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Abstract

A generalization of the Stolarsky means to the case of several variables is pre-
sented. The new means are derived from the logarithmic mean of several vari-
ables studied in [9]. Basic properties and inequalities involving means under
discussion are included. Limit theorems for these means with the underlying
measure being the Dirichlet measure are established.
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In 1975 K.B. Stolarsky 6] introduced a two-parameter family of bivariate

means named in mathematical literature as the Stolarsky means. Some authors

call these means the extended means (see, &,g)) [or the difference means
(see [L0)). Forr,s € R and two positive numbers andy (z # y) they are
defined as follows16]

rs(r—s) # 0;

L) E(ry) - -y
-y 1"
—_— 0, s =0;
[T(lnx—lny)} ’ r#0 s=0;
LV Y, r=s=20

The meanE, (=, y) is symmetric in its parametersands and its variables:
andy as well. Other properties o, ;(z, y) include homogeneity of degree
one in the variables andy and monotonicity in- ands. It is known thatZ,
increases with an increase in eitheor s (see []). It is worth mentioning that
the Stolarsky mean admits the following integral representatici)([

1 s
/ hl[tdt
S—TJ,

(1.2) In E,.,(z,y) =
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(r # s), wherel, = I;(x,y) = E:4(z,y) is the identric mean of order J.
Paaric and V. Sime [15] have pointed out that

r—s r—s

(1.3) E,  (z,y) = [/0 (tz* + (L —t)y") = dt

(s(r — s) # 0). This representation shows that the Stolarsky means belong
to a two-parameter family of means studied earlier by M.D. Tobe}. [ A
comparison theorem for the Stolarsky means have been obtained by E.B. Leach  gigjarsky Means of Several

and M.C. Sholander in/] and independently by Zs. Pales in. Other results Variables
for the means.1) include inequalities, limit theorems and more (see, e.g., Edward Neuman
[ y ’ H ] ])-
In the past several years researchers made an attempt to generalize Stolarsky Title Page
means to several variables (sée 5, 15, 8]). Further generalizations include
so-called functional Stolarsky means. For more details about the latter class of Contents
means the interested reader is referred.td &nd [11]. <« b
To facilitate presentation let us introduce more notation. In what follows, the
symbol F,,_; will stand for the Euclidean simplex, which is defined by 4 d
. Go Back
E, 1= {(ul,...,un_l) cu; >0, 1<i<n—1,u+ -+ u,1 < 1}.
Close
Further, letX = (x4, ..., x,) be ann-tuple of positive numbers and I&t,;, = Quit
min(X), Xmax = max(X). The following
Page 4 of 22
(1-4) L(X) = (n - 1)! / H xzul du = (n - 1)! / exp(u : Z) du J. Ineq. Pure and Appl. Math. 6(2) Art. 30, 2005
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is the special case of the logarithmic meanXofvhich has been introduced in
[9]. Hereu = (uq, ..., up_1, 1 —ug—- - —u,_1) Where(uy, ..., u, 1) € E,_1,
du=duy ...du,1,Z =In(X)=(Inzy,...,Inx,),andz -y = x1y1 + - - - +
oy, IS the dot product of two vectors andy. Recently J. Merikowski ]
has proposed the following generalization of the Stolarsky niggrto several
variables

LX)
(r # s), whereX” = (24, ...,z7). In the paper cited above, the author did not

prove thatF, ;(X) is the mean ofX, i.e., that
(16) Xmin S Er,s(X> S Xmax

holds true. Ifn = 2 andrs(r — s) # 0 orif r # 0 ands = 0, then (1.5
simplifies to (L.1) in the stated cases.

This paper deals with a two-parameter family of multivariate means whose
prototype is given in1.5). In order to define these means let us introduce more
notation. Byu we will denote a probability measure @), ;. The logarithmic
meanL(u; X)) with the underlying measureis defined in §] as follows

H:L‘;“,u(u) du = / exp(u - Z)p(u) du.

-1 =1 En—1

(1.7) LX) = /E
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We define
[ﬁm;xw]*s s
(1.8) £y X) =  LEUWEAY)

d
exp {% In E(,U,;Xr)} , T =S5.

Let us note that fop(u) = (n — 1)!, the Lebesgue measure éh_,, the first
part of (1.8) simplifies to (L.5).

In Section2 we shall prove thaf, ;(u; X) is the mean value ok, i.e., it
satisfies inequalitiesl(6). Some elementary properties of this mean are also
derived. SectiorB deals with the limit theorems for the new mean, with the
probability measure being the Dirichlet measure. The latter is denoted, by
whereb = (b, ...,b,) € R%, and is defined as’]

1 n
1.9 =
whereB(-) is the multivariate beta functiotfuy, ..., u, 1) € E,_1, andu,, =
1—u;—---—u,_1. Inthe Appendix we shall prove that under certain conditions

imposed on the parametersand s, the functionE]*(z,y) is strictly totally
positive as a function of andy.
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In order to prove thaf, ;(¢; X) is @ mean value we need the following version
of the Mean-Value Theorem for integrals.

Proposition 2.1. Leta := Xy, < Xmax = S and letf,g € C([o, 8]) with
g(t) #0forall t € [a, B]. Then there exists € («, 3) such that

fE’n—l flu- X)u(u) du G
Jg, 9w X)u(u)du — g(&)

Proof. Let the numbers andd and the functiorny be defined in the following
way

(2.1)

v = / g(u- X)pu(u)du, 6= flu- X)pu(u) du,
En_1 En—l
o(t) =7 f(t) — dg(t).
Lettingt = » - X and, next, integrating both sides against the meagsuvee
obtain
o(u - X)p(u) du = 0.

En—l

On the other hand, application of the Mean-Value Theorem to the last integral

gives

oc- X) [E () du = 0,
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wherec = (c1,...,¢41,¢,) With (¢1,...,¢,1) € E,_q andc, = 1 — ¢ —
--+ —c,_1. Letting€ = ¢ - X and taking into account that

/E p(u) du = 1

we obtaing({) = 0. This in conjunction with the definition o gives the
desired result4.1). The proof is complete. O

The author is indebted to Professor Zsolt Pales for a useful suggestion re- Stolarsky\l\//learésl of Several
garding the proof of Propositioa L ariables

For later use let us introduce the symB@l (u; X) (p # 0), where Edward Neuman
1
(2.2) E,Sf;) (1 X) = [Ers(p; XP)] 7. Title Page
We are in a position to prove the following. Contents
Theorem 2.2.Let X € R'} and letr, s € R. Then « ad
< | 2
i Xmin < grs 7X S Xmax;

0 < el X) Go Back
(i) Ers(ps AX) =X s(1; X), A > 0, (AX := (Azq, ..., Axy,)), ——
(i) &.s(u; X) increases with an increase in eitheands, Quit
: I
(iv) In& s(p1; X) = — fs In&(p; X)dt,r#s, Page 8 of 22

r—s
() €551 X) = Eprpa (13 X), i
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(Vi) &l X)E (s X)) =1, (X" = (1/ay, ..
(vit) &7 (s X) = EPT (1 X)E5 P (5 X).

S 1/z)),

Proof of (i). Assume first that # s. Making use of {.8) and (L.7) we obtain

1

Jo exp [r(u-2)] p(u) du] ==
Jo exp[s(u-Z)]p(u)du|

Ers(p; X) = [

Application of .1) with f(t) = exp(rt) andg(t) = exp(st) gives

wherec = (c1,...,¢4-1,¢,) With (¢1,...,¢,1) € E,-q ande, = 1 — ¢ —
cov—cCp_t1. SiNcec-Z =cilnzy+ -+ epyInz,, In X <ce- Z <InXjpax.
This in turn implies thatX,,,;, < exp(c-Z) < Xyax. This completes the proof
of (i) whenr # s. Assume now that = s. It follows from (1.8) and (L.7) that

fEn_l(u - Z)exp [r(u- Z)] p(u) du]
S, exp [r(u- Z)] p(u) du

Application of .1) to the right side withf(¢) = texp(rt) andg(t) = exp(rt)
gives

In& ,(u; X) = [

(¢ Z)exp [r(c- 2)]

exp [r(c- Z)] ez

In& , (u; X) =

Stolarsky Means of Several
Variables

Edward Neuman

Title Page

Contents
44 44
< | 2
Go Back
Close
Quit
Page 9 of 22

J. Ineq. Pure and Appl. Math. 6(2) Art. 30, 2005
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:edneuman@math.siu.edu
http://jipam.vu.edu.au/

Sinceln X, < ¢+ Z < In X,., the assertion follows. This completes the

proof of (i).

Proof of (ii). The following result
(2.3) L (Ae)") = XL X7)

(A > 0) is established in9, (2.6)]. Assume that # s. Using (1.8) and .3
we obtain )

NL(p; X7) 17 ,

W} = )\gr,s(:u7 X)-

Consider now the case when= s # 0. Making use of {.8) and @.3) we
obtain

Ers(p; Ax) = [

[ d
Era(; AX) = exp | = In L(p; (AX)T)}

[ d
=exp |- In (A"L(p; XT))}

= exp %(r In A+ In L(y; X’"))} = A& (13 X).

Whenr = s = 0, an easy computation shows that

n

(2.4) ool X) = [[ 2 = G(w; X),

i=1
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where
(2.5) w; :/ w;p(u) du
Enfl
(1 < i < n) are called the natural weights or partial moments of the measure

andw = (wyq, ..., wy,). Sincew; + -+ + w, = 1, E o AX) = Ao o(1; X).
The proof of (ii) is complete.

Proof of (iii). In order to establish the asserted property, let us note that the  siolarsky Means of Several

function r — exp(rt) is logarithmically convex (log-convex) in. This in VAL
conjunction with Theorem B.6 in’], implies that a functiom — L(u; X7) is Edward Neuman
also log-convex imr. It follows from (1.8) that
InL(p; X™) —InL(p; X Title Page
& X) = 2 (ps X7) —In L(p; X°) -
r—3s Contents
The right side is the divided difference of order one-@nds. Convexity of 44 >

In £(p; X7) in r implies that the divided difference increases with an increase
in eitherr ands. This in turn implies thain &, ;(x; X') has the same property.

Hence the monotonicity property of the meéy, in its parameters follows. Go Back
Now letr = s. Then (L.8) yields

< >

Close
d r QUit
&, (115 X) = —[In L(p; X7)].
dr Page 11 of 22
Sinceln £(p; X7) is convex inr, its derivative with respect to increases with
an increase im. This completes the proof of (iii). b U FHIEERSAEED LR, G Stheltios
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Proof of (iv). Let r # s. It follows from (1.8) that

1 "d
T—S/s E[lnﬁ(u;Xt)} dt

T - <[ L0 X7) = In L5 X7)

=Iné& s(u; X).

/ In& (s X) dt =

r—sS

Proof of (v). Letr # s. Using €.2) and (L.8) we obtain

L(XPr)] 70D
£<Xp5>:| = gpr,ps(ﬂ;X)'

ED) (15 X) = [€,(; X7)] 7 = {
Assume now that = s # 0. Making use of 2.2), (1.8) and (L.7) we have

1d
® (- — - . YT
EN(; X) = exp {p = In L(p; X )}

1
= exp [W /En_l(u - Z)exp [pr(u- Z)] p(u) du

- gpr,pr(:u; X)

The case whem = s = 0 is trivial because,o(u; X) is the weighted
geometric mean ok

Proof of (vi). Here we use (v) witp = —1 to obtain&, ,(u; X 1)1 =
E ., _s(p; X). Letting X := X! we obtain the desired result.
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Proof of (vii). There is nothing to prove when either=r orp = sorr = s.

In other cases we usé.@) to obtain the asserted result. This completes the

proof. O

In the next theorem we give some inequalities involving the means under

discussion.

Theorem 2.3. Letr, s € R. Then the following inequalities
(2.6) Err (1 X) < &y X) < Ess(p1; X)
are valid provided- < s. If s > 0, then

(2.7) Er—so(: X) < & (1 X).

Inequality(2.7) is reversed ik < 0 and it becomes an equalitydf= 0. Assume
thatr, s > 0 and letp < ¢g. Then

(2.8) ED (p; X) < £ (15 X)
with the inequality reversed if s < 0.

Proof. Inequalities 2.6) and @.7) follow immediately from Part (iii) of Theo-
rem2.2. For the proof of 2.8), letr,s > 0 and letp < ¢. Thenpr < ¢r and
ps < gs. Applying Parts (v) and (iii) of Theorerf.2, we obtain

ERN (11 X) = Eprps (115 X) < Egrgs(1; X) = W (1; X).

7,8 r,s
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An important probability measure afi,_, is the Dirichlet measurg,(u), b €

R” (see (.9). Its role in the theory of special functions is well documented
in Carlson’s monograph”’]. Whenu = u,, the mean under discussion will
be denoted by, .(b; X). The natural weights; (see @.5) of p, are given
explicitly by

(1 <i < n), wherec = b, +--- +b, (see P, (5.6-2)]). For later use we define Sy iz o o)

w = (wy,...,w,). Recall that the weighted Dresher me@an,(p; X) of order
(r,s) € R? of X € R" with weightsp = (p1,...,p,) € R" is defined as

Edward Neuman

( n r i
|:Zz':1 Pixi] rs Title Page
2im Pi] Contents
(3.2) D, s(p; X) =
"yt Ina « >
oo [ Bl -,
\ > ic1 D] | | 2
(see, e.g., [ S_ec. 24)). o _ Go Back
In this section we present two limit theorems for the m&anwith the un-
derlying measure being the Dirichlet measure. In order to facilitate presentation Close
we need a concept of the Dirichlet average of a function. Followin®éf. 5.2- Quit

1] let Q2 be a convex setiff and letY” = (y1,...,y,) € Q", n > 2. Further, let

. . Page 14 of 22
f be a measurable function éh Define J

(33) F(b Y) — f(u . Y),LL})(U) du J. Ineq. Pure and Appl. Math. 6(2) Art. 30, 2005
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ThenF is called the Dirichlet average gfwith variablesy” = (v, ..., y,) and
parameter$ = (by,...,b,). We need the following resul?’[ Ex. 6.3-4]. Let
Q2 be an open circular disk i@, and letf be holomorphic o). LetY € Q~,

ceC,c#0,—-1,...,andw; +---+w, = 1. Then
(3.4) hmF (cw;Y) Zw, (i),
wherecw = (cwy, ..., cwy,).

We are in a position to prove the following.

Theorem 3.1.Letw; > 0,...
X € R%, then

,w, > 0withw; +---+w, = 1. Ifr,s € Rand

li]%a+ Ers(cw; X) = D, s(w; X).

Proof. We use (.7) and @.3) to obtain £(cw; X)
InX = (Inzy,...
In X we obtain

= F(cw; Z), whereZ =
,Inz,). Making use of 8.4) with f(¢) = exp(t) andY =

lim L(cw; X) Zw,xZ

c—0t

Hence

(3.5 lim L(cw; X") sz

c—0t

Assume that # s. Application of 3.5) to (1.8) gives

1

lim & s(cw; X) = lim {M} R [Zizl wixi:| “S

c—0F =0t | L(cw; X¥) o wxs

=D, (w; X).
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Letr = s. Application of 3.4) with f(¢) = texp(rt) gives

Z w;i(Inz;)z

lim F(cw; Z) E w;z; exp(rz;)
c—0t

This in conjunction with 8.5) and (L.8) gives

F(ew; Z)
cli}(l)}r Errlew; X) = clil(r)i P {E(cw;XT)}
" 27 1n
— oxp Zz:lﬂwzxz nw;
Dic Wiy
=D, (w; X).
This completes the proof. m

Theorem 3.2. Under the assumptions of Theor&m one has

(3.6) lim &, s(cw; X) = G(w; X).

C—00

Proof. The following limit (see §, (4.10)])
(3.7) lim L(cw; X) = G(w; X)

C—00

will be used in the sequel. We shall establish figst( whenr # s. It follows
from (1.8) and 3.7) that

. Sy e [ Llew; XT) e RN I T
fim &, (cus X) = fim | S (6w X)) = Gl X).

Stolarsky Means of Several
Variables

Edward Neuman

Title Page

Contents
44 44
< | 2
Go Back
Close
Quit
Page 16 of 22

J. Ineq. Pure and Appl. Math. 6(2) Art. 30, 2005
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:edneuman@math.siu.edu
http://jipam.vu.edu.au/

Assume that = s. We shall prove first that

(3.8) lim F(cw; Z) = [ln G(w;X)}G(w;X)",

C— 00

whereF is the Dirichlet average of (t) = t exp(rt). Averaging both sides of

_ N rm m+1

we obtain

(3.9) (cw; Z) Z ;‘RmH cw; Z),
m=0

where R, stands for the Dirichlet average of the power functiori!. We
will show that the series in3(9) converges uniformly i) < ¢ < oo. This in
turn implies further that a8 — oo, we can proceed to the limit term by term.
Making use of P, 6.2-24)] we obtain

[Ryi(cw; Z)] < 2™, m €N,

where|Z| = max {|Inz;| : 1 <14 < n}. By the Weierstrass/ test the series
in (3.9) converges uniformly in the stated domain. Taking limits on both sides

Stolarsky Means of Several
Variables

Edward Neuman

Title Page
Contents
44 44
< | 2
Go Back
Close
Quit
Page 17 of 22

J. Ineq. Pure and Appl. Math. 6(2) Art. 30, 2005
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:edneuman@math.siu.edu
http://jipam.vu.edu.au/

of (3.9) we obtain with the aid of3.4)

. =~
lim F(ew; Z) = ZOECHEORm-i-l(CUJ;Z)
00 n m—+1
Tm
Y (e
m=0 i=1
= [ln G(w; X)} Z 7”_' [ln G("LU; X)} " Stolarsky Means of Several
o T Variables
> 1 rim Edward Neuman
= [InG(w; X)] Z %[IHG(U);X) ]
m=0
= [ln G (w; X)}G(w; X)". Title Page
. Contents
This completes the proof 08(8). To complete the proof of3(6) we use (.9),
(3.7), and (3.8) to obtain 44 >
< >
, o . Flew; Z)
Jim & (s X) = Jim ) Go Back
In G(w; X)|G(w; X)"
— [ n G(uw; )} Ew, ) =InG(w; X). Close
G(w; X) Quit
Hence the assertion follows. [ Page 18 of 22
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A real-valued functiorh(zx, y) of two real variables is said to be strictly totally
positive on its domain if every x n determinant with elementgz;, y;), where
T < X9 < -0 < xpandy; < yo < - < vy, IS strictly positive for every
n=12,...(seep]).

The goal of this section is to prove that the functibfi;*(z, y) is strictly
totally positive as a function of andy provided the parametersaands satisfy a

certain condition. For later use we recall the definition of Bhbypergeometric Stolarsky Means of Several
function R_, (3, 3'; x,y) of two variablesr, y > 0 with parameters, 3 > 0 VAL
r ﬁ ﬁ’ 1 Edward Neuman
(A1) R_o(B,8'2,y) = W / W 1= ) fur+ (1 —w)y] " du
0 Title Page
(see P, (5.9-1))). Contents
Proposition A.1. Letz,y > 0 and letr,s € R. If || < [s], thenE]*(z,y) is PP >
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Corollary A.2. Let0 < 71 < 29,0 < y; < yo and let the real numbersand s
satisfy the inequalityr| < |s|. If s > 0, then

(A3) Er,s<x1a yl)Er,s(an yQ) < Ens (ZEh yQ)ET,s (ZE27 yl)
Inequality(A3) is reversed ifs < 0.

Proof. Leta;; = E;*(xi, ;) (i, j = 1,2). It follows from PropositionA.1 that
det ([a;;]) > 0 provided|r| < |s|. This in turn implies

r—Ss

[Er,s (mlv yl)Er,s ($27 yQ)} o > [Er,s(xla yQ)Er,s(x27 yl)j|

Assume that > 0. Then the inequalityr| < s impliesr — s < 0. Hence(A3)
follows whens > 0. The case when < 0 is treated in a similar way. O]
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