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ABSTRACT. A generalization of the Stolarsky means to the case of several variables is pre-
sented. The new means are derived from the logarithmic mean of several variables studied in
[Q]. Basic properties and inequalities involving means under discussion are included. Limit the-
orems for these means with the underlying measure being the Dirichlet measure are established.
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1. INTRODUCTION AND NOTATION

In 1975 K.B. Stolarskyi[16] introduced a two-parameter family of bivariate means named in
mathematical literature as the Stolarsky means. Some authors call these means the extended
means (see, e.gl/[6] 7]) or the difference means (see [10]).r,5oe R and two positive
numberse andy (z # y) they are defined as follows [16]

( 1

[f:{:—y}%: rs(r—s) # 0;
rad—ys
1 "Inx —y"1
exp(——+x nf yr ny)’ =540
(1.1) B s(z,y) = " vy
1
:L,r_yr -
A 0, s=0;
[r(lnx—lny)] ’ r#0,s=0;
(V/ZY; r=s=0.

The meank, ;(x,y) is symmetric in its parametersand s and its variables: andy as well.
Other properties of, ;(z, y) include homogeneity of degree one in the variablesxdy and
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2 EDWARD NEUMAN

monotonicity inr ands. It is known thatE, ; increases with an increase in eitheor s (see
[6]). Itis worth mentioning that the Stolarsky mean admits the following integral representation

([161])

1 S
(1.2) InFE,  (z,y) = / In I, dt
s—r /),

(r # s), wherel, = I,(z,y) = F;(x,y) is the identric mean of order J. P&aric and V. Sim¢
[15] have pointed out that

T—S

(1.3) B,y(z,y) = [ /O 1 (te* + (1 —t)y") = dt}

(s(r — s) # 0). This representation shows that the Stolarsky means belong to a two-parameter
family of means studied earlier by M.D. Tobey [18]. A comparison theorem for the Stolarsky
means have been obtained by E.B. Leach and M.C. Sholander in [7] and independently by Zs.
Péles in[[13]. Other results for the meahs(1.1) include inequalities, limit theorems and more
(see, e.q./[117,4,6,10,12]).

In the past several years researchers made an attempt to generalize Stolarsky means to several
variables (see [6, 18, 15] 8]). Further generalizations include so-called functional Stolarsky
means. For more details about the latter class of means the interested reader is referred to [14]
and [11].

To facilitate presentation let us introduce more notation. In what follows, the syfjhal
will stand for the Euclidean simplex, which is defined by

En—1={(U17~--7Un—1)1Uz‘207 1<i<n-—1, U1+"'+Un—1§1}-

Further, letX = (zi,...,z,) be ann-tuple of positive numbers and Iéf,,;, = min(X),
Xmax = max(X). The following

(1.4) L(X) = (n—l)!/ quj du = (n—l)!/ exp(u - Z) du

En_1 324 En_1
is the special case of the logarithmic meanXofwhich has been introduced inl [9]. Hete=
(ul, ceyUp_1, L —up — - — un,l) Where(ul, o ,Unfl) e E,_1,du=duy...du,_1, Z =
In(X) = (Inxzy,...,Inz,), andz - y = 1y, + - - - + x,y, IS the dot product of two vectors
andy. Recently J. Merikowski [8] has proposed the following generalization of the Stolarsky
meank, , to several variables

L(XT)} -

(L5) Bru(X) = | 75

(r # s), whereX” = (z7,...,27). Inthe paper cited above, the author did not prove that

rrn

E, (X) is the mean ofX, i.e., that
(16) Xrnin S ET,S(X) S Xmax

holds true. Ifn = 2 andrs(r — s) # 0 or if r # 0 ands = 0, then [1.b) simplifies tq (I}1) in
the stated cases.

This paper deals with a two-parameter family of multivariate means whose prototype is given
in (.5). In order to define these means let us introduce more notatiop. vy will denote a
probability measure of,, ;. The logarithmic meart (i; X') with the underlying measurpeis
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STOLARSKY MEANS OF SEVERAL VARIABLES 3

defined in[[9] as follows

(1.7) L(p; X) = /E H ) pu(u) du = /E exp(u - Z)p(u) du.
We define

Ly X’”)} = .

x| 7
(1.8) Ers(p; X) = {a“’ X*)

d
exp {% lnﬁ(u;XT)] , T =Ss.

Let us note that fop.(u) = (n — 1)!, the Lebesgue measure @h _1, the first part of [(1.8)
simplifies to [(1.5).

In Sectior] 2 we shall prove th&t ,(1; X) is the mean value oX, i.e., it satisfies inequalities
(1.6). Some elementary properties of this mean are also derived. Section 3 deals with the limit
theorems for the new mean, with the probability measure being the Dirichlet measure. The
latter is denoted by, whereb = (by,...,b,) € R, and is defined as[2]

(1.9) (u) = BL H

whereB(-) is the multivariate beta functiofiy, ..., u,—1) € E,—1,andu, =1 —u; — -+ —
u,—1. In the Appendix we shall prove that under certain conditions imposed on the parameters
r ands, the functionf;*(x, y) is strictly totally positive as a function af andy.

2. ELEMENTARY PROPERTIES OF &, (u; X)

In order to prove thaf, ;(x; X) is a mean value we need the following version of the Mean-
Value Theorem for integrals.

Proposition 2.1. Leta := X5, < Xnax =: fandletf, g € C([a,ﬁ}) with g(t) # 0 for all
t € [a, f]. Then there exists € («, 5) such that

on Ji S0 Xty dn_ p(e

Ji 9w X)p(u)du — g(&)’

Proof. Let the numbers andé and the functior be defined in the following way

1= [ et Xutdn 5= [ Xou) du

o(t) =7 f(t) — dg(t).
Lettingt = « - X and, next, integrating both sides against the megsune obtain
d(u- X)pu(u) du = 0.
En—l

On the other hand, application of the Mean-Value Theorem to the last integral gives

olc- X) / () duu = 0,
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4 EDWARD NEUMAN

wherec = (¢, ...,¢h1,¢,) With (¢1,...,¢,-1) € E,_1andc, =1—¢; —--- — ¢,_1. Letting
¢ = ¢+ X and taking into account that

/Enl p(u)du =1

we obtaing(£) = 0. This in conjunction with the definition af gives the desired resuft (2.1).
The proof is complete. O

The author is indebted to Professor Zsolt Pales for a useful suggestion regarding the proof of
Propositiorj 2.11.

For later use let us introduce the symlﬁéﬂ (1; X) (p # 0), where
(2.2) ED (1 X) = [Ea(; X7)]7.
We are in a position to prove the following.

Theorem 2.2.Let X € R" and letr,s € R. Then

(I) Xmin S gr,s(u; X) S Xmaxu
(i) Es(p; AX) =X s(1; X)), A > 0, (AX := (Azy, ..., Axy)),
(iii) &, s(p; X) increases with an increase in eitheands,

. 1,
(iv) In& s(p; X) = p— Jin& (p; X)dt v # s,

(V) E (115 X) = Eprps (115 X)),
V) Ers(p; X)Er (s X71) = 1, (X7 o= (121, .., 1/ @),
(Vi) &5 (s X) = &8 (1 X)E P (ks X).

Proof of (i). Assume first that # s. Making use of[(1.8) and (1].7) we obtain

fEn, exp |7 [ (u- Z)},u(u) du | ™
Ers(p; X) =
fE exp [s(u- 2)] p(u) du
Application of (2.1) withf (¢) = exp(rt) andg(t) = exp(st) gives
exp [r(c . Z)} e
Ers(; X) = | —F—F———3 = - Z),
) (15 X) pr [S(C-Z)] exp(c- 2)
wherec = (¢1, ..., ¢p_1,¢,) With (¢4, ..., ¢p1) € Epyande, =1 —¢; — -+ — ¢,—1. Since

c-Z =clmey+ -+, lnz, n X, < ¢ Z < InXpae This in turn implies that
Xmin < exp(c- Z) < Xuax- This completes the proof of (i) when# s. Assume now that
r = s. It follows from (1.8) and[(1]7) that

Jp, (- Z)exp [r(u- Z)]p(u) du ]
[, exp [7(u- Z)] p(w) du '
Application of (2.1) to the right side witli(¢) = ¢t exp(rt) andg(t) =
(¢ Z)exp [r(c- 2)]
exp [r(c- Z)]
Sinceln X, < ¢+ Z < In X,,,.x, the assertion follows. This completes the proof of (i).

&, (k; )—[
xp(rt) gives

=c-Z.

Iné&. (1 X) =

Proof of (ii). The following result
(2.3) L(p; (A)") = N L(u; X7)
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(A > 0) is established ir [9, (2.6)]. Assume tha$ s. Using [1.8) and(Z2]3) we obtain

XL X)] 7
_— =\ 1 X).
VExs| | = eetX)

Consider now the case when= s # 0. Making use of[(1.8) and (2.3) we obtain

Ers(p; Ax) = [

[ d
Err(3 AX) = exp | In £ (p; (AX)T)}

[ d
=exp | o In (A"L(p; XT))}

= exp %(rln)\+1n£(u;Xr))} =N (1 X).

Whenr = s = 0, an easy computation shows that

n

(2.4) ool X) = [ [ = = G(w; X),
=1

where

(2.5) w; :/ wipn(u) du
En—l

(1 < i < n) are called the natural weights or partial moments of the megsuaed w =
(wy,...,wy,). Sincew; + --- +w, = 1, &o(p; AX) = Aoo(; X). The proof of (i) is
complete.

Proof of (iii). In order to establish the asserted property, let us note that the functien
exp(rt) is logarithmically convex (log-convex) in. This in conjunction with Theorem B.6 in
[2], implies that a functiom — L(u; X") is also log-convex im. It follows from (1.8) that
1 X7 —1 ; X°
&, (i X) — n L X7) —In L X°)

r—s

The right side is the divided difference of order one-ands. Convexity ofln £(u; X™) in

r implies that the divided difference increases with an increase in eitheds. This in turn
implies thatln &, ;(1; X) has the same property. Hence the monotonicity property of the mean
&, in its parameters follows. Now let= s. Then [1.8) yields

d
Iné&,(u;X)= o [InL(; X7)].

Sinceln L£(u; X7) is convex inr, its derivative with respect toincreases with an increaserin
This completes the proof of (iii).

Proof of (iv). Let r # s. It follows from (1.8) that

T 1 T'd
/Slngt’t(M;X)dt:r—s/s %[lnﬁ(,u;Xt)}dt

r—s

_ ! [InL(u X7) = In L(p; X*)]

r—s

=& (u; X).
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6 EDWARD NEUMAN

Proof of (v). Letr # s. Using [2.2) and (1]8) we obtain

LX) 7o
EEXPSH = Eprps(11; X).

Assume now that = s # 0. Making use of[(2.2)](1]8) and (1.7) we have

EX)(p; X) = [&,S(M;X”)}% = [

T

EX) (1; X) = exp E d% In £ (ys; X”’")]
_
L(p; X*)
= gpr,pr(M X)-
The case when = s = 0 is trivial because& (x; X) is the weighted geometric mean &t

Proof of (vi). Here we use (v) witlp = —1 to obtain&, (u; X 1)~ = £, _«(u; X). Letting
X := X! we obtain the desired result.

= exp l /En-l(u - Z)exp [pr(u- Z)] p(w) du

Proof of (vii). There is nothing to prove when eithee= r orp = s orr = s. In other cases we
use [1.8) to obtain the asserted result. This completes the proof. O

In the next theorem we give some inequalities involving the means under discussion.
Theorem 2.3.Letr, s € R. Then the following inequalities
(2.6) Err(1; X) < Eps(ps X) < Es (113 X)
are valid provided- < s. If s > 0, then
(2.7) Er—so(p; X) < & s(p; X).

Inequality (2.7) is reversed ifs < 0 and it becomes an equality if= 0. Assume that, s > 0
and letp < ¢. Then

(2.8) ED (p; X) < E9 (1 X)
with the inequality reversed if s < 0.

Proof. Inequalities [(2.6) and (2.7) follow immediately from Part (jii) of Theorenj 2.2. For the
proof of (2.8), letr;s > 0 and letp < ¢q. Thenpr < ¢r andps < gs. Applying Parts (v) and
(iii) of Theorem[2.2, we obtain

g(p) (,u; X) = gpr,ps(,u; X) < ‘9qr,qs (M; X) = g(q)(u; X)

r,s T,8

Whenr, s < 0, the proof of [2.8) goes along the lines introduced above, hence it is omitted.
The proof is complete. O

3. THE MEAN &, 4(b; X)

An important probability measure dii,_, is the Dirichlet measurg;(u), b € R’} (see[(1.D)).
Its role in the theory of special functions is well documented in Carlson’s monograph [2]. When
= 1, the mean under discussion will be denoted®hy(b; X'). The natural weights),; (see

(2.8)) of i, are given explicitly by
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STOLARSKY MEANS OF SEVERAL VARIABLES 7

(1 <i < n),wherec = b;+---+b, (seell2, (5.6-2)]). For later use we define= (w1, ..., w,).
Recall that the weighted Dresher meap;(p; X) of order(r, s) € R? of X € R’} with weights
p=(p1,...,pn) € RY is defined as

;

1
el

Z?:1 DiT
(3.2 D, s(p; X) =

I
w

exp [Z?:lnpixf In xl} 7
\ Dic1 PiT]
(see, e.g./]1, Sec. 24)).

In this section we present two limit theorems for the mé&an with the underlying mea-
sure being the Dirichlet measure. In order to facilitate presentation we need a concept of the
Dirichlet average of a function. Followingl[2, Def. 5.2-1] letbe a convex set ift and let
Y = (y1,...,y) € Q" n > 2. Further, letf be a measurable function 6h Define

(3.3) FY) = : flu-Y)pup(u) du.

Then F' is called the Dirichlet average of with variablesY = (y,...,y,) and parameters
b= (by,...,b,). We need the following result][2, Ex. 6.3-4]. L&tbe an open circular disk in
C, and letf be holomorphic of2. LetY € Q*,ce C,c #0,—1,...,andw; + --- + w, = 1.
Then

(3.4) lim F(cw;Y) Zwl Yi),

c—0

wherecw = (cwy, . .., cw,).
We are in a position to prove the following.

Theorem 3.1.Letw; > 0,...,w, > 0withw, +---+w, = 1. If r,s € RandX € R, then
lim &, s(cw; X) = D, s(w; X).

c—0t

Proof. We use[(1.]7) and (3.3) to obtallicw; X) = F(cw; Z),whereZ =In X = (Inxq,...,Inz,).
Making use of[(3.]4) withf () = exp(¢) andY = In X we obtain

lim L(cw; X) szxl

c—0t

Hence

(3.5) lim L(cw; X") Zwl

c—07t

Assume that # s. Application of [3.5) to@]B) gives

. [ L(ew; X7) | o wih =
Cir(l)l Ers(cw; X) = lim lﬁ(cw,XS)] [271 — D, o(w; X)
Letr = s. Application of [3.4) withf(¢) = t exp(rt) gives

lim F(cw; Z) E w;z; exp(rz;) E w;(lnz;)x
c—0+
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This in conjunction with[(3]5) and (1.8) gives

F(cw; Z " 2l In
lim &, ,(cw; X) = lim exp {L’))} = exp {Zzzl Wity nxl} =D, (w; X).

n
e—0% =0 D iy Wiy

This completes the proof. O

Theorem 3.2. Under the assumptions of Theorem| 3.1 one has
(3.6) lim &, s(cw; X) = G(w; X).

Proof. The following limit (seel[9, (4.10)])
(3.7) lim L(cw; X) = G(w; X)

will be used in the sequel. We shall establish first|(3.6) whef s. It follows from (1.8) and
(3.7) that

: [ L ew; XT) | s
Clirgloé’m(cw;X) = Clirgo {m} = [G(w; X)"°] 7 = G(w; X).
Assume that = s. We shall prove first that

(3.8) lim F(cw; Z) = [InG(w; X)]G(w; X)",

C—00

whereF' is the Dirichlet average of (t) = ¢t exp(rt). Averaging both sides of

m=0
we obtain
oo ’]"m
(3.9) F(ew; Z) = Zo ﬁRmH(Cw; Z),

whereR,, ., stands for the Dirichlet average of the power functitri'. We will show that the
series in[(3.9) converges uniformly in< ¢ < oo. This in turn implies further that as— oo,
we can proceed to the limit term by term. Making use_6f [2, 6.2-24)] we obtain

|Riia(cw; Z)] < |Z]™*, meN,

where|Z| = max {|Inz;| : 1 <i < n}. By the Weierstrasa/ test the series ifi (3.9) converges
uniformly in the stated domain. Taking limits on both sides of](3.9) we obtain with the aid of
@4

X m

lim F(cw; Z) = Z " lim Ryi1(cw; Z)

c—00 m! c—oco
m=0
_ Z (sz@)
m)
rm
m

In G(w; X i In G(w; X)]™

= )] > [InG(
[In G (w; X)] Z 7711' [In G(w; X)]™

= [lnG(w;X)}G(w;X)T.
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This completes the proof df (3.8). To complete the proof of|(3.6) we[usg (LL.8), (3.7), ahd (3.8)
to obtain

F(ew; Z) [lnG(w;X)}G(w;X)T

lim In &, . (u; = li = = InG(w; X).
I & 8) = 00 e X7) Gl X7 n Gl X
Hence the assertion follows. O

APPENDIX A. TOTAL POSITIVITY OF E]*(z,y)

A real-valued functiom(z, y) of two real variables is said to be strictly totally positive on
its domain if everyn x n determinant with elements(z;, y,), wherez; < z, < --- < z,, and
Y1 < yo < --- <y, IS strictly positive for every, = 1,2, ... (seel[5]).

The goal of this section is to prove that the functigft *(z, y) is strictly totally positive as a
function ofz andy provided the parametersands satisfy a certain condition. For later use we
recall the definition of thé?-hypergeometric functio®_, (3, 5’; x, y) of two variablese,y > 0
with parameterg, 5/ > 0

(ﬁ +0) [ s -1 ~a
(A1) B, 35w ,/u 1—w)? Huz + (1 —w)y] “du
(seel2, (5.9-1))).
Proposition A.1. Letz,y > 0 and letr, s € R. If [r| < [s], thenE]*(x, y) is strictly totally
positive onR? .
Proof. Using [1.3) and (A1) we have
(AZ) E:;s('ray> = Rb(1717'r87y8)

(s(r — s) # 0). B. Carlson and J. Gustafsdn [3] have proven tRat, (3, 5'; z,y) is strictly
totally positive inz andy provideds, 3’ > 0 and0 < o < §+ (. Lettinga = 1 — /s,
p=p=1z:=2°y:=y* and next, using (A2) we obtain the desired result. O

Corollary A.2. Let0 < z; < x5, 0 < y; < yo and let the real numbers and s satisfy the
inequality|r| < |s|. If s > 0, then
(A3) Er,s(xb yl)Er,s(x% y2) < Er,s(xla y2)Er,s<x27 yl)
Inequality[ (A3) is reversed & < 0.
Proof. Leta;; = EJ*(x;,y;) (i, j = 1,2). It follows from Propositio AJL thatiet ([a;;]) > 0
provided|r| < |s|. This in turn implies

[Er,s<xla yl)Er,s (1'2, 3/2)] > [Er,s (‘Tla y?)Er,s (*1'27 yl)]

Assume that > 0. Then the inequalityr| < s impliesr — s < 0. Henceg (A3) follows when
s > 0. The case when < 0 is treated in a similar way. O

r—S rT—S
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