
= & \int_{a}^{a_{n}}\left[f(t)-f\left(a_{n}\right)\right] \Delta t+\int_{a}^{a_{n}}\left[f(t)-f\left(a_{n}\right)\right] \nabla t \\
& +\int_{f(a)}^{f\left(a_{n}\right)}\left[f^{-1}(y)-a\right] \Delta y+\int_{f(a)}^{f\left(a_{n}\right)}\left[f^{-1}(y)-a\right] \nabla y .
\end{aligned}
$$

Since the functions f and f^{-1} are strictly increasing,

$$
\begin{aligned}
\delta\left(a_{n}\right)-\delta(a) \geq & \int_{a}^{a_{n}}\left[f(a)-f\left(a_{n}\right)\right] \Delta t+\int_{a}^{a_{n}}\left[f(a)-f\left(a_{n}\right)\right] \nabla t \\
& \quad+\int_{f(a)}^{f\left(a_{n}\right)}\left[f^{-1}(f(a))-a\right] \Delta y+\int_{f(a)}^{f\left(a_{n}\right)}\left[f^{-1}(f(a))-a\right] \nabla y \\
= & 2\left(a_{n}-a\right)\left[f(a)-f\left(a_{n}\right)\right]
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\delta\left(a_{n}\right)-\delta(a) \leq & \int_{a}^{a_{n}}\left[f\left(a_{n}\right)-f\left(a_{n}\right)\right] \Delta t+\int_{a}^{a_{n}}\left[f\left(a_{n}\right)-f\left(a_{n}\right)\right] \nabla t \\
& \quad+\int_{f(a)}^{f\left(a_{n}\right)}\left[f^{-1}\left(f\left(a_{n}\right)\right)-a\right] \Delta y+\int_{f(a)}^{f\left(a_{n}\right)}\left[f^{-1}\left(f\left(a_{n}\right)\right)-a\right] \nabla y \\
= & 2\left[f\left(a_{n}\right)-f(a)\right]\left(a_{n}-a\right) .
\end{aligned}
$$

Therefore,

$$
0=\lim _{n \rightarrow \infty} 2\left[f(a)-f\left(a_{n}\right)\right] \leq \lim _{n \rightarrow \infty} \frac{\delta\left(a_{n}\right)-\delta(a)}{a_{n}-a} \leq \lim _{n \rightarrow \infty} 2\left[f\left(a_{n}\right)-f(a)\right]=0
$$

It follows that $\delta^{\Delta}(a)$ exists, and $\delta^{\Delta}(a)=0$ for right-dense a as well. In other words, in either case, $\delta^{\Delta}(a)=0$ for $a \in(0, \infty)_{\mathbb{T}}$. As $\delta(0)=0$, by the uniqueness theorem for initial value problems, we have that $\delta(a)=0$ for all $a \in[0, \infty)_{\mathbb{T}}$.

As an overall result, we have that

$$
F(a, b) \geq F(a, f(a))=0
$$

with equality if and only if $b=f(a)$, as claimed.
Theorem 2.2 (Young's Inequality II). Let \mathbb{T} be any time scale (unbounded above) with $0 \in \mathbb{T}$. Further, suppose that $f:[0, \infty)_{\mathbb{T}} \rightarrow \mathbb{R}$ is a real-valued function satisfying
(1) $f(0)=0$;
(2) f is continuous on $[0, \infty)_{\mathbb{T}}$, right-dense continuous at 0 ;
(3) f is strictly increasing on $[0, \infty)_{\mathbb{T}}$ such that $f(\mathbb{T})$ is also a time scale.

Then for any $a \in[0, \infty)_{\mathbb{T}}$ and $b \in[0, \infty) \cap f(\mathbb{T})$, we have

$$
\begin{equation*}
\int_{0}^{a}[f(t)+f(\sigma(t))] \Delta t+\int_{0}^{b}\left[f^{-1}(y)+f^{-1}(\sigma(y))\right] \Delta y \geq 2 a b \tag{2.2}
\end{equation*}
$$

with equality if and only if $b=f(a)$.
Proof. For a continuous function g and $a \in[0, \infty)_{\mathbb{T}}$, define the function

$$
G(a):=\int_{0}^{a} g(t) \Delta t+\int_{0}^{a} g(t) \nabla t-\int_{0}^{a}[g(t)+g(\sigma(t))] \Delta t .
$$

Then $G(0)=0$, and

$$
G^{\Delta}(a):=g(a)+g(\sigma(a))-[g(a)+g(\sigma(a))]=0 .
$$

Therefore $G \equiv 0$, and Theorem 2.2 follows from Theorem 2.1.
Remark 2.3. Consider (2.2). If $\mathbb{T}=\mathbb{R}$, then $\sigma(t)=t$ and the theorem yields the classic Young inequality,

$$
\int_{0}^{a} f(t) d t+\int_{0}^{b} f^{-1}(y) d y \geq a b
$$

If $\mathbb{T}=\mathbb{Z}$, then $\sigma(t)=t+1$ and the theorem yields Young's discrete inequality,

$$
\sum_{t=0}^{a-1}[f(t)+f(t+1)]+\sum_{y \in[0, b) \cap f(\mathbb{Z})} \mu(y)\left[2 f^{-1}(y)+1\right] \geq 2 a b
$$

since by the discrete nature of the expression, $f^{-1}(\sigma(y))=\sigma\left(f^{-1}(y)\right)=f^{-1}(y)+1$. If $\mathbb{T}=\mathbb{T}_{r}$, where $r>1$ and $\mathbb{T}_{r}:=\{0\} \cup\left\{r^{z}\right\}_{z \in \mathbb{Z}}$, then we have Young's quantum inequality

$$
(r-1) \sum_{\tau=-\infty}^{\alpha-1} r^{\tau}\left[f\left(r^{\tau}\right)+f\left(r^{\tau+1}\right)\right]+(r+1) \sum_{y \in[0, b) \cap f\left(\mathbb{T}_{r}\right)} \mu(y) f^{-1}(y) \geq 2 a b
$$

where $a=r^{\alpha}$ and $t=r^{\tau}$ for $\alpha, \tau \in \mathbb{Z}$.
Corollary 2.4. Assume \mathbb{T} is any time scale with $0 \in \mathbb{T}$. Let $p, q>1$ be real numbers with $\frac{1}{p}+\frac{1}{q}=1$. Then for any $a \in[0, \infty)_{\mathbb{T}}$ and $b \in[0, \infty)_{\mathbb{T}^{*}}$, where $\mathbb{T}^{*}:=\left\{t^{p-1}: t \in \mathbb{T}\right\}$, we have

$$
\int_{0}^{a} t^{p-1} \Delta t+\int_{0}^{a} t^{p-1} \nabla t+\int_{0}^{b} y^{q-1} \Delta y+\int_{0}^{b} y^{q-1} \nabla y \geq 2 a b
$$

with equality if and only if $b=a^{p-1}$.
Proof. Let $f(t):=t^{p-1}$ for $t \in[0, \infty)_{\mathbb{T}}$. Then $f^{-1}(y)=y^{q-1}$ for $y \in \mathbb{T}^{*}$, and all the hypotheses of Theorem 2.1 are satisfied; the result follows.

References

[1] M. BOHNER AND A. PETERSON, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston (2001).
[2] J.B. DIAZ AND F.T. METCALF, An analytic proof of Young's inequality, American Math. Monthly, 77 (1970), 603-609.
[3] G.H. HARDY, J.E. LITTLEWOOD and G. PÓLYA, Inequalities, Cambridge, 1934.
[4] S. HILGER, Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, PhD. thesis, Universität Würzburg (1988).
[5] F.H. WONG, C.C. YEH, S.L. YU AND C.H. HONG, Young's inequality and related results on time scales, Appl. Math. Letters, 18 (2005), 983-988.
[6] W.H. YOUNG, On classes of summable functions and their Fourier series, Proc. Royal Soc., Series (A), 87 (1912), 225-229.

