A CERTAIN CLASS OF ANALYTIC AND MULTIVALENT FUNCTIONS DEFINED BY MEANS OF A LINEAR OPERATOR

DING-GONG YANG

Department of Mathematics
Suzhou University
Suzhou, Jiangsu 215006, P.R. China.

N-ENG XU

Department of Mathematics
Changshu Institute of Technology
Changshu, Jiangsu 215500,
P.R. China.

EMail: xuneng11@pub.sz.jsinfo.net

Analytic and Multivalent Functions Defined by Linear Operators Ding-Gong Yang, N-eng Xu and Shigeyoshi Owa
vol. 9, iss. 2, art. 50, 2008

Title Page

Contents

Page 1 of 22
Go Back
Full Screen
Close

journal of inequalities

 in pure and applied mathematicsissn: 1443-575b

Making use of a linear operator, which is defined here by means of the Hadamard product (or convolution), we introduce a class $Q_{p}(a, c ; h)$ of analytic and multivalent functions in the open unit disk. An inclusion relation and a convolution property for the class $Q_{p}(a, c ; h)$ are presented. Some integral-preserving properties are also given.

M

Analytic and Multivalent Functions Defined by Linear Operators Ding-Gong Yang, N -eng Xu and Shigeyoshi Owa
vol. 9, iss. 2, art. 50, 2008

Title Page
Contents

Page 2 of 22
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Contents

1 Introduction and Preliminaries 4
2 Main Results 9

Analytic and Multivalent Functions Defined by Linear Operators Ding-Gong Yang, N-eng Xu and Shigeyoshi Owa
vol. 9, iss. 2, art. 50, 2008

Title Page	
Contents	
$\mathbf{4 4}$	
$\mathbf{4}$	
Page 3 of 22	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

1. Introduction and Preliminaries

Let the functions

$$
f(z)=\sum_{k=0}^{\infty} a_{k} z^{p+k} \text { and } g(z)=\sum_{k=0}^{\infty} b_{k} z^{p+k}(p \in \mathbb{N}=\{1,2,3, \ldots\})
$$

be analytic in the open unit disk $U=\{z:|z|<1\}$. Then the Hadamard product (or convolution) $(f * g)(z)$ of $f(z)$ and $g(z)$ is defined by

Analytic and Multivalent Functions Defined by Linear Operators Ding-Gong Yang, N-eng Xu and Shigeyoshi Owa
vol. 9, iss. 2, art. 50, 2008

Title Page
Contents

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=1}^{\infty} a_{k} z^{p+k} \quad(p \in \mathbb{N}) \tag{1.2}
\end{equation*}
$$

which are analytic in U. A function $f(z) \in A_{p}$ is said to be in the class $S_{p}^{*}(\alpha)$ if it satisfies

$$
\begin{equation*}
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>p \alpha \quad(z \in U) \tag{1.3}
\end{equation*}
$$

for some $\alpha(\alpha<1)$. When $0 \leq \alpha<1, S_{p}^{*}(\alpha)$ is the class of p-valently starlike functions of order α in U. Also we write $A_{1}=A$ and $S_{1}^{*}(\alpha)=S^{*}(\alpha)$. A function $f(z) \in A$ is said to be prestarlike of order $\alpha(\alpha<1)$ in U if

$$
\begin{equation*}
\frac{z}{(1-z)^{2(1-\alpha)}} * f(z) \in S^{*}(\alpha) \tag{1.4}
\end{equation*}
$$

$$
\begin{equation*}
(f * g)(z)=\sum_{k=0}^{\infty} a_{k} b_{k} z^{p+k}=(g * f)(z) \tag{1.1}
\end{equation*}
$$

Let A_{p} denote the class of functions $f(z)$ normalized by

Full Screen

```
Close
```

journal of inequalities in pure and applied mathematics
issn: 1443-575b

We denote this class by $R(\alpha)$ (see [9]). It is clear that a function $f(z) \in A$ is in the class $R(0)$ if and only if $f(z)$ is convex univalent in U and

$$
R\left(\frac{1}{2}\right)=S^{*}\left(\frac{1}{2}\right)
$$

We now define the function $\varphi_{p}(a, c ; z)$ by

$$
\begin{equation*}
\varphi_{p}(a, c ; z)=z^{p}+\sum_{k=1}^{\infty} \frac{(a)_{k}}{(c)_{k}} z^{p+k} \quad(z \in U), \tag{1.5}
\end{equation*}
$$

Analytic and Multivalent Functions Defined by Linear Operators Ding-Gong Yang, N-eng Xu and Shigeyoshi Owa
vol. 9, iss. 2, art. 50, 2008
where

$$
c \notin\{0,-1,-2, \ldots\} \quad \text { and } \quad(x)_{k}=x(x+1) \cdots(x+k-1) \quad(k \in \mathbb{N})
$$

Corresponding to the function $\varphi_{p}(a, c ; z)$, Saitoh [10] introduced and studied a linear operator $L_{p}(a, c)$ on A_{p} by the following Hadamard product (or convolution):

$$
\begin{equation*}
L_{p}(a, c) f(z)=\varphi_{p}(a, c ; z) * f(z) \quad\left(f(z) \in A_{p}\right) \tag{1.6}
\end{equation*}
$$

For $p=1, L_{1}(a, c)$ on A was first defined by Carlson and Shaffer [1]. We remark in passing that a much more general convolution operator than the operator $L_{p}(a, c)$ was introduced by Dziok and Srivastava [2].

It is known [10] that
(1.7) $z\left(L_{p}(a, c) f(z)\right)^{\prime}=a L_{p}(a+1, c) f(z)-(a-p) L_{p}(a, c) f(z) \quad\left(f(z) \in A_{p}\right)$.

Setting $a=n+p>0$ and $c=1$ in (1.6), we have

$$
\begin{equation*}
L_{p}(n+p, 1) f(z)=\frac{z^{p}}{(1-z)^{n+p}} * f(z)=D^{n+p-1} f(z) \quad\left(f(z) \in A_{p}\right) \tag{1.8}
\end{equation*}
$$

Title Page
Contents

Page 5 of 22

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

The operator D^{n+p-1} when $p=1$ was first introduced by Ruscheweyh [8], and D^{n+p-1} was introduced by Goel and Sohi [3]. Thus we name D^{n+p-1} as the Ruscheweyh derivative of $(n+p-1)$ th order.

For functions $f(z)$ and $g(z)$ analytic in U, we say that $f(z)$ is subordinate to $g(z)$ in U, and write $f(z) \prec g(z)$, if there exists an analytic function $w(z)$ in U such that

$$
|w(z)| \leq|z| \quad \text { and } \quad f(z)=g(w(z)) \quad(z \in U)
$$

Furthermore, if the function $g(z)$ is univalent in U, then

$$
f(z) \prec g(z) \Leftrightarrow f(0)=g(0) \quad \text { and } \quad f(U) \subset g(U)
$$

Analytic and Multivalent Functions Defined by Linear Operators Ding-Gong Yang, N -eng Xu and Shigeyoshi Owa
vol. 9, iss. 2, art. 50, 2008
Let P be the class of analytic functions $h(z)$ with $h(0)=p$, which are convex univalent in U and for which

$$
\operatorname{Re} h(z)>0 \quad(z \in U)
$$

In this paper we introduce and investigate the following subclass of A_{p}.
Definition 1.1. A function $f(z) \in A_{p}$ is said to be in the class $Q_{p}(a, c ; h)$ if it satisfies

$$
\begin{equation*}
\frac{L_{p}(a+1, c) f(z)}{L_{p}(a, c) f(z)} \prec 1-\frac{p}{a}+\frac{h(z)}{a}, \tag{1.9}
\end{equation*}
$$

where

$$
\begin{equation*}
a \neq 0, \quad c \notin\{0,-1,-2, \ldots\} \quad \text { and } \quad h(z) \in P \tag{1.10}
\end{equation*}
$$

It is easy to see that, if $f(z) \in Q_{p}(a, c ; h)$, then $L_{p}(a, c) f(z) \in S_{p}^{*}(0)$.
For $a=n+p(n>-p), c=1$ and

$$
\begin{equation*}
h(z)=p+\frac{(A-B) z}{1+B z} \quad(-1 \leq B<A \leq 1) \tag{1.11}
\end{equation*}
$$

Title Page

Contents

Page 6 of 22
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
J

Yang [12] introduced and studied the class

$$
Q_{p}(n+p, 1 ; h)=S_{n, p}(A, B)
$$

For $h(z)$ given by (1.11), the class

$$
\begin{equation*}
Q_{p}(a, c ; h)=H_{a, c, p}(A, B) \tag{1.12}
\end{equation*}
$$

has been considered by Liu and Owa [5].
For $p=1, A=1-2 \alpha(0 \leq \alpha<1)$ and $B=-1$, Kim and Srivastava [4] have shown some properties of the class $H_{a, c, 1}(1-2 \alpha,-1)$.

In the present paper, we shall establish an inclusion relation and a convolution property for the class $Q_{p}(a, c ; h)$. Integral transforms of functions in this class are also discussed. We observe that the proof of each of the results in [5] is much akin to that of the corresponding assertion made by Yang [12] in the case of $a=n+p$ and $c=1$. However, the methods used in $[5,12]$ do not work for the general function class $Q_{p}(a, c ; h)$.

We need the following lemmas in order to derive our main results for the class $Q_{p}(a, c ; h)$.
Lemma 1.2 (Ruscheweyh [9]). Let $\alpha<1, f(z) \in S^{*}(\alpha)$ and $g(z) \in R(\alpha)$. Then, for any analytic function $F(z)$ in U,

$$
\frac{g *(f F)}{g * f}(U) \subset \overline{c o}(F(U))
$$

where $\overline{c o}(F(U))$ denotes the closed convex hull of $F(U)$.
Lemma 1.3 (Miller and Mocanu [6]). Let $\beta(\beta \neq 0)$ and γ be complex numbers and let $h(z)$ be analytic and convex univalent in U with

$$
\operatorname{Re}(\beta h(z)+\gamma)>0 \quad(z \in U)
$$

Analytic and Multivalent Functions Defined by Linear Operators Ding-Gong Yang, N-eng Xu and Shigeyoshi Owa
vol. 9, iss. 2, art. 50, 2008

Title Page
Contents

Page 7 of 22

```
Go Back
```

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-5756

If $q(z)$ is analytic in U with $q(0)=h(0)$, then the subordination

$$
q(z)+\frac{z q^{\prime}(z)}{\beta q(z)+\gamma} \prec h(z)
$$

implies that $q(z) \prec h(z)$.

Analytic and Multivalent Functions Defined by Linear Operators Ding-Gong Yang, N-eng Xu and Shigeyoshi Owa
vol. 9, iss. 2, art. 50, 2008

Title Page
Contents

Page 8 of 22
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Main Results

Theorem 2.1. Let $h(z) \in P$ and

$$
\begin{equation*}
\operatorname{Re} h(z)>\beta \quad(z \in U ; 0 \leq \beta<p) \tag{2.1}
\end{equation*}
$$

If

$$
\begin{equation*}
0<a_{1}<a_{2} \quad \text { and } \quad a_{2} \geq 2(p-\beta) \tag{2.2}
\end{equation*}
$$

then

$$
Q_{p}\left(a_{2}, c ; h\right) \subset Q_{p}\left(a_{1}, c ; h\right)
$$

Proof. Define

$$
g(z)=z+\sum_{k=1}^{\infty} \frac{\left(a_{1}\right)_{k}}{\left(a_{2}\right)_{k}} z^{k+1} \quad\left(z \in U ; 0<a_{1}<a_{2}\right)
$$

Then

$$
\begin{equation*}
\frac{\varphi_{p}\left(a_{1}, a_{2} ; z\right)}{z^{p-1}}=g(z) \in A, \tag{2.3}
\end{equation*}
$$

where $\varphi_{p}\left(a_{1}, a_{2} ; z\right)$ is defined as in (1.5), and

$$
\begin{equation*}
\frac{z}{(1-z)^{a_{2}}} * g(z)=\frac{z}{(1-z)^{a_{1}}} . \tag{2.4}
\end{equation*}
$$

From (2.4) we have

$$
\frac{z}{(1-z)^{a_{2}}} * g(z) \in S^{*}\left(1-\frac{a_{1}}{2}\right) \subset S^{*}\left(1-\frac{a_{2}}{2}\right)
$$

Analytic and Multivalent Functions Defined by Linear Operators Ding-Gong Yang, N -eng Xu and Shigeyoshi Owa
vol. 9, iss. 2, art. 50, 2008

Title Page
Contents

Page 9 of 22

```
Go Back
```

Full Screen

```
Close
```

journal of inequalities in pure and applied mathematics
issn: 1443-575b
for $0<a_{1}<a_{2}$, which implies that

$$
\begin{equation*}
g(z) \in R\left(1-\frac{a_{2}}{2}\right) . \tag{2.5}
\end{equation*}
$$

Since

$$
\begin{equation*}
L_{p}\left(a_{1}, c\right) f(z)=\varphi_{p}\left(a_{1}, a_{2} ; z\right) * L_{p}\left(a_{2}, c\right) f(z) \quad\left(f(z) \in A_{p}\right) \tag{2.6}
\end{equation*}
$$

we deduce from (1.7) and (2.6) that

$$
\begin{align*}
a_{1} L_{p} & \left(a_{1}+1, c\right) f(z) \\
& =z\left(L_{p}\left(a_{1}, c\right) f(z)\right)^{\prime}+\left(a_{1}-p\right) L_{p}\left(a_{1}, c\right) f(z) \\
& =\varphi_{p}\left(a_{1}, a_{2} ; z\right) *\left(z\left(L_{p}\left(a_{2}, c\right) f(z)\right)^{\prime}+\left(a_{1}-p\right) L_{p}\left(a_{2}, c\right) f(z)\right) \\
& =\varphi_{p}\left(a_{1}, a_{2} ; z\right) *\left(a_{2} L_{p}\left(a_{2}+1, c\right) f(z)+\left(a_{1}-a_{2}\right) L_{p}\left(a_{2}, c\right) f(z)\right) \tag{2.7}
\end{align*}
$$

By using (2.3), (2.6) and (2.7), we find that

$$
\begin{aligned}
& \frac{L_{p}\left(a_{1}+1, c\right) f(z)}{L_{p}\left(a_{1}, c\right) f(z)} \\
& \quad=\frac{\left(z^{p-1} g(z)\right) *\left(\frac{a_{2}}{a_{1}} L_{p}\left(a_{2}+1, c\right) f(z)+\left(1-\frac{a_{2}}{a_{1}}\right) L_{p}\left(a_{2}, c\right) f(z)\right)}{\left(z^{p-1} g(z)\right) * L_{p}\left(a_{2}, c\right) f(z)} \\
& \quad=\frac{g(z) *\left(\frac{a_{2}}{a_{1}} \frac{L_{p}\left(a_{2}+1, c\right) f(z)}{z^{p-1}}+\left(1-\frac{a_{2}}{a_{1}}\right) \frac{L_{p}\left(a_{2}, c\right) f(z)}{z^{p-1}}\right)}{g(z) * \frac{L_{p}\left(a_{2}, c\right) f(z)}{z^{p-1}}} \\
& \quad=\frac{g(z) *(q(z) F(z))}{g(z) * q(z)} \quad\left(f(z) \in A_{p}\right),
\end{aligned}
$$

where

$$
q(z)=\frac{L_{p}\left(a_{2}, c\right) f(z)}{z^{p-1}} \in A
$$

Analytic and Multivalent Functions Defined by Linear Operators Ding-Gong Yang, N-eng Xu and Shigeyoshi Owa
vol. 9, iss. 2, art. 50, 2008

Title Page
Contents

Page 10 of 22

Go Back

Full Screen

```
Close
```

journal of inequalities in pure and applied mathematics
and

$$
F(z)=\frac{a_{2} L_{p}\left(a_{2}+1, c\right) f(z)}{a_{1} L_{p}\left(a_{2}, c\right) f(z)}+1-\frac{a_{2}}{a_{1}} .
$$

Let $f(z) \in Q_{p}\left(a_{2}, c ; h\right)$. Then

$$
\begin{aligned}
F(z) & \prec \frac{a_{2}}{a_{1}}\left(1-\frac{p}{a_{2}}+\frac{h(z)}{a_{2}}\right)+1-\frac{a_{2}}{a_{1}} \\
& =1-\frac{p}{a_{1}}+\frac{h(z)}{a_{1}}=h_{1}(z) \quad \text { (say) },
\end{aligned}
$$

Analytic and Multivalent Functions Defined by Linear Operators Ding-Gong Yang, N-eng Xu and Shigeyoshi Owa
vol. 9, iss. 2, art. 50, 2008

Title Page
Contents

$$
\begin{align*}
\frac{z q^{\prime}(z)}{q(z)} & =\frac{z\left(L_{p}\left(a_{2}, c\right) f(z)\right)^{\prime}}{L_{p}\left(a_{2}, c\right) f(z)}+1-p \\
& =a_{2} \frac{L_{p}\left(a_{2}+1, c\right) f(z)}{L_{p}\left(a_{2}, c\right) f(z)}+1-a_{2} \\
& \prec 1-p+h(z) . \tag{2.10}
\end{align*}
$$

By using (2.1), (2.2) and (2.10), we get

$$
\operatorname{Re} \frac{z q^{\prime}(z)}{q(z)}>1-p+\beta \geq 1-\frac{a_{2}}{2} \quad(z \in U)
$$

that is,

$$
\begin{equation*}
q(z) \in S^{*}\left(1-\frac{a_{2}}{2}\right) \tag{2.11}
\end{equation*}
$$

Consequently, in view of (2.5), (2.8), (2.9) and (2.11), an application of Lemma 1.2 yields

$$
\frac{L_{p}\left(a_{1}+1, c\right) f(z)}{L_{p}\left(a_{1}, c\right) f(z)} \prec h_{1}(z) .
$$

Thus $f(z) \in Q_{p}\left(a_{1}, c ; h\right)$ and the proof of Theorem 2.1 is completed.

Page 11 of 22
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

By carefully selecting the function $h(z)$ involved in Theorem 2.1, we can obtain a number of useful consequences.

Corollary 2.2. Let

$$
\begin{equation*}
h(z)=p-1+\left(\frac{1+A z}{1+B z}\right)^{\gamma} \quad(z \in U ; 0<\gamma \leq 1 ;-1 \leq B<A \leq 1) \tag{2.12}
\end{equation*}
$$

$$
0<a_{1}<a_{2} \quad \text { and } \quad a_{2} \geq 2\left(1-\left(\frac{1-A}{1-B}\right)^{\gamma}\right)
$$

then

$$
Q_{p}\left(a_{2}, c ; h\right) \subset Q_{p}\left(a_{1}, c ; h\right)
$$

Proof. The analytic function $h(z)$ defined by (2.12) is convex univalent in U (cf. [11]), $h(0)=p$, and $h(U)$ is symmetric with respect to the real axis. Thus $h(z) \in P$ and

$$
\operatorname{Re} h(z)>\beta=h(-1)=p-1+\left(\frac{1-A}{1-B}\right)^{\gamma} \geq 0 \quad(z \in U)
$$

Hence the desired result follows from Theorem 2.1 at once.
If we let $\gamma=1$, then Corollary 2.2 yields the following.
Corollary 2.3. Let $h(z)$ be given by (1.11). If a, A and $B(-1 \leq B<A \leq 1)$ satisfy either
(i) $a \geq 1-2\left(\frac{1-A}{1-B}\right)>0$
or
(ii) $a>0 \geq 1-2\left(\frac{1-A}{1-B}\right)$, then

$$
Q_{p}(a+1, c ; h) \subset Q_{p}(a, c ; h)
$$

Analytic and Multivalent Functions Defined by Linear Operators Ding-Gong Yang, N-eng Xu and Shigeyoshi Owa
vol. 9, iss. 2, art. 50, 2008

Title Page
Contents

$\mathbf{4 4}$	
$\mathbf{4}$	
Page 12 of 22	
Go Back	

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Using Jack's Lemma, Liu and Owa [5, Theorem 1] proved that, if $a \geq \frac{A-B}{1-B}$, then

$$
H_{a+1, c, p}(A, B) \subset H_{a, c, p}(A, B) .
$$

Since

$$
\frac{A-B}{1-B} \geq 1-2\left(\frac{1-A}{1-B}\right) \quad(-1 \leq B<A \leq 1)
$$

and the equality occurs only when $A=1$, we see that Corollary 2.3 is better than the result of [5].

Corollary 2.4. Let

$$
\begin{equation*}
h(z)=p+\sum_{k=1}^{\infty}\left(\frac{\gamma+1}{\gamma+k}\right) \delta^{k} z^{k} \quad(z \in U ; 0<\delta \leq 1 ; \gamma \geq 0) . \tag{2.13}
\end{equation*}
$$

Analytic and Multivalent Functions Defined by Linear Operators Ding-Gong Yang, N-eng Xu and Shigeyoshi Owa
vol. 9, iss. 2, art. 50, 2008

Title Page
Contents

$$
0<a_{1}<a_{2} \quad \text { and } \quad a_{2} \geq 2 \sum_{k=1}^{\infty}(-1)^{k+1}\left(\frac{\gamma+1}{\gamma+k}\right) \delta^{k},
$$

then

$$
Q_{p}\left(a_{2}, c ; h\right) \subset Q_{p}\left(a_{1}, c ; h\right)
$$

Proof. The function $h(z)$ defined by (2.13) is in the class P (cf. [8]) and satisfies $h(\bar{z})=\overline{h(z)}$. Thus

$$
\operatorname{Re} h(z)>\beta=h(-1)=p+\sum_{k=1}^{\infty}(-1)^{k}\left(\frac{\gamma+1}{\gamma+k}\right) \delta^{k}>p-\delta \geq 0 \quad(z \in U)
$$

Therefore we have the corollary by using Theorem 2.1.
If

Page 13 of 22

```
Go Back
```

Full Screen
Close
journal of inequalities in pure and applied mathematics

Corollary 2.5. Let

$$
\begin{equation*}
h(z)=p+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{\gamma z}}{1-\sqrt{\gamma z}}\right)\right)^{2} \quad(z \in U ; 0<\gamma \leq 1) . \tag{2.14}
\end{equation*}
$$

If

$$
0<a_{1}<a_{2} \text { and } a_{2} \geq \frac{16}{\pi^{2}}(\arctan \sqrt{\gamma})^{2}
$$

then

$$
Q_{p}\left(a_{2}, c ; h\right) \subset Q_{p}\left(a_{1}, c ; h\right)
$$

Analytic and Multivalent Functions Defined by Linear Operators Ding-Gong Yang, N-eng Xu and Shigeyoshi Owa
vol. 9, iss. 2, art. 50, 2008
Proof. The function $h(z)$ defined by (2.14) belongs to the class P (cf. [7]) and satisfies $h(\bar{z})=\overline{h(z)}$. Thus

$$
\operatorname{Re} h(z)>\beta=h(-1)=p-\frac{8}{\pi^{2}}(\arctan \sqrt{\gamma})^{2} \geq p-\frac{1}{2}>0 \quad(z \in U)
$$

Hence an application of Theorem 2.1 yields the desired result.
For $\gamma=1$, Corollary 2.5 leads to

Title Page
Contents
\square
Page 14 of 22

```
Go Back
```

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\begin{equation*}
\operatorname{Re} h(z)>p-1+\alpha \quad(z \in U ; \alpha<1) . \tag{2.15}
\end{equation*}
$$

If $f(z) \in Q_{p}(a, c ; h)$,

$$
\begin{equation*}
g(z) \in A_{p} \quad \text { and } \quad \frac{g(z)}{z^{p-1}} \in R(\alpha) \quad(\alpha<1) \tag{2.16}
\end{equation*}
$$

then

$$
(f * g)(z) \in Q_{p}(a, c ; h)
$$

Proof. Let $f(z) \in Q_{p}(a, c ; h)$ and suppose that

$$
\begin{equation*}
q(z)=\frac{L_{p}(a, c) f(z)}{z^{p-1}} . \tag{2.17}
\end{equation*}
$$

Analytic and Multivalent Functions Defined by Linear Operators Ding-Gong Yang, N-eng Xu and Shigeyoshi Owa
vol. 9, iss. 2, art. 50, 2008
Then

$$
\begin{equation*}
F(z)=\frac{L_{p}(a+1, c) f(z)}{L_{p}(a, c) f(z)} \prec 1-\frac{p}{a}+\frac{h(z)}{a}, \tag{2.18}
\end{equation*}
$$

$q(z) \in A$ and

$$
\begin{equation*}
\frac{z q^{\prime}(z)}{q(z)} \prec 1-p+h(z) \tag{2.19}
\end{equation*}
$$

(see (2.10) used in the proof of Theorem 2.1). By (2.15) and (2.19), we see that

$$
\begin{equation*}
q(z) \in S^{*}(\alpha) . \tag{2.20}
\end{equation*}
$$

For $g(z) \in A_{p}$, it follows from (2.17) and (2.18) that

$$
\begin{align*}
\frac{L_{p}(a+1, c)(f * g)(z)}{L_{p}(a, c)(f * g)(z)} & =\frac{g(z) * L_{p}(a+1, c) f(z)}{g(z) * L_{p}(a, c) f(z)} \\
& =\frac{\frac{g(z)}{z^{p-1}} *(q(z) F(z))}{\frac{g(z)}{z^{p-1}} * q(z)} \quad(z \in U) . \tag{2.21}
\end{align*}
$$

Title Page
Contents

Page 15 of 22

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Now, by using (2.16), (2.18), (2.20) and (2.21), an application of Lemma 1.2 leads to

$$
\frac{L_{p}(a+1, c)(f * g)(z)}{L_{p}(a, c)(f * g)(z)} \prec 1-\frac{p}{a}+\frac{h(z)}{a} .
$$

This shows that $(f * g)(z) \in Q_{p}(a, c ; h)$.

For $\alpha=0$ and $\alpha=\frac{1}{2}$, Theorem 2.7 reduces to

Corollary 2.8. Let $h(z) \in P$ and $g(z) \in A_{p}$ satisfy either
Analytic and Multivalent Functions Defined by Linear Operators Ding-Gong Yang, N-eng Xu and Shigeyoshi Owa
vol. 9, iss. 2, art. 50, 2008
(i) $\frac{g(z)}{z^{p-1}}$ is convex univalent in U and

$$
\operatorname{Re} h(z)>p-1 \quad(z \in U)
$$

or
(ii) $\frac{g(z)}{z^{p-1}} \in S^{*}\left(\frac{1}{2}\right)$ and

$$
\operatorname{Re} h(z)>p-\frac{1}{2} \quad(z \in U)
$$

If $f(z) \in Q_{p}(a, c ; h)$, then

$$
(f * g)(z) \in Q_{p}(a, c ; h) .
$$

Theorem 2.9. Let $h(z) \in P$ and

$$
\begin{equation*}
\operatorname{Re} h(z)>-\operatorname{Re} \lambda \quad(z \in U) \tag{2.22}
\end{equation*}
$$

Title Page
Contents
\square
Page 16 of 22

```
Go Back
```

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
where λ is a complex number such that $\operatorname{Re} \lambda>-p$. If $f(z) \in Q_{p}(a, c ; h)$, then the function

$$
\begin{equation*}
g(z)=\frac{\lambda+p}{z^{\lambda}} \int_{0}^{z} t^{\lambda-1} f(t) d t \tag{2.23}
\end{equation*}
$$

is also in the class $Q_{p}(a, c ; h)$.
Proof. For $f(z) \in A_{p}$ and $\operatorname{Re} \lambda>-p$, it follows from (1.7) and (2.23) that $g(z) \in$ A_{p} and

$$
\begin{align*}
(\lambda+p) L_{p}(a, c) f(z) & =\lambda L_{p}(a, c) g(z)+z\left(L_{p}(a, c) g(z)\right)^{\prime} \\
& =a L_{p}(a+1, c) g(z)+(\lambda+p-a) L_{p}(a, c) g(z) \tag{2.24}
\end{align*}
$$

If we let

$$
\begin{equation*}
q(z)=\frac{L_{p}(a+1, c) g(z)}{L_{p}(a, c) g(z)} \tag{2.25}
\end{equation*}
$$

then (2.24) and (2.25) lead to

$$
\begin{equation*}
a q(z)+\lambda+p-a=(\lambda+p) \frac{L_{p}(a, c) f(z)}{L_{p}(a, c) g(z)} . \tag{2.26}
\end{equation*}
$$

Differentiating both sides of (2.26) logarithmically and using (1.7) and (2.25), we obtain

$$
\begin{align*}
\frac{z q^{\prime}(z)}{a q(z)+\lambda+p-a} & =\frac{1}{a}\left(\frac{z\left(L_{p}(a, c) f(z)\right)^{\prime}}{L_{p}(a, c) f(z)}-\frac{z\left(L_{p}(a, c) g(z)\right)^{\prime}}{L_{p}(a, c) g(z)}\right) \\
& =\frac{L_{p}(a+1, c) f(z)}{L_{p}(a, c) f(z)}-q(z) \tag{2.27}
\end{align*}
$$

Analytic and Multivalent Functions Defined by Linear Operators Ding-Gong Yang, N-eng Xu and Shigeyoshi Owa
vol. 9, iss. 2, art. 50, 2008

Title Page
Contents

Page 17 of 22

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Let $f(z) \in Q_{p}(a, c ; h)$. Then it follows from (2.27) that

$$
\begin{equation*}
q(z)+\frac{z q^{\prime}(z)}{a q(z)+\lambda+p-a} \prec 1-\frac{p}{a}+\frac{h(z)}{a} \tag{2.28}
\end{equation*}
$$

Also, in view of (2.22), we have
(2.29) $\operatorname{Re}\left\{a\left(1-\frac{p}{a}+\frac{h(z)}{a}\right)+\lambda+p-a\right\}=\operatorname{Re} h(z)+\operatorname{Re} \lambda>0 \quad(z \in U)$.

Therefore, it follows from (2.28), (2.29) and Lemma 1.3 that

$$
q(z) \prec 1-\frac{p}{a}+\frac{h(z)}{a} .
$$

This proves that $g(z) \in Q_{p}(a, c ; h)$.
From Theorem 2.9 we have the following corollaries.
Corollary 2.10. Let $h(z)$ be defined as in Corollary 2.2. If $f(z) \in Q_{p}(a, c ; h)$ and

$$
\operatorname{Re} \lambda \geq 1-p-\left(\frac{1-A}{1-B}\right)^{\gamma} \quad(0<\gamma \leq 1 ;-1 \leq B<A \leq 1)
$$

Analytic and Multivalent Functions Defined by Linear Operators Ding-Gong Yang, N-eng Xu and Shigeyoshi Owa
vol. 9, iss. 2, art. 50, 2008

Title Page
Contents
\square
Page 18 of 22

```
Go Back
```

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
then the function $g(z)$ given by (2.23) is also in the class $Q_{p}(a, c ; h)$.

Corollary 2.12. Let $h(z)$ be defined as in Corollary 2.5. If $f(z) \in Q_{p}(a, c ; h)$ and

$$
\operatorname{Re} \lambda \geq \frac{8}{\pi^{2}}(\arctan \sqrt{\gamma})^{2}-p \quad(0<\gamma \leq 1)
$$

then the function $g(z)$ given by (2.23) is also in the class $Q_{p}(a, c ; h)$.
Theorem 2.13. Let $h(z) \in P$ and

$$
\begin{equation*}
\operatorname{Re} h(z)>-\frac{\operatorname{Re} \lambda}{\beta} \quad(z \in U) \tag{2.30}
\end{equation*}
$$

Analytic and Multivalent Functions Defined by Linear Operators Ding-Gong Yang, N -eng Xu and Shigeyoshi Owa
vol. 9, iss. 2, art. 50, 2008
where $\beta>0$ and λ is a complex number such that $\operatorname{Re} \lambda>-p \beta$. If $f(z) \in$ $Q_{p}(a, c ; h)$, then the function $g(z) \in A_{p}$ defined by

$$
\begin{equation*}
L_{p}(a, c) g(z)=\left(\frac{\lambda+p \beta}{z^{\lambda}} \int_{0}^{z} t^{\lambda-1}\left(L_{p}(a, c) f(t)\right)^{\beta} d t\right)^{\frac{1}{\beta}} \tag{2.31}
\end{equation*}
$$

is also in the class $Q_{p}(a, c ; h)$.
Proof. Let $f(z) \in Q_{p}(a, c ; h)$. From the definition of $g(z)$ we have

$$
\begin{equation*}
z^{\lambda}\left(L_{p}(a, c) g(z)\right)^{\beta}=(\lambda+p \beta) \int_{0}^{z} t^{\lambda-1}\left(L_{p}(a, c) f(t)\right)^{\beta} d t . \tag{2.32}
\end{equation*}
$$

Differentiating both sides of (2.32) logarithmically and using (1.7), we get

$$
\begin{equation*}
\lambda+\beta(a q(z)+p-a)=(\lambda+p \beta)\left(\frac{L_{p}(a, c) f(z)}{L_{p}(a, c) g(z)}\right)^{\beta} \tag{2.33}
\end{equation*}
$$

where

$$
\begin{equation*}
q(z)=\frac{L_{p}(a+1, c) g(z)}{L_{p}(a, c) g(z)} \tag{2.34}
\end{equation*}
$$

Title Page
Contents

$\mathbf{4 4}$	
$\mathbf{4}$	
Page 19 of 22	
Go Back	

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Also, differentiating both sides of (2.33) logarithmically and using (1.7), we arrive at

$$
\begin{equation*}
q(z)+\frac{z q^{\prime}(z)}{a \beta q(z)+\lambda+\beta(p-a)}=\frac{L_{p}(a+1, c) f(z)}{L_{p}(a, c) f(z)} \prec 1-\frac{p}{a}+\frac{h(z)}{a} \tag{2.35}
\end{equation*}
$$

Noting that (2.30) and $\beta>0$, we see that

$$
\begin{align*}
\operatorname{Re}\left\{a \beta\left(1-\frac{p}{a}+\frac{h(z)}{a}\right)+\lambda\right. & +\beta(p-a)\} \tag{2.36}\\
& =\beta \operatorname{Re} h(z)+\operatorname{Re} \lambda>0 \quad(z \in U)
\end{align*}
$$

Analytic and Multivalent Functions Defined by Linear Operators Ding-Gong Yang, N-eng Xu and Shigeyoshi Owa
vol. 9, iss. 2, art. 50, 2008

Now, in view of (2.34), (2.35) and (2.36), an application of Lemma 1.3 yields

$$
\frac{L_{p}(a+1, c) g(z)}{L_{p}(a, c) g(z)} \prec 1-\frac{p}{a}+\frac{h(z)}{a},
$$

that is, $g(z) \in Q_{p}(a, c ; h)$.
Corollary 2.14. Let $h(z)$ be defined as in Corollary 2.2. If $f(z) \in Q_{p}(a, c ; h)$ and

$$
\operatorname{Re} \lambda \geq \beta\left(1-p-\left(\frac{1-A}{1-B}\right)^{\gamma}\right) \quad(0<\gamma \leq 1 ;-1 \leq B<A \leq 1 ; \beta>0)
$$

then the function $g(z) \in A_{p}$ defined by (2.31) is also in the class $Q_{p}(a, c ; h)$.

Title Page

Contents

$\boldsymbol{4}$	
$\boldsymbol{4}$	
Page 20 of 22	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] B.C. CARLSON And D.B. SHAFFER, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15 (1984), 737-745.
[2] J. DZIOK and H.M. SRIVASTAVA, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103 (1999), 1-13.
[3] R.M. GOEL and N.S. SOHI, A new criterion for p-valent functions, Proc. Amer. Math. Soc., 78 (1980), 353-357.
[4] Y.C. KIM AND H.M. SRIVASTAVA, Fractional integral and other linear operators associated with the Gaussian hypergeometric function, Complex Variables Theory Appl., 34 (1997), 293-312.
[5] JIN-LIN LIU AND S. OWA, On a class of multivalent functions involving certain linear operator, Indian J. Pure Appl. Math., 33 (2002), 1713-1722.
[6] S.S. MILLER AND P.T. MOCANU, On some classes of first order differential subordinations, Michigan Math. J., 32 (1985), 185-195.
[7] F. RØNNING, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118 (1993), 189-196.
[8] S. RUSCHEWEYH, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109-115.
[9] S. RUSCHEWEYH, Convolutions in Geometric Function Theory, Les Presses de 1'Université de Montréal, Montréal, 1982.
[10] H. SAITOH, A linear operator and its applications of first order differential subordinations, Math. Japon., 44 (1996), 31-38.

Analytic and Multivalent Functions Defined by Linear Operators Ding-Gong Yang, N -eng Xu and Shigeyoshi Owa
vol. 9, iss. 2, art. 50, 2008

Title Page
Contents

Page 21 of 22

```
Go Back
```

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
[11] N-ENG XU AND DING-GONG YANG, An application of differential subordinations and some criteria for starlikeness, Indian J. Pure Appl. Math., 36 (2005), 541-556.
[12] DING-GONG YANG, On p-valent starlike functions, Northeast. Math. J., 5 (1989), 263-271.

Analytic and Multivalent Functions Defined by Linear Operators Ding-Gong Yang, N-eng Xu and Shigeyoshi Owa
vol. 9, iss. 2, art. 50, 2008

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 22 of 22	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

