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ABSTRACT. A generalization of the Stolarsky means to the case of several variables is pre-
sented. The new means are derived from the logarithmic mean of several variables studied in
[9]. Basic properties and inequalities involving means under discussion are included. Limit the-
orems for these means with the underlying measure being the Dirichlet measure are established.
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1. I NTRODUCTION AND NOTATION

In 1975 K.B. Stolarsky [16] introduced a two-parameter family of bivariate means named in
mathematical literature as the Stolarsky means. Some authors call these means the extended
means (see, e.g., [6, 7]) or the difference means (see [10]). Forr, s ∈ R and two positive
numbersx andy (x 6= y) they are defined as follows [16]

(1.1) Er,s(x, y) =



[
s

r

xr − yr

xs − ys

] 1
r−s

, rs(r − s) 6= 0;

exp

(
−1

r
+

xr ln x− yr ln y

xr − yr

)
, r = s 6= 0;[

xr − yr

r(ln x− ln y)

] 1
r

, r 6= 0, s = 0;

√
xy, r = s = 0.

The meanEr,s(x, y) is symmetric in its parametersr ands and its variablesx andy as well.
Other properties ofEr,s(x, y) include homogeneity of degree one in the variablesx andy and
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2 EDWARD NEUMAN

monotonicity inr ands. It is known thatEr,s increases with an increase in eitherr or s (see
[6]). It is worth mentioning that the Stolarsky mean admits the following integral representation
([16])

(1.2) ln Er,s(x, y) =
1

s− r

∫ s

r

ln It dt

(r 6= s), whereIt ≡ It(x, y) = Et,t(x, y) is the identric mean of ordert. J. Pěcaríc and V. Šimíc
[15] have pointed out that

(1.3) Er,s(x, y) =

[∫ 1

0

(
txs + (1− t)ys

) r−s
s dt

] 1
r−s

(s(r − s) 6= 0). This representation shows that the Stolarsky means belong to a two-parameter
family of means studied earlier by M.D. Tobey [18]. A comparison theorem for the Stolarsky
means have been obtained by E.B. Leach and M.C. Sholander in [7] and independently by Zs.
Páles in [13]. Other results for the means (1.1) include inequalities, limit theorems and more
(see, e.g., [17, 4, 6, 10, 12]).

In the past several years researchers made an attempt to generalize Stolarsky means to several
variables (see [6, 18, 15, 8]). Further generalizations include so-called functional Stolarsky
means. For more details about the latter class of means the interested reader is referred to [14]
and [11].

To facilitate presentation let us introduce more notation. In what follows, the symbolEn−1

will stand for the Euclidean simplex, which is defined by

En−1 =
{
(u1, . . . , un−1) : ui ≥ 0, 1 ≤ i ≤ n− 1, u1 + · · ·+ un−1 ≤ 1

}
.

Further, letX = (x1, . . . , xn) be ann-tuple of positive numbers and letXmin = min(X),
Xmax = max(X). The following

(1.4) L(X) = (n− 1)!

∫
En−1

n∏
i=1

xui
i du = (n− 1)!

∫
En−1

exp(u · Z) du

is the special case of the logarithmic mean ofX which has been introduced in [9]. Hereu =
(u1, . . . , un−1, 1 − u1 − · · · − un−1) where(u1, . . . , un−1) ∈ En−1, du = du1 . . . dun−1, Z =
ln(X) = (ln x1, . . . , ln xn), andx · y = x1y1 + · · · + xnyn is the dot product of two vectorsx
andy. Recently J. Merikowski [8] has proposed the following generalization of the Stolarsky
meanEr,s to several variables

(1.5) Er,s(X) =

[
L(Xr)

L(Xs)

] 1
r−s

(r 6= s), whereXr = (xr
1, . . . , x

r
n). In the paper cited above, the author did not prove that

Er,s(X) is the mean ofX, i.e., that

(1.6) Xmin ≤ Er,s(X) ≤ Xmax

holds true. Ifn = 2 andrs(r − s) 6= 0 or if r 6= 0 ands = 0, then (1.5) simplifies to (1.1) in
the stated cases.

This paper deals with a two-parameter family of multivariate means whose prototype is given
in (1.5). In order to define these means let us introduce more notation. Byµ we will denote a
probability measure onEn−1. The logarithmic meanL(µ; X) with the underlying measureµ is
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STOLARSKY MEANS OFSEVERAL VARIABLES 3

defined in [9] as follows

(1.7) L(µ; X) =

∫
En−1

n∏
i=1

xui
i µ(u) du =

∫
En−1

exp(u · Z)µ(u) du.

We define

(1.8) Er,s(µ; X) =


[
L(µ; Xr)

L(µ; Xs)

] 1
r−s

, r 6= s

exp

[
d

dr
lnL(µ; Xr)

]
, r = s.

Let us note that forµ(u) = (n − 1)!, the Lebesgue measure onEn−1, the first part of (1.8)
simplifies to (1.5).

In Section 2 we shall prove thatEr,s(µ; X) is the mean value ofX, i.e., it satisfies inequalities
(1.6). Some elementary properties of this mean are also derived. Section 3 deals with the limit
theorems for the new mean, with the probability measure being the Dirichlet measure. The
latter is denoted byµb, whereb = (b1, . . . , bn) ∈ Rn

+, and is defined as [2]

(1.9) µb(u) =
1

B(b)

n∏
i=1

ubi−1
i ,

whereB(·) is the multivariate beta function,(u1, . . . , un−1) ∈ En−1, andun = 1− u1 − · · · −
un−1. In the Appendix we shall prove that under certain conditions imposed on the parameters
r ands, the functionEr−s

r,s (x, y) is strictly totally positive as a function ofx andy.

2. ELEMENTARY PROPERTIES OF Er,s(µ; X)

In order to prove thatEr,s(µ; X) is a mean value we need the following version of the Mean-
Value Theorem for integrals.

Proposition 2.1. Let α := Xmin < Xmax =: β and letf, g ∈ C
(
[α, β]

)
with g(t) 6= 0 for all

t ∈ [α, β]. Then there existsξ ∈ (α, β) such that

(2.1)

∫
En−1

f(u ·X)µ(u) du∫
En−1

g(u ·X)µ(u) du
=

f(ξ)

g(ξ)
.

Proof. Let the numbersγ andδ and the functionφ be defined in the following way

γ =

∫
En−1

g(u ·X)µ(u) du, δ =

∫
En−1

f(u ·X)µ(u) du,

φ(t) = γf(t)− δg(t).

Letting t = u ·X and, next, integrating both sides against the measureµ, we obtain∫
En−1

φ(u ·X)µ(u) du = 0.

On the other hand, application of the Mean-Value Theorem to the last integral gives

φ(c ·X)

∫
En−1

µ(u) du = 0,
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4 EDWARD NEUMAN

wherec = (c1, . . . , cn−1, cn) with (c1, . . . , cn−1) ∈ En−1 andcn = 1− c1 − · · · − cn−1. Letting
ξ = c ·X and taking into account that∫

En−1

µ(u) du = 1

we obtainφ(ξ) = 0. This in conjunction with the definition ofφ gives the desired result (2.1).
The proof is complete. �

The author is indebted to Professor Zsolt Páles for a useful suggestion regarding the proof of
Proposition 2.1.

For later use let us introduce the symbolE (p)
r,s (µ; X) (p 6= 0), where

(2.2) E (p)
r,s (µ; X) =

[
Er,s(µ; Xp)

] 1
p .

We are in a position to prove the following.

Theorem 2.2.LetX ∈ Rn
+ and letr, s ∈ R. Then

(i) Xmin ≤ Er,s(µ; X) ≤ Xmax,
(ii) Er,s(µ; λX) = λEr,s(µ; X), λ > 0, (λX := (λx1, . . . , λxn)),

(iii) Er,s(µ; X) increases with an increase in eitherr ands,

(iv) ln Er,s(µ; X) =
1

r − s

∫ r

s
ln Et,t(µ; X) dt , r 6= s,

(v) E (p)
r,s (µ; X) = Epr,ps(µ; X),

(vi) Er,s(µ; X)E−r,−s(µ; X−1) = 1, (X−1 := (1/x1, . . . , 1/xn)),
(vii) Es−r

r,s (µ; X) = Ep−r
r,p (µ; X)Es−p

p,s (µ; X).

Proof of (i). Assume first thatr 6= s. Making use of (1.8) and (1.7) we obtain

Er,s(µ; X) =

[∫
En−1

exp
[
r(u · Z)

]
µ(u) du∫

En−1
exp

[
s(u · Z)

]
µ(u) du

] 1
r−s

.

Application of (2.1) withf(t) = exp(rt) andg(t) = exp(st) gives

Er,s(µ; X) =

[
exp

[
r(c · Z)

]
exp

[
s(c · Z)

]] 1
r−s

= exp(c · Z),

wherec = (c1, . . . , cn−1, cn) with (c1, . . . , cn−1) ∈ En−1 andcn = 1 − c1 − · · · − cn−1. Since
c · Z = c1 ln x1 + · · · + cn ln xn, ln Xmin ≤ c · Z ≤ ln Xmax. This in turn implies that
Xmin ≤ exp(c · Z) ≤ Xmax. This completes the proof of (i) whenr 6= s. Assume now that
r = s. It follows from (1.8) and (1.7) that

ln Er,r(µ; X) =

[∫
En−1

(u · Z) exp
[
r(u · Z)

]
µ(u) du∫

En−1
exp

[
r(u · Z)

]
µ(u) du

]
.

Application of (2.1) to the right side withf(t) = t exp(rt) andg(t) = exp(rt) gives

ln Er,r(µ; X) =

[
(c · Z) exp

[
r(c · Z)

]
exp

[
r(c · Z)

] ]
= c · Z.

Sinceln Xmin ≤ c · Z ≤ ln Xmax, the assertion follows. This completes the proof of (i).

Proof of (ii). The following result

(2.3) L
(
µ; (λx)r

)
= λrL(µ; Xr)
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STOLARSKY MEANS OFSEVERAL VARIABLES 5

(λ > 0) is established in [9, (2.6)]. Assume thatr 6= s. Using (1.8) and (2.3) we obtain

Er,s(µ; λx) =

[
λrL(µ; Xr)

λsL(µ; Xs)

] 1
r−s

= λEr,s(µ; X).

Consider now the case whenr = s 6= 0. Making use of (1.8) and (2.3) we obtain

Er,r(µ; λX) = exp

[
d

dr
lnL

(
µ; (λX)r

)]
= exp

[
d

dr
ln
(
λrL(µ; Xr)

)]
= exp

[
d

dr

(
r ln λ + lnL(µ; Xr)

)]
= λEr,r(µ; X).

Whenr = s = 0, an easy computation shows that

(2.4) E0,0(µ; X) =
n∏

i=1

xwi
i ≡ G(w; X),

where

(2.5) wi =

∫
En−1

uiµ(u) du

(1 ≤ i ≤ n) are called the natural weights or partial moments of the measureµ andw =
(w1, . . . , wn). Sincew1 + · · · + wn = 1, E0,0(µ; λX) = λE0,0(µ; X). The proof of (ii) is
complete.

Proof of (iii). In order to establish the asserted property, let us note that the functionr →
exp(rt) is logarithmically convex (log-convex) inr. This in conjunction with Theorem B.6 in
[2], implies that a functionr → L(µ; Xr) is also log-convex inr. It follows from (1.8) that

ln Er,s(µ; X) =
lnL(µ; Xr)− lnL(µ; Xs)

r − s
.

The right side is the divided difference of order one atr ands. Convexity oflnL(µ; Xr) in
r implies that the divided difference increases with an increase in eitherr ands. This in turn
implies thatln Er,s(µ; X) has the same property. Hence the monotonicity property of the mean
Er,s in its parameters follows. Now letr = s. Then (1.8) yields

ln Er,r(µ; X) =
d

dr

[
lnL(µ; Xr)

]
.

SincelnL(µ; Xr) is convex inr, its derivative with respect tor increases with an increase inr.
This completes the proof of (iii).

Proof of (iv). Let r 6= s. It follows from (1.8) that

1

r − s

∫ r

s

ln Et,t(µ; X) dt =
1

r − s

∫ r

s

d

dt

[
lnL(µ; X t)

]
dt

=
1

r − s

[
lnL(µ; Xr)− lnL(µ; Xs)

]
= ln Er,s(µ; X).
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6 EDWARD NEUMAN

Proof of (v). Let r 6= s. Using (2.2) and (1.8) we obtain

E (p)
r,s (µ; X) =

[
Er,s(µ; Xp)

] 1
p =

[
L(Xpr)

L(Xps)

] 1
p(r−s)

= Epr,ps(µ; X).

Assume now thatr = s 6= 0. Making use of (2.2), (1.8) and (1.7) we have

E (p)
r,r (µ; X) = exp

[
1

p

d

dr
lnL(µ; Xpr)

]
= exp

[
1

L(µ; Xpr)

∫
En−1

(u · Z) exp
[
pr(u · Z)

]
µ(u) du

]
= Epr,pr(µ; X).

The case whenr = s = 0 is trivial becauseE0,0(µ; X) is the weighted geometric mean ofX.

Proof of (vi). Here we use (v) withp = −1 to obtainEr,s(µ; X−1)−1 = E−r,−s(µ; X). Letting
X := X−1 we obtain the desired result.

Proof of (vii). There is nothing to prove when eitherp = r or p = s or r = s. In other cases we
use (1.8) to obtain the asserted result. This completes the proof. �

In the next theorem we give some inequalities involving the means under discussion.

Theorem 2.3.Let r, s ∈ R. Then the following inequalities

(2.6) Er,r(µ; X) ≤ Er,s(µ; X) ≤ Es,s(µ; X)

are valid providedr ≤ s. If s > 0, then

(2.7) Er−s,0(µ; X) ≤ Er,s(µ; X).

Inequality(2.7) is reversed ifs < 0 and it becomes an equality ifs = 0. Assume thatr, s > 0
and letp ≤ q. Then

(2.8) E (p)
r,s (µ; X) ≤ E (q)

r,s (µ; X)

with the inequality reversed ifr, s < 0.

Proof. Inequalities (2.6) and (2.7) follow immediately from Part (iii) of Theorem 2.2. For the
proof of (2.8), letr, s > 0 and letp ≤ q. Thenpr ≤ qr andps ≤ qs. Applying Parts (v) and
(iii) of Theorem 2.2, we obtain

E (p)
r,s (µ; X) = Epr,ps(µ; X) ≤ Eqr,qs(µ; X) = E (q)

r,s (µ; X).

Whenr, s < 0, the proof of (2.8) goes along the lines introduced above, hence it is omitted.
The proof is complete. �

3. THE M EAN Er,s(b; X)

An important probability measure onEn−1 is the Dirichlet measureµb(u), b ∈ Rn
+ (see (1.9)).

Its role in the theory of special functions is well documented in Carlson’s monograph [2]. When
µ = µb, the mean under discussion will be denoted byEr,s(b; X). The natural weightswi (see
(2.5)) ofµb are given explicitly by

(3.1) wi = bi/c

J. Inequal. Pure and Appl. Math., 6(2) Art. 30, 2005 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


STOLARSKY MEANS OFSEVERAL VARIABLES 7

(1 ≤ i ≤ n), wherec = b1+· · ·+bn (see [2, (5.6-2)]). For later use we definew = (w1, . . . , wn).
Recall that the weighted Dresher meanDr,s(p; X) of order(r, s) ∈ R2 of X ∈ Rn

+ with weights
p = (p1, . . . , pn) ∈ Rn

+ is defined as

(3.2) Dr,s(p; X) =



[∑n
i=1 pix

r
i∑n

i=1 pixs
i

] 1
r−s

, r 6= s

exp

[∑n
i=1 pix

r
i ln xi∑n

i=1 pixr
i

]
, r = s

(see, e.g., [1, Sec. 24]).
In this section we present two limit theorems for the meanEr,s with the underlying mea-

sure being the Dirichlet measure. In order to facilitate presentation we need a concept of the
Dirichlet average of a function. Following [2, Def. 5.2-1] letΩ be a convex set inC and let
Y = (y1, . . . , yn) ∈ Ωn, n ≥ 2. Further, letf be a measurable function onΩ. Define

(3.3) F (b; Y ) =

∫
En−1

f(u · Y )µb(u) du.

ThenF is called the Dirichlet average off with variablesY = (y1, . . . , yn) and parameters
b = (b1, . . . , bn). We need the following result [2, Ex. 6.3-4]. LetΩ be an open circular disk in
C, and letf be holomorphic onΩ. Let Y ∈ Ωn, c ∈ C, c 6= 0,−1, . . ., andw1 + · · ·+ wn = 1.
Then

(3.4) lim
c→0

F (cw; Y ) =
n∑

i=1

wif(yi),

wherecw = (cw1, . . . , cwn).
We are in a position to prove the following.

Theorem 3.1.Letw1 > 0, . . . , wn > 0 with w1 + · · ·+ wn = 1. If r, s ∈ R andX ∈ Rn
+, then

lim
c→0+

Er,s(cw; X) = Dr,s(w; X).

Proof. We use (1.7) and (3.3) to obtainL(cw; X) = F (cw; Z), whereZ = ln X = (ln x1, . . . , ln xn).
Making use of (3.4) withf(t) = exp(t) andY = ln X we obtain

lim
c→0+

L(cw; X) =
n∑

i=1

wixi.

Hence

(3.5) lim
c→0+

L(cw; Xr) =
n∑

i=1

wix
r
i .

Assume thatr 6= s. Application of (3.5) to (1.8) gives

lim
c→0+

Er,s(cw; X) = lim
c→0+

[
L(cw; Xr)

L(cw; Xs)

] 1
r−s

=

[∑n
i=1 wix

r
i∑n

i=1 wixs
i

] 1
r−s

= Dr,s(w; X).

Let r = s. Application of (3.4) withf(t) = t exp(rt) gives

lim
c→0+

F (cw; Z) =
n∑

i=1

wizi exp(rzi) =
n∑

i=1

wi(ln xi)x
r
i .
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8 EDWARD NEUMAN

This in conjunction with (3.5) and (1.8) gives

lim
c→0+

Er,r(cw; X) = lim
c→0+

exp

[
F (cw; Z)

L(cw; Xr)

]
= exp

[∑n
i=1 wix

r
i ln xi∑n

i=1 wixr
i

]
= Dr,r(w; X).

This completes the proof. �

Theorem 3.2.Under the assumptions of Theorem 3.1 one has

(3.6) lim
c→∞

Er,s(cw; X) = G(w; X).

Proof. The following limit (see [9, (4.10)])

(3.7) lim
c→∞

L(cw; X) = G(w; X)

will be used in the sequel. We shall establish first (3.6) whenr 6= s. It follows from (1.8) and
(3.7) that

lim
c→∞

Er,s(cw; X) = lim
c→∞

[
L(cw; Xr)

L(cw; Xs)

] 1
r−s

=
[
G(w; X)r−s

] 1
r−s = G(w; X).

Assume thatr = s. We shall prove first that

(3.8) lim
c→∞

F (cw; Z) =
[
ln G(w; X)

]
G(w; X)r,

whereF is the Dirichlet average off(t) = t exp(rt). Averaging both sides of

f(t) =
∞∑

m=0

rm

m!
tm+1

we obtain

(3.9) F (cw; Z) =
∞∑

m=0

rm

m!
Rm+1(cw; Z),

whereRm+1 stands for the Dirichlet average of the power functiontm+1. We will show that the
series in (3.9) converges uniformly in0 < c < ∞. This in turn implies further that asc → ∞,
we can proceed to the limit term by term. Making use of [2, 6.2-24)] we obtain

|Rm+1(cw; Z)| ≤ |Z|m+1, m ∈ N,

where|Z| = max
{
| ln xi| : 1 ≤ i ≤ n

}
. By the WeierstrassM test the series in (3.9) converges

uniformly in the stated domain. Taking limits on both sides of (3.9) we obtain with the aid of
(3.4)

lim
c→∞

F (cw; Z) =
∞∑

m=0

rm

m!
lim
c→∞

Rm+1(cw; Z)

=
∞∑

m=0

rm

m!

(
n∑

i=1

wizi

)m+1

=
[
ln G(w; X)

] ∞∑
m=0

rm

m!

[
ln G(w; X)

]m
=
[
ln G(w; X)

] ∞∑
m=0

1

m!

[
ln G(w; X)r

]m
=
[
ln G(w; X)

]
G(w; X)r.
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STOLARSKY MEANS OFSEVERAL VARIABLES 9

This completes the proof of (3.8). To complete the proof of (3.6) we use (1.8), (3.7), and (3.8)
to obtain

lim
c→∞

ln Er,r(µ; X) = lim
c→∞

F (cw; Z)

L(cw; Xr)
=

[
ln G(w; X)

]
G(w; X)r

G(w; X)r
= ln G(w; X).

Hence the assertion follows. �

APPENDIX A. TOTAL POSITIVITY OF Er−s
r,s (x, y)

A real-valued functionh(x, y) of two real variables is said to be strictly totally positive on
its domain if everyn× n determinant with elementsh(xi, yj), wherex1 < x2 < · · · < xn and
y1 < y2 < · · · < yn is strictly positive for everyn = 1, 2, . . . (see [5]).

The goal of this section is to prove that the functionEr−s
r,s (x, y) is strictly totally positive as a

function ofx andy provided the parametersr ands satisfy a certain condition. For later use we
recall the definition of theR-hypergeometric functionR−α(β, β′; x, y) of two variablesx, y > 0
with parametersβ, β′ > 0

(A1) R−α(β, β′; x, y) =
Γ(β + β′)

Γ(β)Γ(β′)

∫ 1

0

uβ−1(1− u)β′−1
[
ux + (1− u)y

]−α
du

(see [2, (5.9-1)]).

Proposition A.1. Let x, y > 0 and letr, s ∈ R. If |r| < |s|, thenEr−s
r,s (x, y) is strictly totally

positive onR2
+.

Proof. Using (1.3) and (A1) we have

(A2) Er−s
r,s (x, y) = R r−s

s
(1, 1; xs, ys)

(s(r − s) 6= 0). B. Carlson and J. Gustafson [3] have proven thatR−α(β, β′; x, y) is strictly
totally positive inx andy providedβ, β′ > 0 and0 < α < β + β′. Letting α = 1 − r/s,
β = β′ = 1, x := xs, y := ys, and next, using (A2) we obtain the desired result. �

Corollary A.2. Let 0 < x1 < x2, 0 < y1 < y2 and let the real numbersr and s satisfy the
inequality|r| < |s|. If s > 0, then

(A3) Er,s(x1, y1)Er,s(x2, y2) < Er,s(x1, y2)Er,s(x2, y1).

Inequality (A3) is reversed ifs < 0.

Proof. Let aij = Er−s
r,s (xi, yj) (i, j = 1, 2). It follows from Proposition A.1 thatdet

(
[aij]

)
> 0

provided|r| < |s|. This in turn implies[
Er,s(x1, y1)Er,s(x2, y2)

]r−s
>
[
Er,s(x1, y2)Er,s(x2, y1)

]r−s
.

Assume thats > 0. Then the inequality|r| < s impliesr − s < 0. Hence (A3) follows when
s > 0. The case whens < 0 is treated in a similar way. �
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[14] C.E.M. PEARCE, J. PĚCARIĆ AND V. ŠIMIĆ, Functional Stolarsky means,Math. Inequal.
Appl.,2 (1999), 479–489.
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