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ABSTRACT. Let T: X — X be a (free)(G, 7)—extension ofS: Y — Y. Moreover let
fx, fv, fe > 0 be continuous functions defined dn, Y and G respectively. In this paper
we obtain some inequalities for the pressuref gfover the transformatioff” in relation to the
pressure offy over the transformatiof and of f overr.
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1. INTRODUCTION

Let7T: X — X be a continuous map of a compact metric spacandr: G — G be an
automorphism of a compact metric groGp Suppose&s acts continuously and freely on the
right of 7" so that the equatio’(xg) = T'(z)7(g) holds truevVz € X, g € G. Moreover let
Y be theG—orbit space and is the natural map ol defined byS(zG) = (Tz)G, Vz € X.
ThenT is called &G, 7)—extension of.

Bowen [1] studied the topological entropy of the aforementioned extension system and,
amongst other things, showed that the following formula holds:

R(T) = h(S) + h(7),

whereh(-) is the topological entropy of the appropriate maps.

In this paper, we are interested in the pressure analogue of Bowen’s formula, i.e., we consider
the pressure of functions defined on the respective dynamical systems instead of topological
entropy. Unfortunately the main result of this paper (i.e., the analogue of Bowen'’s formula, see
Corollary[4.6) is somewhat short of an equality. Our examples indicate that equality holds but
we are unable to prove this in general. The proofs of the results arrived at in this paper are of
course modelled along the lines of Bowen.
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2. PRESSURE

We shall recall some elementary facts about pressure which are relevant to us in proving our
results. The references for this section are [2] and [4].

As before lefl": X — X be a continuous map of a compact metric sgacgl). Throughout
this paper we shall assume thatave finite topological entropy. Lét be a compact subset
of X. A subsetF’ of X is said to be arin, ¢)-spanningset for K if for given k € K then there
existsz € F such thatd(T*(k), T"(z)) < ¢ V0 < i < n — 1. Now let f be a continuous
real-valued function defined o and consider the set defined by:

Qu(T, f e, K) = inf {Z eSnl@ . p (n,e)-spansK} .

zeF

(Here we have used the standard notati®nf (z) := f(z) + f(Tx) +--- + f(T" 'z).) Then
itis easy to see tha, (T, f, ¢, K) < ||e5*/@||r, (T, ¢, K) wherer, (T, ¢, K) is the cardinality
of an(n, €)-spanning set fok" with a minimum number of elements. In particular, by virtue of
compactness and continuity, we hdve: Q,, (T, f, ¢, K) < co. Now define:

1
Q(T, f,e, K) = limsup — log Q, (T, f, ¢, K)
n

n—oo

Lemma2.1.Q(T, f,e, K) < o©
Proof. We know that
Qn(T, fr e, K) < [|€5@||r (T, e, K) < .
Hence, sincé|eS@)|| < emllf@)ll we have
Qn(T, fe, K) < e””f(m)Hrn(T, e, K).

Thus ) .

108 Qu(T, £, ) < |[fI| + ~ log (T, e, ).
In particular we have

Q(T, f,e, K) < ||f]| + hmsup%logrn(T,e, K).

n—oo

It is well known thatlim sup,, . % logr,(T, €, K) < oo. Hence this completes the proof.[]

We are now ready to define the pressure: The pressufendth respect to the subséf of
X overthe maf’': X — X is defined by the quantity:

P(T,f,K) = liL%Q(T, f.e, K).

Remark 2.2.

(1) As is well-known, the metric ot can be arbitrarily chosen as long as it induces the
same topology oiX .

(2) WhenK = X we obtain the usual definition of the pressuP¢?’, f), of the functionf
overthe mag™: X — X.

(3) Recallthat is an(n, €)-separatedset of K C X if for any two distinct pointse, y € E
there exists some < i < n such thau(T"(z),T"(y)) > e. It can be checked that the
above definition can also be arrived at by using separating sets. In this case we shall be
concerned with the quantity

P,(T, f,e, K) = sup {Z 5@ B (n, e)-separatesK} .

zel
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As is well known, the next step is to define
1
P(T, f,K) = lin(l)liminf —log P,(T, f,¢, K).
€e— n—oo M
The following two results are straight forward consequences of the definition of pressure.
Proposition 2.3.
P(T,f,K) < P(T, f)

wheneverk C X

Proof. Let F' (n,¢)-spanX. ThenF also(n, €)-spansk’ C X. Hence

inf {Z 5@ B (n, e)-spansK} < inf {Z 5@ P (n, e)-spanSX} :

zeF z€F

ThusQ, (T, f,e, K) < Q.(T, f,¢). The result follows by taking the appropriate logarithms and
limits. O

Lemma 2.4. Lets, (T, 4¢, X) denote the cardinality of &n, 4¢)-separated set ok with maxi-
mum number of elements. Then

Po(T, f,8¢,X) < e"llls (T, 4¢, X).

Proof. For anye > 0, it is not difficult to check thatP, (T, f,2¢, X) < Q.(T, f,¢, X) and
(T, e, X) < 5,(T, ¢, X). Hence sinc&),, (T, f,e, X) < ellSfly, (T, e, X) we have

Pn(T7f78€7X) S Qn(T7fa4€7X)
< eHS”f”rn(T, 4e, X)
< e"lflls, (T, ¢, X).

3. GENERAL EXTENSIONS

In this section we shall start off with a straightforward modification of a crucial estimate of
Bowen and later show how this estimate is used when dealing with pressure. But first recall the
following definition:

Let7T: X — X andS: Y — Y be continuous maps of compact metric spageandY .
Moreover letr be a continuous surjective map frafhto Y such thatr o 7" = S o 7. Then as
is well-knownT' is called an extension &.

With respect to this extension system, we have the following result which is essentially due
to Bowen [1].

Lemma 3.1. Lete > 0, a > 0 and integern > 0 be arbitrary. Also letfy be a continuous
positive function defined oX. Then there exists sonde > 0 such that ifY,, is an (n,d)-
spanning set fol” with minimum cardinality then for anyn, 4¢)-separating sef’ of X we
have

Card. F < Card.Y,, - el@t®)n M),

wherea = sup,y P(T, fx, 7 '(y)) and M is some finite positive real number.
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Proof. Let a = sup,y P(T, fx, 7 '(y)). For eachy € Y, choose an integen(y) > 0 such
that

at+a>P(T, fx,my) +a
1
* > () log Qmm(y) (T, fX7€,7T_1(y))'

Also for eachy € Y let £, be a(m(y), )-spanning set ofr—!(y). Now consider the open
neighborhood ofr ! (y)

m(y)—1
=J [ T*Ba(T*2).

ze€lby k=0
Then it is clear that
(X/U,) ﬂ T (By(y)) =0,
¥>0

where B, (y) is the open-ball centered atwith radiusy. SinceX is compact, the finite in-
tersection property for compact sets then implies there exists somey(y) > 0 such that
7 Y(B,(y)) C U,. In particular, sinceX is compact, there exists, y», . ..,y. € Y such that
Y is covered by the open ball3,(y;), i = 1,2,...,rand

! (By(y:)) C Uy,
where

= U ﬂ T % Boe(T"2)

2€Ey, =

andE,, is an(m(y;), €)-spanning set of ~ (yi).
Now leté > 0 be the Lebesgue number of this coveroénd letY,, be a(n, d)-spanning set

for Y with minimum cardinality. Hence for eaghe Y,, we can define;(y) as the element in

{v1,y2,...,y,} satistyingBs;(5’(y)) C B,(ci(y)) foreachj =0,1,...,n — 1.
Next define recursively the positive integers

to(7) = 0,
ts(@) =Y m(c,®)

for eachs = 1,2,...,q, whereq = ¢(y) having the property,.:(y) > n. Now for each
q+ 1-ple
(x07$17 T axq) € Ecto(y)@) X Ectl(g)(y) XX Ectq(y)@)
define the set
V(@i (xo, 21, .., 2q)) = {v € X1 d (T"9)(2), T"(,)) < 2¢
V0<t<m(cts(y)( ))&0<8<q}
Then it is easy to check that
U V(y; (o, 21, ...,24)) = X
(W;(20,1,5-5q))
and if F'is an(n, 4¢)-separated subset a&f, then
(3.1) Card(F' NV (y; (zo, 21, ...,24))) =00r1
for eachq + 2-ple (7; (xo, 21, ..., z,)), Wherey € Y, andz, € Ee . w@ s=01,...,q
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To complete the proof of this lemma, we shall now obtain an estimate for the nu¥ilur
theq + 1-ple’s (zg, xy, . . . xq@)). Since

Ny = H "m(erym (@) (Te. 7™ (e (@)

we have by virtue off) and fx > 0
q(y)

log Ny < D _10g 7,0, ) (T 67 (€0 (3)))

q(®)

Z 108 Q. ) (Lo fxs 677 (et,)

IN

q(y

< Z m (¢, (@) (a+ a).
Recall that

q+1 E m Ct

Also t,11(7) = t4(Y) + m (co, (@) Therefore

tor(y) <n—1+m (c,m®)
<n+ M,

whereM = max{m(y;), m(y2),...,m(y,)}.
Hence
log Ny < (n+ M)(a+ «)

so thaty; < e(+M)(@+a) I particular, [(3.]L) now implies
Card.F' < Card.Y;, - Ny
< Card.Y,, - e(»tM)(ate)
and this completes the proof of this lemma. O

Some remarks are in order:
(1) Apart from the choices of integers(y), the rest of the proof of the above lemma is an
exact copy of Bowen'’s theoreml[1, Theorem 17].
(2) WhenF' is a(n, 4¢)-separating set ok with maximum cardinality, then
5n(T, 4e, X) < 1,(S, 8,V )emtMate)
where as before, (T, 4¢, X) is the cardinality of suclt’ andr, (S, ¢, Y") is the cardinal-
ity of Y,,.
The following theorem is the pressure analogue of Bowen’s Thedrem [1, Theorem 17] (see
also [3]).

Theorem 3.2. Let fx and fy be continuous real-valued functions definedomandY respec-
tively such thatfx > 0 and fy- > 0. Then

P(T, fx) < ||fx|| + P(S, fy) +sup P(T, fx,7""y).

yey
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Proof. Lete > 0, o > 0 and integer > 0 be arbitrary and. = sup,, P(T’, fx, 7 'y). Also let
sn(T, 4¢, X) denote the cardinality of &, 4¢)-separated set of with maximum cardinality.
Then Lemmap 2|4 and 3.1 give us

Pn<T7 fX7 867 X) < en”fX”Sn(T, 46, X)
< enllfxllrn(& 5, Y)e(n—HVI)(a-i-a)
< enlleHQn(S7 fv,0, Y)e(n—i-M)(a—i-a)’

where the last line follows from the positivity gf..
Hence

log P,(T, fx,8¢,X) <n|fx||+ (n+ M)(a+ «a) + log Q.(S, fv,5,Y).
In particular, on dividing by: and taking limit superior, we have as— 0
P(T, fx) < ||fx|| + P(S, fy) + a + a.
The result then follows since is arbitrary. O

Corollary 3.3. Let X andY be compact metric spaces afid X — X andnr: X — Y be
continuous such that o T = 7. Moreover letf > 0 be continuous oX.Then

sup P(T, f,w'y) < P(T, f) < || f]| + sup (T’ f, T 1y).

yey
Proof. The first inequality follows from Prog. 2.3. Then in the above theorem take Id,
fr =0andfx = f. O
By taking f = 0 in the above corollary, we have

Corollary 3.4. Let X andY be compact metric spaces afid X — X andnr: X — Y be
continuous such that o 7" = x. Then

h(T) = sup (T, m ).

yey

The last corollary is contained ini[1, Corollary 18].

4. (G,7)—EXTENSIONS

As in the introduction lef": X — X be a(G, 1) - extension ofS: Y — Y. For the rest
of this paper letfy and f; be positive real-valued functions defined Brand G respectively.
Now define the functiorf: X — R asf(xg) = fy(2G) + fo(g) so thatf is also positive and
continuous.

Lemma 4.1. The functionf is well-defined.

Proof. Let zg = z¢’ wherex, z € X andg, ¢’ € GG. Consider the projection map: X — Y.
Thenn(zg) = w(zg’) implieszG = zG so thatr = zg for someg € G. Hencef(zg) =

f(z99) = fv(2G)+ Ja(gg). Also f(zg') = fy(2G)+ fa(g'). And this impliesf (zg) = f(zg)
if fa(gg) = fc(¢'). Butthisis true since = zg implieszgg = z¢’ and in turn by virtue of free
acting this impliegjg = ¢'. In other wordsf;(g9) = fc(g¢') and this completes the proof. O

Lety € Y. Thenrecall tha®, (T, f,e, 7 'y) is defined as

Qu(T, f,e, 7 1y) = inf {Z 5@ F (n,e) — SpanSW_ly} .

xeF
We have
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Proposition 4.2. Giveny € Y, integern > 1 ande > 0,

Qu(T, fe,mty) < e"WIQ, (7, f5.,0)
for somes > 0.

Proof. Let d andd’ be the metrics associated with and G respectively. Then sinc€ acts
continuously onX, we have by uniform continuity, there exigts> 0 such thatl(zg, z¢') < €
wheneverd'(g,g') < 6. Now letz € 7'y andE, be a(n,d)-spanning set fo6;. Then it is
easy to check thatF, is a(n, €)-spanning set forr—'y. Observe that by commutativity af
andS (viar) and the relatioff'(zg) = T'(x)7(g) we have

Snf(@9) — Sufy (@G) oSnfo(s)

with respect to the appropriate mapssS andr, so that

$ S 0) =  SufaG) 3 Sula)

geEE, gEE,
or
Z eSnf(x9) — Snfy(zG) Z eSnfalg)
rg€EzEn, geEE,
Therefore

Qu(T, fre,77ty) < e NEDQ, (7, fa,6).

Note that the above manipulation is independent af 7~y since ifz’ € 7'y thenaz’ = zg
for someg € G so thate’G' = =G which in turn impliesS,, fy (2'G) = S, fy (zG). The result
follows sincee®n /v (=G) < enllfyll, O

Theorem 4.3.Giveny € Y, we have
P(T, f,7~'y) < | fyll + P(7, fa)-
Proof. From Proposition 4]2 we have
Qu(T. fremty) < eNQu(7, fa, ).
Therefore
timsup ~ 10g Qu(T f. ;7 y) < |[fyll + lmsup - 1ogQu(r, fi. ),

that is
Q(T, fe,m'y) < |yl + Q(7, fa, ).
The result follows by taking — 0 andé — 0. O

Combining Theorerp 3|2 and Theorém|4.3 and taking fx , we have

Proposition 4.4.
P ) < I+ vl + P(S, fy) + P(T, fo)

We also have:

Proposition 4.5.
P(Taf) Z P<SafY)+P(T7fG)
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Proof. Let e > 0 and letd” be the metric orY’. Then by the uniform continuity of and the
fact thatG-acts freely onX there exists somé > 0 such that

a.d"(n(z),n(2)) < ewhend(z,z) <6

b. d(zg,xg") > d whenz € X andd(g, g’) > e.

Now letG,, C G be(n,¢)-separated anl,, C Y be(n, ¢)-separated and choosg, C X so
thatr, : X, — Y, is a bijection. ThenX,,G,, is (n, 0)-separated. Thus

rgeXnGp
In particular
The result follows by taking — oo andd — oc. O
Corollary 4.6.

P(S, fy)+ P(r fa) < P(T, f) < fI + vl + P(S, fv) + P(7, fa).
And by takingfy = 0 = f, we recover Bowen’s formula

Corollary 4.7.
hT) = h(S) + h(7).

5. FINAL REMARKS

When fy andf are both constant, by using the variational formula for pressure and Bowen’s
formula, it is easy to deduce th&(T', f) = P(S, fy) + P(, fa), i.e., equality holds in this
trivial case.

Perhaps, a non-trivial example supporting the equality is as follows:

Example 5.1.LetY = {—1,1}? ando: Y — Y be the full two-shift. Consider the group
extension given by

0:Y XZs—Y X7z
(y.9) — (oy, (g + 2yo) mod3).

Of course, in this case = Id. Also, letf(y, g9) = fv(y) + fa(g), wherefy (y) = 0if yo = —1,
fy(y) = 1if yo = 1andf; = 2, constant. Then one can easily check thét, fy) = log(1+e)
andP(ld, f¢) = 2. Moreover it is not difficult to see tha® (s, f) = log(e? + €?). In particular,
we haveP(q, f) = P(o, fy) + P(ld, fq).

We end with the following conjecture:

Conjecture 5.1. LetT: X — X be a (free)(G, 7)—extension ob: Y — Y such thatl" has
finite topological entropy. Also let: G — R be defined ag(zg) = fy(zG) + fa(g) where
fy, fq are positive real-valued functions dhandG respectively. Then

P(va) :P(S7fY)+P(TafG)
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