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ABSTRACT. Let T : X → X be a (free)(G, τ)–extension ofS : Y → Y . Moreover let
fX , fY , fG ≥ 0 be continuous functions defined onX, Y andG respectively. In this paper
we obtain some inequalities for the pressure offX over the transformationT in relation to the
pressure offY over the transformationS and offG overτ .
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1. I NTRODUCTION

Let T : X → X be a continuous map of a compact metric spaceX andτ : G → G be an
automorphism of a compact metric groupG. SupposeG acts continuously and freely on the
right of T so that the equationT (xg) = T (x)τ(g) holds true∀x ∈ X, g ∈ G. Moreover let
Y be theG–orbit space andS is the natural map onY defined byS(xG) = (Tx)G, ∀x ∈ X.
ThenT is called a(G, τ)–extension ofS.

Bowen [1] studied the topological entropy of the aforementioned extension system and,
amongst other things, showed that the following formula holds:

h(T ) = h(S) + h(τ),

whereh(·) is the topological entropy of the appropriate maps.
In this paper, we are interested in the pressure analogue of Bowen’s formula, i.e., we consider

the pressure of functions defined on the respective dynamical systems instead of topological
entropy. Unfortunately the main result of this paper (i.e., the analogue of Bowen’s formula, see
Corollary 4.6) is somewhat short of an equality. Our examples indicate that equality holds but
we are unable to prove this in general. The proofs of the results arrived at in this paper are of
course modelled along the lines of Bowen.
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2. PRESSURE

We shall recall some elementary facts about pressure which are relevant to us in proving our
results. The references for this section are [2] and [4].

As before letT : X → X be a continuous map of a compact metric space(X, d). Throughout
this paper we shall assume thatT have finite topological entropy. LetK be a compact subset
of X. A subsetF of X is said to be an(n, ε)-spanningset forK if for given k ∈ K then there
existsx ∈ F such thatd(T i(k), T i(x)) ≤ ε, ∀0 ≤ i ≤ n − 1. Now let f be a continuous
real-valued function defined onX and consider the set defined by:

Qn(T, f, ε, K) = inf

{∑
x∈F

eSnf(x) : F (n, ε)-spansK

}
.

(Here we have used the standard notation:Snf(x) := f(x) + f(Tx) + · · ·+ f(T n−1x).) Then
it is easy to see thatQn(T, f, ε, K) ≤ ||eSnf(x)||rn(T, ε,K) wherern(T, ε,K) is the cardinality
of an(n, ε)-spanning set forK with a minimum number of elements. In particular, by virtue of
compactness and continuity, we have0 < Qn(T, f, ε, K) < ∞. Now define:

Q(T, f, ε, K) = lim sup
n→∞

1

n
log Qn(T, f, ε, K)

Lemma 2.1. Q(T, f, ε, K) < ∞
Proof. We know that

Qn(T, f, ε, K) ≤ ||eSnf(x)||rn(T, ε,K) < ∞.

Hence, since||eSnf(x)|| ≤ en||f(x)||, we have

Qn(T, f, ε, K) ≤ en||f(x)||rn(T, ε,K).

Thus
1

n
log Qn(T, f, ε, K) ≤ ||f ||+ 1

n
log rn(T, ε,K).

In particular we have

Q(T, f, ε, K) ≤ ||f ||+ lim sup
n→∞

1

n
log rn(T, ε,K).

It is well known thatlim supn→∞
1
n

log rn(T, ε,K) < ∞. Hence this completes the proof.�

We are now ready to define the pressure: The pressure off with respect to the subsetK of
X over the mapT : X → X is defined by the quantity:

P (T, f, K) = lim
ε→0

Q(T, f, ε, K).

Remark 2.2.
(1) As is well-known, the metric onX can be arbitrarily chosen as long as it induces the

same topology onX.
(2) WhenK = X we obtain the usual definition of the pressure,P (T, f), of the functionf

over the mapT : X → X.
(3) Recall thatE is an(n, ε)-separatedset ofK ⊂ X if for any two distinct pointsx, y ∈ E

there exists some0 ≤ i < n such thatd(T i(x), T i(y)) > ε. It can be checked that the
above definition can also be arrived at by using separating sets. In this case we shall be
concerned with the quantity

Pn(T, f, ε, K) = sup

{∑
x∈E

eSnf(x) : E (n, ε)-separatesK

}
.
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As is well known, the next step is to define

P (T, f, K) = lim
ε→0

lim inf
n→∞

1

n
log Pn(T, f, ε, K).

The following two results are straight forward consequences of the definition of pressure.

Proposition 2.3.

P (T, f, K) ≤ P (T, f)

wheneverK ⊂ X

Proof. Let F (n, ε)-spanX. ThenF also(n, ε)-spansK ⊂ X. Hence

inf

{∑
x∈F

eSnf(x) : F (n, ε)-spansK

}
≤ inf

{∑
x∈F

eSnf(x) : F (n, ε)-spansX

}
.

ThusQn(T, f, ε, K) ≤ Qn(T, f, ε). The result follows by taking the appropriate logarithms and
limits. �

Lemma 2.4. Letsn(T, 4ε, X) denote the cardinality of a(n, 4ε)-separated set ofX with maxi-
mum number of elements. Then

Pn(T, f, 8ε, X) ≤ en||f ||sn(T, 4ε, X).

Proof. For anyε > 0, it is not difficult to check thatPn(T, f, 2ε, X) ≤ Qn(T, f, ε, X) and
rn(T, ε,X) ≤ sn(T, ε,X). Hence sinceQn(T, f, ε, X) ≤ e‖Snf‖rn(T, ε,X) we have

Pn(T, f, 8ε, X) ≤ Qn(T, f, 4ε, X)

≤ e‖Snf‖rn(T, 4ε, X)

≤ en‖f‖sn(T, 4ε, X).

�

3. GENERAL EXTENSIONS

In this section we shall start off with a straightforward modification of a crucial estimate of
Bowen and later show how this estimate is used when dealing with pressure. But first recall the
following definition:
Let T : X → X andS : Y → Y be continuous maps of compact metric spacesX andY .
Moreover letπ be a continuous surjective map fromX to Y such thatπ ◦ T = S ◦ π. Then as
is well-knownT is called an extension ofS.

With respect to this extension system, we have the following result which is essentially due
to Bowen [1].

Lemma 3.1. Let ε > 0, α > 0 and integern > 0 be arbitrary. Also letfX be a continuous
positive function defined onX. Then there exists someδ > 0 such that ifYn is an (n, δ)-
spanning set forY with minimum cardinality then for any(n, 4ε)-separating setF of X we
have

Card.F ≤ Card.Yn · e(a+α)(n+M),

wherea = supy∈Y P (T, fX , π−1(y)) andM is some finite positive real number.
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Proof. Let a = supy∈Y P (T, fX , π−1(y)). For eachy ∈ Y , choose an integerm(y) > 0 such
that

a + α ≥ P (T, fX , π−1y) + α

≥ 1

m(y)
log Qm(y)(T, fX , ε, π−1(y)).(*)

Also for eachy ∈ Y let Ey be a(m(y), ε)-spanning set ofπ−1(y). Now consider the open
neighborhood ofπ−1(y)

Uy =
⋃

z∈Ey

m(y)−1⋂
k=0

T−kB2ε(T
kz).

Then it is clear that
(X/Uy) ∩

⋂
γ>0

π−1(Bγ(y)) = ∅,

whereBγ(y) is the open-ball centered aty with radiusγ. SinceX is compact, the finite in-
tersection property for compact sets then implies there exists someγ = γ(y) > 0 such that
π−1(Bγ(y)) ⊂ Uy. In particular, sinceX is compact, there existsy1, y2, . . . , yr ∈ Y such that
Y is covered by the open ballsBγ(yi), i = 1, 2, . . . , r and

π−1 (Bγ(yi)) ⊂ Uyi
,

where

Uyi
=

⋃
z∈Eyi

m(yi)−1⋂
k=0

T−kB2ε(T
kz)

andEyi
is an(m(yi), ε)-spanning set ofπ−1(yi).

Now let δ > 0 be the Lebesgue number of this cover ofY and letYn be a(n, δ)-spanning set
for Y with minimum cardinality. Hence for eachy ∈ Yn we can definecj(y) as the element in
{y1, y2, . . . , yr} satisfyingBδ(S

j(y)) ⊂ Bγ(ci(y)) for eachj = 0, 1, . . . , n− 1.
Next define recursively the positive integers

t0(y) = 0,

ts(y) =
s−1∑
r=0

m
(
ctr(y)(y)

)
for eachs = 1, 2, . . . , q, whereq = q(y) having the propertytq+1(y) ≥ n. Now for each
q + 1-ple

(x0, x1, . . . , xq) ∈ Ect0(y)(y) × Ect1(y)(y) × · · · × Ectq(y)(y)

define the set

V (y; (x0, x1, . . . , xq)) =
{
x ∈ X : d

(
T t+ts(y)(x), T t(xs)

)
< 2ε

∀0 ≤ t < m
(
cts(y)(y)

)
& 0 ≤ s ≤ q} .

Then it is easy to check that ⋃
(y;(x0,x1,...,xq))

V (y; (x0, x1, . . . , xq)) = X

and ifF is an(n, 4ε)-separated subset ofX, then

(3.1) Card.(F ∩ V (y; (x0, x1, . . . , xq))) = 0 or 1

for eachq + 2-ple (y; (x0, x1, . . . , xq)), wherey ∈ Yn andxs ∈ Ects(y)(y), s = 0, 1, . . . , q.
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To complete the proof of this lemma, we shall now obtain an estimate for the numberNy of
theq + 1-ple’s (x0, x1, . . . , xq(y)). Since

Ny =

q(y)∏
s=0

rm(cts(y)(y))
(
T, ε, π−1

(
cts(y)(y)

))
we have by virtue of(∗) andfX ≥ 0

log Ny ≤
q(y)∑
s=0

log rm(cts(y)(y))
(
T, ε, π−1

(
cts(y)(y)

))
≤

q(y)∑
s=0

log Qm(cts(y))(T, fX , ε, π−1(cts(y)))

≤
q(y)∑
s=0

m
(
cts(y)(y)

)
(a + α).

Recall that

tq+1(y) =

q(y)∑
r=0

m
(
cts(y)(y)

)
.

Also tq+1(y) = tq(y) + m
(
ctq(y)(y)

)
. Therefore

tq+1(y) ≤ n− 1 + m
(
ctq(y)(y)

)
≤ n + M,

whereM = max{m(y1), m(y2), . . . ,m(yr)}.
Hence

log Ny ≤ (n + M)(a + α)

so thatNy ≤ e(n+M)(a+α). In particular, (3.1) now implies

Card.F ≤ Card.Yn ·Ny

≤ Card.Yn · e(n+M)(a+α)

and this completes the proof of this lemma. �

Some remarks are in order:

(1) Apart from the choices of integersm(y), the rest of the proof of the above lemma is an
exact copy of Bowen’s theorem [1, Theorem 17].

(2) WhenF is a(n, 4ε)-separating set ofX with maximum cardinality, then

sn(T, 4ε, X) ≤ rn(S, δ, Y )e(n+M)(a+α)

where as beforesn(T, 4ε, X) is the cardinality of suchF andrn(S, δ, Y ) is the cardinal-
ity of Yn.

The following theorem is the pressure analogue of Bowen’s Theorem [1, Theorem 17] (see
also [3]).

Theorem 3.2.LetfX andfY be continuous real-valued functions defined onX andY respec-
tively such thatfX ≥ 0 andfY ≥ 0. Then

P (T, fX) ≤ ||fX ||+ P (S, fY ) + sup
y∈Y

P (T, fX , π−1y).
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Proof. Let ε > 0, α > 0 and integern > 0 be arbitrary anda = supy P (T, fX , π−1y). Also let
sn(T, 4ε, X) denote the cardinality of a(n, 4ε)-separated set ofX with maximum cardinality.
Then Lemmas 2.4 and 3.1 give us

Pn(T, fX , 8ε, X) ≤ en‖fX‖sn(T, 4ε, X)

≤ en‖fX‖rn(S, δ, Y )e(n+M)(a+α)

≤ en‖fX‖Qn(S, fY , δ, Y )e(n+M)(a+α),

where the last line follows from the positivity offY .
Hence

log Pn(T, fX , 8ε, X) ≤ n‖fX‖+ (n + M)(a + α) + log Qn(S, fY , δ, Y ).

In particular, on dividing byn and taking limit superior, we have asε → 0

P (T, fX) ≤ ‖fX‖+ P (S, fY ) + a + α.

The result then follows sinceα is arbitrary. �

Corollary 3.3. Let X andY be compact metric spaces andT : X → X andπ : X → Y be
continuous such thatπ ◦ T = π. Moreover letf ≥ 0 be continuous onX.Then

sup
y∈Y

P (T, f, π−1y) ≤ P (T, f) ≤ ||f ||+ sup
y∈Y

P (T, f, π−1y).

Proof. The first inequality follows from Prop. 2.3. Then in the above theorem takeS = Id,
fY = 0 andfX = f . �

By takingf = 0 in the above corollary, we have

Corollary 3.4. Let X andY be compact metric spaces andT : X → X andπ : X → Y be
continuous such thatπ ◦ T = π. Then

h(T ) = sup
y∈Y

h(T, π−1y).

The last corollary is contained in [1, Corollary 18].

4. (G, τ)−EXTENSIONS

As in the introduction letT : X → X be a(G, τ) - extension ofS : Y → Y . For the rest
of this paper letfY andfG be positive real-valued functions defined onY andG respectively.
Now define the functionf : X → R asf(xg) = fY (xG) + fG(g) so thatf is also positive and
continuous.

Lemma 4.1. The functionf is well-defined.

Proof. Let xg = zg′ wherex, z ∈ X andg, g′ ∈ G. Consider the projection mapπ : X → Y .
Thenπ(xg) = π(zg′) implies xG = zG so thatx = zg for someg ∈ G. Hencef(xg) =
f(zgg) = fY (zG)+fG(gg). Alsof(zg′) = fY (zG)+fG(g′). And this impliesf(xg) = f(zg′)
if fG(gg) = fG(g′). But this is true sincex = zg implieszgg = zg′ and in turn by virtue of free
acting this impliesgg = g′. In other wordsfG(gg) = fG(g′) and this completes the proof. �

Let y ∈ Y . Then recall thatQn(T, f, ε, π−1y) is defined as

Qn(T, f, ε, π−1y) = inf

{∑
x∈F

eSnf(x) : F (n, ε)− spansπ−1y

}
.

We have
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Proposition 4.2. Giveny ∈ Y , integern ≥ 1 andε > 0,

Qn(T, f, ε, π−1y) ≤ en||fY ||Qn(τ, fG, δ)

for someδ > 0.

Proof. Let d andd′ be the metrics associated withX andG respectively. Then sinceG acts
continuously onX, we have by uniform continuity, there existsδ > 0 such thatd(xg, xg′) ≤ ε
wheneverd′(g, g′) ≤ δ. Now let x ∈ π−1y andEn be a(n, δ)-spanning set forG. Then it is
easy to check thatxEn is a (n, ε)-spanning set forπ−1y. Observe that by commutativity ofT
andS (via π) and the relationT (xg) = T (x)τ(g) we have

eSnf(xg) = eSnfY (xG)eSnfG(g)

with respect to the appropriate mapsT , S andτ , so that∑
g∈En

eSnf(xg) = eSnfY (xG)
∑
g∈En

eSnfG(g)

or ∑
xg∈zEn

eSnf(xg) = eSnfY (zG)
∑
g∈En

eSnfG(g).

Therefore

Qn(T, f, ε, π−1y) ≤ eSnfY (xG)Qn(τ, fG, δ).

Note that the above manipulation is independent ofx ∈ π−1y since ifx′ ∈ π−1y thenx′ = xg
for someg ∈ G so thatx′G = xG which in turn impliesSnfY (x′G) = SnfY (xG). The result
follows sinceeSnfY (xG) ≤ en‖fY ‖. �

Theorem 4.3.Giveny ∈ Y , we have

P (T, f, π−1y) ≤ ‖fY ‖+ P (τ, fG).

Proof. From Proposition 4.2 we have

Qn(T, f, ε, π−1y) ≤ en||fY ||Qn(τ, fG, δ).

Therefore

lim sup
1

n
log Qn(T, f, ε, π−1y) ≤ ‖fY ‖+ lim sup

1

n
log Qn(τ, fG, δ),

that is

Q(T, f, ε, π−1y) ≤ ||fY ||+ Q(τ, fG, δ).

The result follows by takingε → 0 andδ → 0. �

Combining Theorem 3.2 and Theorem 4.3 and takingf = fX , we have

Proposition 4.4.

P (T, f) ≤ ‖f‖+ ‖fY ‖+ P (S, fY ) + P (τ, fG)

We also have:

Proposition 4.5.

P (T, f) ≥ P (S, fY ) + P (τ, fG)
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Proof. Let ε > 0 and letd′′ be the metric onY . Then by the uniform continuity ofπ and the
fact thatG-acts freely onX there exists someδ > 0 such that
a. d′′(π(x), π(z)) ≤ ε whend(x, z) ≤ δ
b. d(xg, xg′) > δ whenx ∈ X andd(g, g′) > ε.
Now let Gn ⊂ G be (n, ε)-separated andYn ⊂ Y be (n, ε)-separated and chooseXn ⊂ X so
thatπ|Xn

: Xn → Yn is a bijection. ThenXnGn is (n, δ)-separated. Thus

Pn(T, f, δ) ≥
∑

xg∈XnGn

e(Snf)(xg) = Pn(S, fY , ε) · P (τ, fG, ε).

In particular
P (T, f, δ) ≥ P (S, fY , ε) + P (τ, fG, ε).

The result follows by takingε →∞ andδ →∞. �

Corollary 4.6.

P (S, fY ) + P (τ, fG) ≤ P (T, f) ≤ ‖f‖+ ‖fY ‖+ P (S, fY ) + P (τ, fG).

And by takingfY ≡ 0 ≡ fG, we recover Bowen’s formula

Corollary 4.7.
h(T ) = h(S) + h(τ).

5. FINAL REMARKS

WhenfY andfG are both constant, by using the variational formula for pressure and Bowen’s
formula, it is easy to deduce thatP (T, f) = P (S, fY ) + P (τ, fG), i.e., equality holds in this
trivial case.

Perhaps, a non-trivial example supporting the equality is as follows:

Example 5.1. Let Y = {−1, 1}Z andσ : Y → Y be the full two-shift. Consider the group
extension given by

σ̂ : Y × Z3 → Y × Z3

(y, g) 7→ (σy, (g + 2y0) mod3).

Of course, in this caseτ = Id. Also, letf(y, g) = fY (y)+ fG(g), wherefY (y) = 0 if y0 = −1,
fY (y) = 1 if y0 = 1 andfG = 2, constant. Then one can easily check thatP (σ, fY ) = log(1+e)
andP (Id, fG) = 2. Moreover it is not difficult to see thatP (σ̂, f) = log(e2 + e3). In particular,
we haveP (σ̂, f) = P (σ, fY ) + P (Id, fG).

We end with the following conjecture:

Conjecture 5.1. Let T : X → X be a (free)(G, τ)–extension ofS : Y → Y such thatT has
finite topological entropy. Also letf : G → R be defined asf(xg) = fY (xG) + fG(g) where
fY , fG are positive real-valued functions onY andG respectively. Then

P (T, f) = P (S, fY ) + P (τ, fG).
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