ABOUT A CLASS OF LINEAR POSITIVE OPERATORS OBTAINED BY CHOOSING THE NODES

OVIDIU T. POP AND MIRCEA D. FĂRCAŞ
National College "Mihai Eminescu"
5 Mihai Eminescu Street
Satu Mare 440014, Romania
ovidiutiberiu@yahoo.com
mirceafarcas2005@yahoo.com

Received 15 June, 2007; accepted 18 March, 2009
Communicated by S.S Dragomir

Abstract

In this paper we consider the given linear positive operators $\left(L_{m}\right)_{m \geq 1}$ and with their help, we construct linear positive operators $\left(\mathcal{K}_{m}\right)_{m \geq 1}$. We study the convergence, the evaluation for the rate of convergence in terms of the first modulus of smoothness for the operators $\left(\mathcal{K}_{m}\right)_{m \geq 1}$.

Key words and phrases: Linear positive operators, convergence theorem, the first order modulus of smoothness, approximation theorem.

2000 Mathematics Subject Classification 41A10, 41A25, 41A35, 41 A36.

1. Introduction

In this section, we recall some notions and operators which we will use in this article.
Let \mathbb{N} be the set of positive integers and $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. For $m \in \mathbb{N}$, let $B_{m}: C([0,1]) \rightarrow$ $C([0,1])$ be Bernstein operators, defined for any function $f \in C([0,1])$ by

$$
\begin{equation*}
\left(B_{m} f\right)(x)=\sum_{k=0}^{m} p_{m, k}(x) f\left(\frac{k}{m}\right), \tag{1.1}
\end{equation*}
$$

where $p_{m, k}(x)$ are the fundamental polynomials of Bernstein, defined as follows

$$
\begin{equation*}
p_{m, k}(x)=\binom{m}{k} x^{k}(1-x)^{m-k} \tag{1.2}
\end{equation*}
$$

for any $x \in[0,1]$ and any $k \in\{0,1, \ldots, m\}$ (see [5] or [24]). For the following construction, see [15]. Define the natural number m_{0} by

$$
m_{0}=\left\{\begin{array}{lll}
\max (1,-[\beta]), & \text { if } \quad \beta \in \mathbb{R}-\mathbb{Z} \tag{1.3}\\
\max (1,1-\beta), & \text { if } \beta \in \mathbb{Z}
\end{array}\right.
$$

where $[x],\{x\}$ denote the integer and fractional parts respectively of a real number x.

For the real number β, we have that

$$
\begin{equation*}
m+\beta \geq \gamma_{\beta} \tag{1.4}
\end{equation*}
$$

for any natural number $m, m \geq m_{0}$, where

$$
\gamma_{\beta}=m_{0}+\beta= \begin{cases}\max (1+\beta,\{\beta\}), & \text { if } \beta \in \mathbb{R}-\mathbb{Z} \tag{1.5}\\ \max (1+\beta, 1), & \text { if } \beta \in \mathbb{Z}\end{cases}
$$

For the real numbers $\alpha, \beta, \alpha \geq 0$, we note

$$
\mu^{(\alpha, \beta)}=\left\{\begin{array}{lll}
1, & \text { if } \quad \alpha \leq \beta \tag{1.6}\\
1+\frac{\alpha-\beta}{\gamma_{\beta}}, & \text { if } \quad \alpha>\beta
\end{array}\right.
$$

For the real numbers α and $\beta, \alpha \geq 0$, we have that $1 \leq \mu^{(\alpha, \beta)}$ and

$$
\begin{equation*}
0 \leq \frac{k+\alpha}{m+\beta} \leq \mu^{(\alpha, \beta)} \tag{1.7}
\end{equation*}
$$

for any natural number $m, m \geq m_{0}$ and for any $k \in\{0,1, \ldots, m\}$.
For the real numbers α and $\beta, \alpha \geq 0, m_{0}$ and $\mu^{(\alpha, \beta)}$ defined by 1.3$)-1.6$, let the operators $P_{m}^{(\alpha, \beta)}: C\left(\left[0, \mu^{(\alpha, \beta)}\right]\right) \rightarrow C([0,1])$, defined for any function $f \in C\left(\left[0, \mu^{(\alpha, \beta)}\right]\right)$ by

$$
\begin{equation*}
\left(P_{m}^{(\alpha, \beta)} f\right)(x)=\sum_{k=0}^{m} p_{m, k}(x) f\left(\frac{k+\alpha}{m+\beta}\right) \tag{1.8}
\end{equation*}
$$

for any natural number $m, m \geq m_{0}$ and for any $x \in[0,1]$. These operators are called Stancu operators, and were introduced and studied in 1969 by D.D. Stancu in the paper [23]. In [23], the domain of definition of Stancu's operators is $C([0,1])$ and the numbers α and β verify the condition $0 \leq \alpha \leq \beta$.

In 1980, G. Bleimann, P. L. Butzer and L. Hahn introduced in [4] a sequence of linear positive operators $\left(L_{m}\right)_{m \geq 1}, L_{m}: C_{B}([0, \infty)) \rightarrow C_{B}([0, \infty))$, defined for any function $f \in C_{B}([0, \infty))$ by

$$
\begin{equation*}
\left(L_{m} f\right)(x)=\frac{1}{(1+x)^{m}} \sum_{k=0}^{m}\binom{m}{k} x^{k} f\left(\frac{k}{m+1-k}\right) \tag{1.9}
\end{equation*}
$$

for any $x \in[0, \infty)$ and any $m \in \mathbb{N}$, where $C_{B}([0, \infty))=\{f \mid f:[0, \infty) \rightarrow \mathbb{R}, f$ is bounded and continuous on $[0, \infty)\}$.
For $m \in \mathbb{N}$, consider the operators $S_{m}: C_{2}([0, \infty)) \rightarrow C([0, \infty))$ defined for any function $f \in C_{2}([0, \infty))$ by

$$
\begin{equation*}
\left(S_{m} f\right)(x)=e^{-m x} \sum_{k=0}^{\infty} \frac{(m x)^{k}}{k!} f\left(\frac{k}{m}\right) \tag{1.10}
\end{equation*}
$$

for any $x \in[0, \infty)$, where

$$
C_{2}([0, \infty))=\left\{f \in C([0, \infty)): \lim _{x \rightarrow \infty} \frac{f(x)}{1+x^{2}} \text { exists and is finite }\right\}
$$

The operators $\left(S_{m}\right)_{m \geq 1}$ are called Mirakjan-Favard-Szász operators and were introduced in 1941 by G. M. Mirakjan in [12].
They were intensively studied by J. Favard in 1944 in [8] and O. Szász in 1950 in [25].

For $m \in \mathbb{N}$, the operator $V_{m}: C_{2}([0, \infty)) \rightarrow C([0, \infty))$ is defined for any function $f \in$ $C_{2}([0, \infty))$ by

$$
\begin{equation*}
\left(V_{m} f\right)(x)=(1+x)^{-m} \sum_{k=0}^{\infty}\binom{m+k-1}{k}\left(\frac{x}{1+x}\right)^{k} f\left(\frac{k}{m}\right), \tag{1.11}
\end{equation*}
$$

for any $x \in[0, \infty)$.
The operators $\left(V_{m}\right)_{m \geq 1}$ are named Baskakov operators and they were introduced in 1957 by V. A. Baskakov in [2].
W. Meyer-König and K. Zeller have introduced in [11] a sequence of linear and positive operators. After a slight adjustment, given by E.W. Cheney and A. Sharma in [6], these operators take the form $Z_{m}: B([0,1)) \rightarrow C([0,1))$, defined for any function $f \in B([0,1))$ by

$$
\begin{equation*}
\left(Z_{m} f\right)(x)=\sum_{k=0}^{\infty}\binom{m+k}{k}(1-x)^{m+1} x^{k} f\left(\frac{k}{m+k}\right), \tag{1.12}
\end{equation*}
$$

for any $m \in \mathbb{N}$ and for any $x \in[0,1)$.
These operators are called the Meyer-König and Zeller operators.
Observe that $Z_{m}: C([0,1]) \rightarrow C([0,1]), m \in \mathbb{N}$.
In [10], M. Ismail and C.P. May consider the operators $\left(R_{m}\right)_{m \geq 1}$.
For $m \in \mathbb{N}, R_{m}: C([0, \infty)) \rightarrow C([0, \infty))$ is defined for any function $f \in C([0, \infty))$ by

$$
\begin{equation*}
\left(R_{m} f\right)(x)=e^{-\frac{m x}{1+x}} \sum_{k=0}^{\infty} \frac{m(m+k)^{k-1}}{k!}\left(\frac{x}{1+x}\right)^{k} e^{-\frac{k x}{1+x}} f\left(\frac{k}{m}\right) \tag{1.13}
\end{equation*}
$$

for any $x \in[0, \infty)$.
We consider $I \subset \mathbb{R}, I$ an interval and we shall use the following function sets: $E(I), F(I)$ which are subsets of the set of real functions defined on $I, B(I)=\{f \mid f: I \rightarrow \mathbb{R}, f$ bounded on $I\}, C(I)=\{f \mid f: I \rightarrow \mathbb{R}, f$ continuous on $I\}$ and $C_{B}(I)=B(I) \cap C(I)$.

If $f \in B(I)$, then the first order modulus of smoothness of f is the function $\omega(f ; \cdot)$: $[0, \infty) \rightarrow \mathbb{R}$ defined for any $\delta \geq 0$ by

$$
\begin{equation*}
\omega(f ; \delta)=\sup \left\{\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right|: x^{\prime}, x^{\prime \prime} \in I,\left|x^{\prime}-x^{\prime \prime}\right| \leq \delta\right\} . \tag{1.14}
\end{equation*}
$$

2. Preliminaries

For the following construction and result see [16] and [18], where $p_{m}=m$ for any $m \in \mathbb{N}$ or $p_{m}=\infty$ for any $m \in \mathbb{N}$. Let $I, J \subset[0, \infty)$ be intervals with $I \cap J \neq \emptyset$. For any $m \in \mathbb{N}$ and $k \in\left\{0,1, \ldots, p_{m}\right\} \cap \mathbb{N}_{0}$ consider the nodes $x_{m, k} \in I$ and the functions $\varphi_{m, k}: J \rightarrow \mathbb{R}$ with the property that $\varphi_{m, k}(x) \geq 0$ for any $x \in J$. Let $E(I)$ and $F(J)$ be subsets of the set of real functions defined on I, respectively J so that the sum

$$
\sum_{k=0}^{p_{m}} \varphi_{m, k}(x) f\left(x_{m, k}\right)
$$

exists for any $f \in E(I), x \in J$ and $m \in \mathbb{N}$. For any $x \in I$ consider the functions $\psi_{x}: I \rightarrow \mathbb{R}$, $\psi_{x}(t)=t-x$ and $e_{i}: I \rightarrow \mathbb{R}, e_{i}(t)=t^{i}$ for any $t \in I, i \in\{0,1,2\}$. In the following, we suppose that for any $x \in I$ we have $\psi_{x} \in E(I)$ and $e_{i} \in E(I), i \in\{0,1,2\}$.

For $m \in \mathbb{N}$, let the given operator $L_{m}: E(I) \rightarrow F(J)$ defined by

$$
\begin{equation*}
\left(L_{m} f\right)(x)=\sum_{k=0}^{p_{m}} \varphi_{m, k}(x) f\left(x_{m, k}\right) \tag{2.1}
\end{equation*}
$$

with the property that the convergence

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(L_{m} f\right)(x)=f(x) \tag{2.2}
\end{equation*}
$$

is uniform on any compact $K \subset I \cap J$, for any $f \in E(I) \cap C(I)$.
Remark 1. From $\sqrt{2.2}$, for the operators $\left(L_{m}\right)_{m \geq 1}$ we have that the following convergences

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(L_{m} e_{i}\right)(x)=e_{i}(x), \tag{2.3}
\end{equation*}
$$

$i \in\{0,1,2\}$ and

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(L_{m} \psi_{x}^{2}\right)(x)=0 \tag{2.4}
\end{equation*}
$$

are uniform on any compact $K \subset I \cap J$.
Remark 2. From Remark 1 it results that for any compact $K \subset I \cap J$ the sequences $\left(u_{m}(K)\right)_{m \geq 1}$, $\left(v_{m}(K)\right)_{m \geq 1},\left(w_{m}(K)\right)_{m \geq 1}$ depending on K exist, so that the convergences

$$
\begin{equation*}
\lim _{m \rightarrow \infty} u_{m}(K)=\lim _{m \rightarrow \infty} v_{m}(K)=\lim _{m \rightarrow \infty} w_{m}(K)=0 \tag{2.5}
\end{equation*}
$$

are uniform on K and

$$
\begin{equation*}
\left|\left(L_{m} e_{0}\right)(x)-1\right| \leq u_{m}(K), \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
\left|\left(L_{m} e_{1}\right)(x)-x\right| \leq v_{m}(K) \tag{2.7}
\end{equation*}
$$

for any $x \in K$ and any $m \in \mathbb{N}$.
In the following, for $m \in \mathbb{N}$ and $k \in\left\{0,1, \ldots, p_{m}\right\} \cap \mathbb{N}_{0}$ we consider the nodes $y_{m, k} \in I$ so that

$$
\begin{equation*}
\alpha_{m}=\sup _{k \in\left\{0,1, \ldots, p_{m}\right\} \cap \mathbb{N}_{0}}\left|x_{m, k}-y_{m, k}\right|<\infty \tag{2.9}
\end{equation*}
$$

for any $m \in \mathbb{N}$ and

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \alpha_{m}=0 \tag{2.10}
\end{equation*}
$$

For $m \in \mathbb{N}$ and $k \in\left\{0,1, \ldots, p_{m}\right\} \cap \mathbb{N}_{0}$ we note that $\alpha_{m, k}=x_{m, k}-y_{m, k}$.
Definition 2.1. For $m \in \mathbb{N}$, define the operator $\mathcal{K}_{m}: E(I) \rightarrow F(J)$ by

$$
\begin{equation*}
\left(\mathcal{K}_{m} f\right)(x)=\sum_{k=0}^{p_{m}} \varphi_{m, k}(x) f\left(y_{m, k}\right), \tag{2.11}
\end{equation*}
$$

for any $x \in I$ and any $f \in E(I)$.
Remark 3. Similar ideas to the construction above can be found in the recent papers [9] and [13].

3. Main Results

In this section, we study the operators defined by (2.11).
Theorem 3.1. For any $f \in E(I) \cap C(I)$ we have that the convergence

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(\mathcal{K}_{m} f\right)(x)=f(x) \tag{3.1}
\end{equation*}
$$

is uniform on any compact $K \subset I \cap J$.
Proof. For $x \in K$ and $m \in \mathbb{N}$ we have that

$$
\begin{aligned}
\left(\mathcal{K}_{m} \psi_{x}^{2}\right)(x)= & \left(\mathcal{K}_{m} e_{2}\right)(x)-2 x\left(\mathcal{K}_{m} e_{1}\right)(x)+x^{2}\left(\mathcal{K}_{m} e_{0}\right)(x) \\
= & \sum_{k=0}^{p_{m}} \varphi_{m, k}(x) y_{m, k}^{2}-2 x \sum_{k=0}^{p_{m}} \varphi_{m, k}(x) y_{m, k}+x^{2} \sum_{k=0}^{p_{m}} \varphi_{m, k}(x) \\
= & \sum_{k=0}^{p_{m}} \varphi_{m, k}(x)\left(x_{m, k}-\alpha_{m, k}\right)^{2} \\
& \quad-2 x \sum_{k=0}^{p_{m}} \varphi_{m, k}(x)\left(x_{m, k}-\alpha_{m, k}\right)+x^{2} \sum_{k=0}^{p_{m}} \varphi_{m, k}(x) \\
= & \sum_{k=0}^{p_{m}} \varphi_{m, k}(x) x_{m, k}^{2}-2 \sum_{k=0}^{p_{m}} \varphi_{m, k}(x) x_{m, k} \alpha_{m, k} \\
& \quad+\sum_{k=0}^{p_{m}} \varphi_{m, k}(x) \alpha_{m, k}^{2}-2 x \sum_{k=0}^{p_{m}} \varphi_{m, k}(x) x_{m, k} \\
& \quad+2 x \sum_{k=0}^{p_{m}} \varphi_{m, k}(x) \alpha_{m, k}+x^{2} \sum_{k=0}^{p_{m}} \varphi_{m, k}(x) \\
\leq & \left(L_{m} \psi_{x}^{2}\right)(x)+2 \alpha_{m}\left(L_{m} e_{1}\right)(x)+\left(\alpha_{m}^{2}+2 x \alpha_{m}\right)\left(L_{m} e_{0}\right)(x) .
\end{aligned}
$$

Taking Remark 1 and Remark 2 into account, it results that (3.1) holds.
Theorem 3.2. If $f \in E(I \cap J) \cap C(I \cap J)$, then for any $x \in K=[a, b] \subset I \cap J$ and any $m \in \mathbb{N}$, we have that

$$
\begin{align*}
\left|\left(\mathcal{K}_{m} f\right)(x)-f(x)\right| & \leq|f(x)|\left|\left(L_{m} e_{0}(x)\right)-1\right|+\left(\left(L_{m} e_{0}\right)(x)+1\right) \omega\left(f ; \delta_{m, x}\right) \tag{3.2}\\
& \leq M u_{m}(K)+\left(2+u_{m}(K)\right) \omega\left(f ; \delta_{m}\right),
\end{align*}
$$

where

$$
\begin{aligned}
\delta_{m, x} & \left.=\sqrt{\left(L_{m} e_{0}\right)(x)\left[\left(L_{m} \psi_{x}^{2}\right)(x)+2 \alpha_{m}\left(L_{m} e_{1}\right)(x)+\left(\alpha_{m}^{2}+2 x \alpha_{m}\right)\left(L_{m} e_{0}\right)(x)\right.}\right] \\
\delta_{m} & =\sqrt{\left(1+u_{m}(K)\right)\left[w_{m}(K)+2 \alpha_{m}\left(b+v_{m}(K)+\left(\alpha_{m}^{2}+2 b \alpha_{m}\right)\left(1+u_{m}(K)\right)\right]\right.}
\end{aligned}
$$

and

$$
M=\sup \{|f(x)|: x \in K\} .
$$

Proof. We apply the Shisha-Mond Theorem (see [22] or [24]) for the operator \mathcal{K}_{m} and taking the inequality from the proof of the Theorem 3.1 into account verified by $\left(\mathcal{K}_{m} \psi_{x}^{2}\right)(x)$ and Remark 2, the inequality (3.2) follows.
Corollary 3.3. If

$$
\begin{equation*}
\sum_{k=0}^{p_{m}} \varphi_{m, k}(x)=1 \tag{3.3}
\end{equation*}
$$

for any $x \in J$, then for any $f \in E(I \cap J) \cap C(I \cap J)$, any $x \in K=[a, b] \subset I \cap J$ and any $m \in \mathbb{N}$ we have that

$$
\begin{equation*}
\left|\left(\mathcal{K}_{m} f\right)(x)-f(x)\right| \leq 2 \omega\left(f ; \delta_{m, x}\right) \leq 2 \omega\left(f ; \delta_{m}^{\prime}\right) \tag{3.4}
\end{equation*}
$$

where $\delta_{m}^{\prime}=\sqrt{w_{m}(K)+2 \alpha_{m} v_{m}(K)+\alpha_{m}^{2}+4 b \alpha_{m}}$.
Proof. It results from Theorem 3.2, because $\left(L_{m} e_{0}\right)(x)=1$, for any $m \in \mathbb{N}$ and $x \in J$, so $u_{m}(K)=0$, for any $m \in \mathbb{N}$.
Remark 4. From the conditions of Theorem 3.2 we have that

$$
\left|\left(\mathcal{K}_{m} f\right)(x)-f(x)\right| \leq M u_{m}(K)+\left(2+u_{m}(K)\right) \omega\left(f ; \delta_{m}\right)
$$

and because $\lim _{m \rightarrow \infty} \delta_{m}=0$, it results that the convergence $\lim _{m \rightarrow \infty}\left(K_{m} f\right)(x)=f(x)$ is uniform on K.

In the following, by particularisation of the sequence $y_{m, k}, m \in \mathbb{N}, k \in\left\{0,1, \ldots, p_{m}\right\} \cap \mathbb{N}_{0}$ and applying Theorem 3.1 and Corollary 3.3, we can obtain a convergence and approximation theorem for the new operators. In Applications 1-2, let $p_{m}=m, \varphi_{m, k}(x)=p_{m, k}(x)$, where $m \in \mathbb{N}, k \in\{0,1, \ldots, m\}$ and $K=[0,1]$.
Application 1. If $I=J=[0,1], E(I)=F(J)=C([0,1]), x_{m, k}=\frac{k}{m}, m \in \mathbb{N}, k \in$ $\{0,1, \ldots, m\}$, we obtain the Bernstein operators. We have that $u_{m}([0,1]) \stackrel{m}{=} 0, v_{m}([0,1])=$ 0 and $w_{m}([0,1])=\frac{1}{4 m}, m \in \mathbb{N}$. We consider the nodes $y_{m, k}=\frac{\sqrt{k(k+1)}}{m}, m \in \mathbb{N}, k \in$ $\{0,1, \ldots, m\}$. Then it is verified immediately that $\alpha_{m}=\frac{1}{m+\sqrt{m(m+1)}}, m \in \mathbb{N}$ and $\lim _{m \rightarrow \infty} \alpha_{m}=$ 0 . In this case, the operators $\left(\mathcal{K}_{m}\right)_{m \geq 1}$ have the form

$$
\left(\mathcal{K}_{m} f\right)(x)=\sum_{k=0}^{m} p_{m, k}(x) f\left(\frac{\sqrt{k(k+1)}}{m}\right)
$$

$f \in C([0,1]), x \in[0,1], m \in \mathbb{N}$ and $\delta_{m}^{\prime}<\sqrt{\frac{5}{4 m}+\frac{2}{m+\sqrt{m(m+1)}}}<\frac{3}{2 \sqrt{m}}, m \in \mathbb{N}$.
Application 2. We study a particular case of the Stancu operators. Let $\alpha=10$ and $\beta=-\frac{1}{2}$. We obtain $I=[0,22]$ and for any $f \in C([0,22]), x \in[0,1]$ and $m \in \mathbb{N}$

$$
\left(P_{m}^{(10,-1 / 2)} f\right)(x)=\sum_{k=0}^{m} p_{m, k}(x) f\left(\frac{2 k+20}{2 m-1}\right) .
$$

We consider the nodes $y_{m, k}=\frac{(4 k+40) m}{(2 m-1)^{2}}$. In this case, the operators $\left(\mathcal{K}_{m}\right)_{m \geq 1}$ have the form

$$
\left(\mathcal{K}_{m} f\right)(x)=\sum_{k=0}^{m} p_{m, k}(x) f\left(\frac{m(4 k+40)}{(2 m-1)^{2}}\right),
$$

where $f \in C([0,22]), x \in[0,1], m \in \mathbb{N}$ and $\delta_{m}^{\prime}<\frac{\sqrt{36 m^{3}+2220 m^{2}-399 m+81}}{(2 m-1)^{2}}<\frac{45}{\sqrt{2 m-1}}, m \in \mathbb{N}$.
Application 3. If $I=J=[0, \infty), E(I)=C_{2}([0, \infty)), F(J)=C([0, \infty)), K=[0, b]$, $p_{m}=\infty, x_{m, k}=\frac{k}{m}, \varphi_{m, k}(x)=e^{-m x} \frac{(m x)^{k}}{k!}, m \in \mathbb{N}, k \in \mathbb{N}_{0}$, we obtain the Mirakjan-FavardSzász operators and we have that $u_{m}(K)=0, v_{m}(K)=0$ and $w_{m}(K)=\frac{b}{m}, m \in \mathbb{N}$. We consider the nodes $y_{m, k}=\frac{2 k(k+1)}{m(2 k+1)}, m \in \mathbb{N}, k \in \mathbb{N}_{0}$ and we have that $\alpha_{m}=\frac{1}{2 m}, m \in \mathbb{N}$. In this case, the operators $\left(\mathcal{K}_{m}\right)_{m \geq 1}$ have the form

$$
\left(\mathcal{K}_{m} f\right)(x)=e^{-m x} \sum_{k=0}^{\infty} \frac{(m x)^{k}}{k!} f\left(\frac{2 k(k+1)}{m(2 k+1)}\right),
$$

where $f \in C_{2}([0, \infty)), x \in[0, \infty), m \in \mathbb{N}$ and $\delta_{m}^{\prime}=\sqrt{\frac{3 b}{m}+\frac{1}{4 m^{2}}}, m \in \mathbb{N}$.
Application 4. Let $I=J=[0, \infty), E(I)=C_{2}([0, \infty)), F(J)=C([0, \infty)), K=[0, b]$, $p_{m}=\infty, x_{m, k}=\frac{k}{m}, \varphi_{m, k}(x)=(1+x)^{-m}\binom{m+k-1}{k}\left(\frac{x}{1+x}\right)^{k}, m \in \mathbb{N}, k \in \mathbb{N}_{0}$. In this case, we obtain the Baskakov operators and we have that $u_{m}(K)=0, v_{m}(K)=0$ and $w_{m}(K)=\frac{b(1+b)}{2 m}$, $m \in \mathbb{N}$. We consider the nodes $y_{m, k}=\frac{\sqrt{4 k^{2}+4 k+2}}{2 m}, m \in \mathbb{N}, k \in \mathbb{N}_{0}$ and we have that $\alpha_{m}=\frac{1}{m \sqrt{2}}$. The operators $\left(\mathcal{K}_{m}\right)_{m \geq 1}$ have the form

$$
\left(\mathcal{K}_{m} f\right)(x)=(1+x)^{-m} \sum_{k=0}^{\infty}\binom{m+k-1}{k}\left(\frac{x}{1+x}\right)^{k} f\left(\frac{\sqrt{4 k^{2}+4 k+2}}{2 m}\right)
$$

where $f \in C_{2}([0, \infty)), x \in[0, \infty), m \in \mathbb{N}$ and $\delta_{m}^{\prime}=\sqrt{\frac{b(b+1+2 \sqrt{2})}{m}+\frac{1}{2 m^{2}}}, m \in \mathbb{N}$.
Application 5. If $I=J=[0, \infty), E(I)=F(J)=C([0, \infty)), K=[0, b], p_{m}=\infty$, $x_{m, k}=\frac{k}{m}$,

$$
\varphi_{m, k}(x)=\frac{m(m+k)^{k-1}}{k!}\left(\frac{x}{1+x}\right)^{k} e^{\frac{-(k+m) x}{1+x}}, \quad m \in \mathbb{N}, k \in \mathbb{N}_{0}
$$

we obtain the Ismail-May operators and we have that $u_{m}(K)=0, v_{m}(K)=0$ and $w_{m}(K)=$ $\frac{b(1+b)^{2}}{m}, m \in \mathbb{N}$. We consider the nodes $y_{m, k}=\frac{\sqrt[3]{k^{2}(k+1)}}{m}, m \in \mathbb{N}, k \in \mathbb{N}_{0}$ and we have that $\alpha_{m}=\frac{1}{3 m}$. In this case, the operators $\left(\mathcal{K}_{m}\right)_{m \geq 1}$ have the form

$$
\left(\mathcal{K}_{m} f\right)(x)=e^{\frac{-m x}{1+x}} \sum_{k=0}^{\infty} \frac{m(m+k)^{k-1}}{k!}\left(\frac{x}{1+x}\right)^{k} e^{-\frac{k x}{1+x}} f\left(\frac{\sqrt[3]{k^{2}(k+1)}}{m}\right)
$$

where $f \in C([0, \infty)), m \in \mathbb{N}$ and $\delta_{m}^{\prime}=\sqrt{\frac{b\left(7+6 b+3 b^{2}\right)}{3 m}+\frac{1}{9 m^{2}}}, m \in \mathbb{N}$.
Application 6. We consider $I=J=[0, \infty), E(I)=F(J)=C_{B}([0, \infty)), K=[0, b], p_{m}=$ $m, x_{m, k}=\frac{k}{m+1-k}, \varphi_{m, k}(x)=\frac{1}{(1+x)^{m}}\binom{m}{k} x^{k}, m \in \mathbb{N}, k \in\{0,1, \ldots, m\}$. In this case we obtain the Bleimann-Butzer-Hahn operators and we have that $u_{m}(K)=0, v_{m}(K)=b\left(\frac{b}{1+b}\right)^{m}$ and $w_{m}(K)=\frac{4 b(1+b)^{2}}{m+2}, m \in \mathbb{N}$. We consider the nodes $y_{m, k}=\frac{\beta_{m} k}{m+1-k}, m \in \mathbb{N}, k \in\{0,1, \ldots, m\}$, where $\left(\beta_{m}\right)_{m \geq 1}$ is a sequence of positive real numbers such that $\lim _{m \rightarrow \infty} m\left(1-\beta_{m}\right)=0$ and we have $\alpha_{m}=m\left|1-\beta_{m}\right|, m \in \mathbb{N}$. The operators $\left(\mathcal{K}_{m}\right)_{m \geq 1}$ have the form

$$
\left(\mathcal{K}_{m} f\right)(x)=(1+x)^{-m} \sum_{k=0}^{m}\binom{m}{k} x^{k} f\left(\frac{\beta_{m} k}{m+1-k}\right)
$$

where $x \in[0, \infty)$, $m \in \mathbb{N}, f \in C_{B}([0, \infty))$.
Application 7. If $I=J=[0,1], E(I)=B([0,1]), F(J)=C([0,1]), K=[0,1], p_{m}=\infty$, $x_{m, k}=\frac{k}{m+k}, \varphi_{m, k}(x)=\binom{m+k}{k}(1-x)^{m+1} x^{k}, m \in \mathbb{N}, k \in \mathbb{N}_{0}$, we obtain the Meyer-König and Zeller operators and we have that $u_{m}([0,1])=0, v_{m}([0,1])=0$ and $w_{m}([0,1])=\frac{1}{4(m+1)}$, $m \in \mathbb{N}$. We consider the nodes $y_{m, k}=\frac{k+\beta_{m}}{m+k+\beta_{m}}, m \in \mathbb{N}, k \in \mathbb{N}_{0}$, where $\left(\beta_{m}\right)_{m \geq 1}$ is a sequence of positive real numbers so that $\lim _{m \rightarrow \infty} \frac{\beta_{m}}{m+\beta_{m}}=0$. Then it is verified immediately that $\alpha_{m}=\frac{\beta_{m}}{m+\beta_{m}}, m \in \mathbb{N}$ and the operators $\left(\mathcal{K}_{m}\right)_{m \geq 1}$ have the form

$$
\left(\mathcal{K}_{m} f\right)(x)=\sum_{k=0}^{\infty}\binom{m+k}{k}(1-x)^{m+1} x^{k} f\left(\frac{k+\beta_{m}}{m+k+\beta_{m}}\right),
$$

where $f \in B([0,1]), x \in[0,1], m \in \mathbb{N}$ and $\delta_{m}^{\prime}=\sqrt{\frac{1}{4(m+1)}+\frac{\beta_{m}\left(4 m+5 \beta_{m}\right)}{\left(m+\beta_{m}\right)^{2}}}, m \in \mathbb{N}$.

References

[1] O. AGRATINI, Aproximare prin operatori liniari, Presa Universitară Clujeană, Cluj-Napoca, 2000 (Romanian).
[2] V.A. BASKAKOV, An example of a sequence of linear positive operators in the space of continuous functions, Dokl. Acad. Nauk, USSR, 113 (1957), 249-251.
[3] M. BECKER and R.J. NESSEL, A global approximation theorem for Meyer-König and Zeller operators, Math. Zeitschr., 160 (1978), 195-206.
[4] G. BLEIMANN, P.L. BUTZER AND L.A. HAHN, Bernstein-type operator approximating continuous functions on the semi-axis, Indag. Math., 42 (1980), 255-262.
[5] S.N. BERNSTEIN, Démonstration du théorème de Weierstrass fondée sur le calcul de probabilités, Commun. Soc. Math. Kharkow (2), 13 (1912-1913), 1-2.
[6] E.W. CHENEY AND A. SHARMA, Bernstein power series, Canadian J. Math., 16(2) (1964), 241252.
[7] Z. DITZIAN and V. TOTIK, Moduli of Smoothness, Springer Verlag, Berlin, 1987.
[8] J. FAVARD, Sur les multiplicateurs d'interpolation, J. Math. Pures Appl., 23(9) (1944), 219-247.
[9] M. FĂRCAŞ, An extension for the Bernstein-Stancu operators, An. Univ. Oradea Fasc. Mat., Tom XV (2008), 23-27.
[10] M. ISMAIL and C.P. MAY, On a family of approximation operators, J. Math. Anal. Appl., 63 (1978), 446-462.
[11] W. MEYER-KÖNIG and K. Zeller, Bernsteinsche Potenzreihen, Studia Math., 19 (1960), 89-94.
[12] G.M. MIRAKJAN, Approximation of continuous functions with the aid of polynomials, Dokl. Acad. Nauk SSSR, 31 (1941), 201-205 (Russian).
[13] C. MORTICI AND I. OANCEA, A nonsmooth extension for the Bernstein-Stancu operators and an application, Studia Univ. "Babess-Bolyai", Mathematica, LI(2) (2006), 69-81.
[14] M.W. MÜLLER, Die Folge der Gammaoperatoren, Dissertation, Stuttgart, 1967.
[15] O.T. POP, New properties of the Bernstein-Stancu operators, An. Univ. Oradea Fasc. Mat., Tom XI (2004), 51-60.
[16] O.T. POP, The generalization of Voronovskaja's theorem for a class of linear and positive operators, Rev. Anal. Num. Théor. Approx., 34(1) (2005), 79-91.
[17] O.T. POP, About a class of linear and positive operators, Carpathian J. Math., 21(1-2) (2005), 99-108.
[18] O.T. POP, About some linear and positive operators defined by infinite sum, Dem. Math., XXXIX(2) (2006), 377-388.
[19] O.T. POP, On operators of the type Bleimann, Butzer and Hahn, Anal. Univ. Timissoara, XLIII(1) (2005), 115-124.
[20] O.T. POP, The generalization of Voronovskaja's theorem for exponential operators, Creative Math \& Inf., 16 (2007), 54-62.
[21] O.T. POP, About a general property for a class of linear positive operators and applications, Rev. Anal. Num. Théor. Approx., 34(2) (2005), 175-180.
[22] O. SHISHA AND B. MOND, The degree of convergence of linear positive operators, Proc. Nat. Acad. Sci. USA, 60 (1968), 1196-1200.
[23] D.D. STANCU, Asupra unei generalizări a polinoamelor lui Bernstein, Studia Univ. Babeş-Bolyai, Ser. Math.-Phys., 14 (1969), 31-45 (Romanian).
[24] D.D. STANCU, GH. COMAN, O. AGRATINI AND R. TRÎMBIŢAŞ, Analiză numerică şi teoria aproximării, I, Presa Universitară Clujeană, Cluj-Napoca, 2001 (Romanian).
[25] O. SZÁSZ, Generalization of. S.N. Bernstein's polynomials to the infinite interval, J. Research, National Bureau of Standards, 45 (1950), 239-245.
[26] A.F. TIMAN, Theory of Approximation of Functions of Real Variable, New York: Macmillan Co., 1963, MR22\#8257.

