Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 6, Issue 3, Article 68, 2005

NEW SUBCLASSES OF MEROMORPHIC p-VALENT FUNCTIONS

B.A. FRASIN AND G. MURUGUSUNDARAMOORTHY
Department of Mathematics
Al al-Bayt University
P.O. Box: 130095
MAFRAQ, Jordan.
bafrasin@yahoo.com
Department of Mathematics,
Vellore Institute of Technology, Deemed University, Vellore, TN-632 014 India
gmsmoorthy@yahoo.com

Received 20 October, 2004; accepted 02 June, 2005
Communicated by A. Sofo

Abstract

In this paper, we introduce two subclasses $\Omega_{p}^{*}(\alpha)$ and $\Lambda_{p}^{*}(\alpha)$ of meromorphic p valent functions in the punctured disk $\mathcal{D}=\{z: 0<|z|<1\}$. Coefficient inequalities, distortion theorems, the radii of starlikeness and convexity, closure theorems and Hadamard product (or convolution) of functions belonging to these classes are obtained.

Key words and phrases: Meromorphic p-valent functions, Meromorphically starlike and convex functions.
2000 Mathematics Subject Classification 30C45, 30C50.

1. Introduction and Definitions

Let Σ_{p} denote the class of functions of the form:

$$
\begin{equation*}
f(z)=\frac{1}{z^{p}}+\sum_{n=1}^{\infty} a_{p+n-1} z^{p+n-1} \quad(p \in \mathbb{N}), \tag{1.1}
\end{equation*}
$$

which are analytic and p-valent in the punctured unit disk $\mathcal{D}=\{z: 0<|z|<1\}$. A function $f \in \Sigma_{p}$ is said to be in the class $\Omega_{p}(\alpha)$ of meromorphic p-valently starlike functions of order α in \mathcal{D} if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{-\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \quad(z \in \mathcal{D} ; 0 \leq \alpha<p ; p \in \mathbb{N}) \tag{1.2}
\end{equation*}
$$

ISSN (electronic): 1443-5756

(C) 2005 Victoria University. All rights reserved.

202-04

Furthermore, a function $f \in \Sigma_{p}$ is said to be in the class $\Lambda_{p}(\alpha)$ of meromorphic p-valently convex functions of order α in \mathcal{D} if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{-1-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha \quad(z \in \mathcal{D} ; 0 \leq \alpha<p ; p \in \mathbb{N}) \tag{1.3}
\end{equation*}
$$

The classes $\Omega_{p}(\alpha), \Lambda_{p}(\alpha)$ and various other subclasses of Σ_{p} have been studied rather extensively by Aouf et.al. [1] - [3], Joshi and Srivastava [4], Kulkarni et. al. [5], Mogra [6], Owa et. al. [7], Srivastava and Owa [8], Uralegaddi and Somantha [9], and Yang [10].

In the next section we derive sufficient conditions for $f(z)$ to be in the classes $\Omega_{p}(\alpha)$ and $\Lambda_{p}(\alpha)$, which are obtained by using coefficient inequalities.

2. Coefficient Inequalities

Theorem 2.1. Let $\sigma_{n}(p, k, \alpha)=(p+n+k-1)+|p+n+2 \alpha-k-1|$. If $f(z) \in \Sigma_{p}$ satisfies

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sigma_{n}(p, k, \alpha)\left|a_{p+n-1}\right|<2(p-\alpha) \tag{2.1}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<p)$ and some $k(k \geq p)$, then $f(z) \in \Omega_{p}(\alpha)$.
Proof. Suppose that 2.1) holds true for $\alpha(0 \leq \alpha<p)$ and $k(k \geq p)$. For $f(z) \in \Sigma_{p}$, it suffices to show that

$$
\left|\frac{\frac{z f^{\prime}(z)}{f(z)}+k}{\frac{z f^{\prime}(z)}{f(z)}+(2 \alpha-k)}\right|<1 \quad(z \in \mathcal{D}) .
$$

We note that

$$
\begin{aligned}
\left|\frac{\frac{z f^{\prime}(z)}{f(z)}+k}{\frac{z f^{\prime}(z)}{f(z)}+(2 \alpha-k)}\right| & =\left|\frac{k-p+\sum_{n=1}^{\infty}(p+n+k-1) a_{p+n-1} z^{2 p+n-1}}{2 \alpha-k-p+\sum_{n=1}^{\infty}(p+n+2 \alpha-k-1) a_{p+n-1} z^{2 p+n-1}}\right| \\
& \leq \frac{k-p+\sum_{n=1}^{\infty}(p+n+k-1)\left|a_{p+n-1}\right||z|^{2 p+n-1}}{p+k-2 \alpha-\sum_{n=1}^{\infty}|p+n+2 \alpha-k-1|\left|a_{p+n-1}\right||z|^{2 p+n-1}} \\
& <\frac{k-p+\sum_{n=1}^{\infty}(p+n+k-1)\left|a_{p+n-1}\right|}{p+k-2 \alpha-\sum_{n=1}^{\infty}|p+n+2 \alpha-k-1|\left|a_{p+n-1}\right|}
\end{aligned}
$$

The last expression is bounded above by 1 if

$$
k-p+\sum_{n=1}^{\infty}(p+n+k-1)\left|a_{p+n-1}\right|<p+k-2 \alpha-\sum_{n=1}^{\infty}|p+n+2 \alpha-k-1|\left|a_{p+n-1}\right|
$$

which is equivalent to our condition (2.1) of the theorem.
Example 2.1. The function $f(z)$ given by

$$
\begin{equation*}
f(z)=\frac{1}{z^{p}}+\sum_{n=1}^{\infty} \frac{4(p-\alpha)}{n(n+1) \sigma_{n}(p, k, \alpha)} z^{p+n-1} \quad(p \in \mathbb{N}) \tag{2.2}
\end{equation*}
$$

belongs to the class $\Omega_{p}(\alpha)$.
Since $f(z) \in \Omega_{p}(\alpha)$ if and only if $z f^{\prime}(z) \in \Lambda_{p}(\alpha)$, we can prove:
Theorem 2.2. If $f(z) \in \Sigma_{p}$ satisfies

$$
\begin{equation*}
\sum_{n=1}^{\infty}(p+n-1) \sigma_{n}(p, k, \alpha)\left|a_{p+n-1}\right|<2(p-\alpha) \tag{2.3}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<p)$ and some $k(k \geq p)$, then $f(z) \in \Lambda_{p}(\alpha)$.

Example 2.2. The function $f(z)$ given by

$$
\begin{equation*}
f(z)=\frac{1}{z^{p}}+\sum_{n=1}^{\infty} \frac{4(p-\alpha)}{n(n+1)(p+n-1) \sigma_{n}(p, k, \alpha)} z^{p+n-1} \tag{2.4}
\end{equation*}
$$

belongs to the class $\Lambda_{p}(\alpha)$.
In view of Theorem 2.1] and Theorem 2.2, we now define the subclasses:

$$
\Omega_{p}^{*}(\alpha) \subset \Omega_{p}(\alpha) \text { and } \Lambda_{p}^{*}(\alpha) \subset \Lambda_{p}(\alpha),
$$

which consist of functions $f(z) \in \Sigma_{p}$ satisfying the conditions 2.1) and 2.3), respectively.
Letting $p=1,1 \leq k \leq n+2 \alpha$, where $0 \leq \alpha<1$ in Theorem 2.1] and Theorem 2.2, we have the following corollaries:

Corollary 2.3. If $f(z) \in \Sigma_{1}$ satisfies

$$
\sum_{n=1}^{\infty}(n+\alpha)\left|a_{n}\right|<1-\alpha
$$

then $f(z) \in \Omega_{1}(\alpha)=\Sigma^{*}(\alpha)$ the class of meromorphically starlike functions of order α in \mathcal{D}.
Corollary 2.4. If $f(z) \in \Sigma_{1}$ satisfies

$$
\sum_{n=1}^{\infty} n(n+\alpha)\left|a_{n}\right|<1-\alpha
$$

then $f(z) \in \Lambda_{1}(\alpha)=\Sigma_{\mathcal{K}}^{*}(\alpha)$ the class of meromorphically convex functions of order α in \mathcal{D}.

3. Distortion Theorems

A distortion property for functions in the class $\Omega_{p}^{*}(\alpha)$ is contained in
Theorem 3.1. If the function $f(z)$ defined by (1.1) is in the class $\Omega_{p}^{*}(\alpha)$, then for $0<|z|=r<$ 1, we have

$$
\begin{align*}
\frac{1}{r^{p}}-\frac{2(p-\alpha)}{p+k+|p+2 \alpha-k|} r^{p} & \leq|f(z)| \tag{3.1}\\
& \leq \frac{1}{r^{p}}+\frac{2(p-\alpha)}{p+k+|p+2 \alpha-k|} r^{p},
\end{align*}
$$

and

$$
\begin{align*}
\frac{p}{r^{p+1}}-\frac{2 p(p-\alpha)}{p+k+|p+2 \alpha-k|} r^{p-1} & \leq\left|f^{\prime}(z)\right| \tag{3.2}\\
& \leq \frac{p}{r^{p+1}}+\frac{2 p(p-\alpha)}{p+k+|p+2 \alpha-k|} r^{p-1}
\end{align*}
$$

The bounds in (3.1) and (3.2) are attained for the functions $f(z)$ given by

$$
\begin{equation*}
f(z)=\frac{1}{z^{p}}+\frac{2(p-\alpha)}{p+k+|p+2 \alpha-k|} z^{p} \quad(p \in \mathbb{N} ; z \in \mathcal{D}) . \tag{3.3}
\end{equation*}
$$

Proof. Since $f \in \Omega_{p}^{*}(\alpha)$, from the inequality (2.1), we have

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|a_{p+n-1}\right| \leq \frac{2(p-\alpha)}{p+k+|p+2 \alpha-k|} \tag{3.4}
\end{equation*}
$$

Thus, for $0<|z|=r<1$, and making use of (3.4) we have

$$
\begin{align*}
|f(z)| & \leq\left|\frac{1}{z^{p}}\right|+\sum_{n=1}^{\infty}\left|a_{p+n-1}\right||z|^{p+n-1} \tag{3.5}\\
& \leq \frac{1}{r^{p}}+r^{p} \sum_{n=1}^{\infty}\left|a_{p+n-1}\right| \\
& \leq \frac{1}{r^{p}}+\frac{2(p-\alpha)}{p+k+|p+2 \alpha-k|} r^{p}
\end{align*}
$$

and

$$
\begin{align*}
|f(z)| & \geq\left|\frac{1}{z^{p}}\right|-\sum_{n=1}^{\infty}\left|a_{p+n-1}\right||z|^{p+n-1} \tag{3.6}\\
& \geq \frac{1}{r^{p}}-r^{p} \sum_{n=1}^{\infty}\left|a_{p+n-1}\right| \\
& \geq \frac{1}{r^{p}}-\frac{2(p-\alpha)}{p+k+|p+2 \alpha-k|} r^{p} .
\end{align*}
$$

We also observe that

$$
\begin{equation*}
\frac{p+k+|p+2 \alpha-k|}{p} \sum_{n=1}^{\infty}(p+n-1)\left|a_{p+n-1}\right| \leq 2(p-\alpha) \tag{3.7}
\end{equation*}
$$

which readily yields the following distortion inequalities:

$$
\begin{align*}
\left|f^{\prime}(z)\right| & \leq \frac{p}{|z|^{p+1}}+\sum_{n=1}^{\infty}(p+n-1)\left|a_{p+n-1}\right||z|^{p+n-2} \tag{3.8}\\
& \leq \frac{p}{r^{p+1}}+r^{p-1} \sum_{n=1}^{\infty}(p+n-1)\left|a_{p+n-1}\right| \\
& \leq \frac{p}{r^{p+1}}+\frac{2 p(p-\alpha)}{p+k+|p+2 \alpha-k|} r^{p-1}
\end{align*}
$$

and

$$
\begin{align*}
\left|f^{\prime}(z)\right| & \geq \frac{p}{|z|^{p+1}}-\sum_{n=1}^{\infty}(p+n-1)\left|a_{p+n-1}\right||z|^{p+n-2} \tag{3.9}\\
& \geq \frac{p}{r^{p+1}}-r^{p-1} \sum_{n=1}^{\infty}(p+n-1)\left|a_{p+n-1}\right| \\
& \geq \frac{p}{r^{p+1}}-\frac{2 p(p-\alpha)}{p+k+|p+2 \alpha-k|} r^{p-1} .
\end{align*}
$$

This completes the proof of Theorem 3.1
Similarly, for function $f(z) \in \Lambda_{p}^{*}(\alpha)$, and making use of $\sqrt{2.3}$, we can prove

Theorem 3.2. If the function $f(z)$ defined by (1.1) is in the class $\Lambda_{p}^{*}(\alpha)$, then for $0<|z|=r<$ 1 , we have

$$
\begin{align*}
\frac{1}{r^{p}}-\frac{2(p-\alpha)}{p[p+k+|p+2 \alpha-k|]} r^{p} & \leq|f(z)| \tag{3.10}\\
& \leq \frac{1}{r^{p}}+\frac{2(p-\alpha)}{p[p+k+|p+2 \alpha-k|]} r^{p}
\end{align*}
$$

and

$$
\begin{align*}
\frac{p}{r^{p+1}}-\frac{2(p-\alpha)}{p+k+|p+2 \alpha-k|} r^{p-1} & \leq\left|f^{\prime}(z)\right| \tag{3.11}\\
& \leq \frac{p}{r^{p+1}}+\frac{2(p-\alpha)}{p+k+|p+2 \alpha-k|} r^{p-1} .
\end{align*}
$$

The bounds in (3.10) and (3.11) are attained for the functions $f(z)$ given by

$$
\begin{equation*}
g(z)=\frac{1}{z^{p}}+\frac{2(p-\alpha)}{p[p+k-1+|p+2 \alpha-k|]} z^{p} \quad(p \in \mathbb{N} ; z \in \mathcal{D}) . \tag{3.12}
\end{equation*}
$$

4. Radii of Starlikeness and Convexity

The radii of starlikeness and convexity for the classes $\Omega_{p}^{*}(\alpha)$ is given by
Theorem 4.1. If the function $f(z)$ be defined by (1.1) is in the class $\Omega_{p}^{*}(\alpha)$, then $f(z)$ is meromorphically p-valently starlike of order $\delta(0 \leq \delta<p)$ in $|z|<r_{1}$, where

$$
\begin{equation*}
r_{1}=\inf _{n \geq 1}\left\{\frac{(p-\delta) \sigma_{n}(p, k, \alpha)}{2(3 p+n+1-\delta)(p-\alpha)}\right\}^{\frac{1}{2 p+n-1}} \quad(p \in \mathbb{N}) \tag{4.1}
\end{equation*}
$$

Furthermore, $f(z)$ is meromorphically p-valently convex of order $\delta(0 \leq \delta<p)$ in $|z|<r_{2}$, where

$$
\begin{equation*}
r_{2}=\inf _{n \geq 1}\left\{\frac{p(p-\delta) \sigma_{n}(p, k, \alpha)}{2[(p+n-1)[3 p+n-1-\delta](p-\alpha)}\right\}^{\frac{1}{2 p+n-1}} \quad(p \in \mathbb{N}) . \tag{4.2}
\end{equation*}
$$

The results (4.1) and (4.2) are sharp for the function $f(z)$ given by

$$
\begin{equation*}
f(z)=\frac{1}{z^{p}}+\frac{2(p-\alpha)}{\sigma_{n}(p, k, \alpha)} z^{p+n-1} \quad(p \in \mathbb{N} ; z \in \mathcal{D}) . \tag{4.3}
\end{equation*}
$$

Proof. It suffices to prove that

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}+p\right| \leq p-\delta \tag{4.4}
\end{equation*}
$$

for $|z| \leq r_{1}$. We have

$$
\begin{align*}
\left|\frac{z f^{\prime}(z)}{f(z)}+p\right| & =\left|\frac{\sum_{n=1}^{\infty}(2 p+n-1) a_{p+n-1} z^{p+n-1}}{\frac{1}{z^{p}}+\sum_{n=1}^{\infty} a_{p+n-1} z^{p+n-1}}\right| \tag{4.5}\\
& \leq \frac{\sum_{n=1}^{\infty}(2 p+n-1)\left|a_{p+n-1}\right||z|^{2 p+n-1}}{1-\sum_{n=1}^{\infty}\left|a_{p+n-1}\right||z|^{2 p+n-1}} .
\end{align*}
$$

Hence (4.5) holds true if

$$
\begin{equation*}
\sum_{n=1}^{\infty}(2 p+n-1)\left|a_{p+n-1}\right||z|^{2 p+n-1} \leq(p-\delta)\left(1-\sum_{n=1}^{\infty}\left|a_{p+n-1}\right||z|^{2 p+n-1}\right) \tag{4.6}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{3 p+n-1-\delta}{(p-\delta)}\left|a_{p+n-1}\right||z|^{2 p+n-1} \leq 1 \tag{4.7}
\end{equation*}
$$

with the aid of (2.1), (4.7) is true if

$$
\begin{equation*}
\frac{3 p+n-1-\delta}{(p-\delta)}|z|^{2 p+n-1} \leq \frac{\sigma_{n}(p, k, \alpha)}{2(p-\alpha)} \quad(n \geq 1) \tag{4.8}
\end{equation*}
$$

Solving (4.8) for $|z|$, we obtain

$$
\begin{equation*}
|z|<\left\{\frac{(p-\delta) \sigma_{n}(p, k, \alpha)}{2(3 p+n+1-\delta)(p-\alpha)}\right\}^{\frac{1}{2 p+n-1}} \quad(n \geq 1) \tag{4.9}
\end{equation*}
$$

In precisely the same manner, we can find the radius of convexity asserted by (4.2), by requiring that

$$
\begin{equation*}
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+p+1\right| \leq p-\delta, \tag{4.10}
\end{equation*}
$$

in view of (2.1). This completes the proof of Theorem 4.1 .
Similarly, we can get the radii of starlikeness and convexity for functions in the class $\Lambda_{p}^{*}(\alpha)$.
Theorem 4.2. If the function $f(z)$ be defined by $\sqrt{1.1})$ is in the class $\Lambda_{p}^{*}(\alpha)$, then $f(z)$ is meromorphically p-valently starlike of order $\delta(0 \leq \delta<p)$ in $|z|<r_{3}$, where

$$
\begin{equation*}
r_{3}=\inf _{n \geq 1}\left\{\frac{(p-\delta)(p+n-1) \sigma_{n}(p, k, \alpha)}{2(3 p+n+1-\delta)(p-\alpha)}\right\}^{\frac{1}{2 p+n-1}} \quad(p \in \mathbb{N}) . \tag{4.11}
\end{equation*}
$$

Furthermore, $f(z)$ is meromorphically p-valently convex of order $\delta(0 \leq \delta<p)$ in $|z|<r_{4}$, where

$$
\begin{equation*}
r_{4}=\inf _{n \geq 1}\left\{\frac{p(p-\delta)(p+n-1) \sigma_{n}(p, k, \alpha)}{2[(p+n-1)[3 p+n-1-\delta](p-\alpha)}\right\}^{\frac{1}{2 p+n-1}} \quad(p \in \mathbb{N}) . \tag{4.12}
\end{equation*}
$$

The results (4.11) and (4.12) are sharp for the function $g(z)$ given by

$$
\begin{equation*}
g(z)=\frac{1}{z^{p}}+\frac{2(p-\alpha)}{(p+n-1) \sigma_{n}(p, k, \alpha)} z^{p+n-1} \quad(p \in \mathbb{N} ; z \in \mathcal{D}) . \tag{4.13}
\end{equation*}
$$

5. Closure Theorems

Let the functions $f_{j}(z)$ be defined, for $j \in\{1,2, \ldots, m\}$,by

$$
\begin{equation*}
f_{j}(z)=\frac{1}{z^{p}}+\sum_{n=1}^{\infty} a_{p+n-1, j} z^{p+n-1}, \quad(z \in \mathcal{D}) \tag{5.1}
\end{equation*}
$$

Now, we shall prove the following results for the closure of functions in the classes $\Omega_{p}^{*}(\alpha)$ and $\Lambda_{p}^{*}(\alpha)$.
Theorem 5.1. Let the functions $f_{j}(z), j \in\{1,2, \ldots, m\}$, defined by 5.1) be in the class $\Omega_{p}^{*}(\alpha)$. Then the function $h(z) \in \Omega_{p}^{*}(\alpha)$ where

$$
\begin{equation*}
\left.h(z)=\sum_{j=1}^{m} b_{j} f_{j}(z), \quad b_{j} \geq 0 \quad \text { and } \sum_{j=1}^{m} b_{j}=1\right) . \tag{5.2}
\end{equation*}
$$

Proof. From (5.2), we can write $h(z)$ as

$$
\begin{equation*}
h(z)=\frac{1}{z^{p}}+\sum_{n=1}^{\infty} c_{p+n-1} z^{p+n-1}, \tag{5.3}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{p+n-1}=\sum_{j=1}^{m} b_{j} a_{p+n-1, j}, \quad j \in\{1,2, \ldots, m\} . \tag{5.4}
\end{equation*}
$$

Since $f_{j}(z) \in \Omega_{p}^{*}(\alpha),(j \in\{1,2, \ldots, m\})$, from (2.1), we have

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left[\frac{\sigma_{n}(p, k, \alpha)}{2(p-\alpha)}\right] & \left(\sum_{j=1}^{m} b_{j}\left|a_{p+n-1, j}\right|\right) \\
& =\sum_{j=1}^{m} b_{j}\left(\sum_{n=1}^{\infty} \frac{\sigma_{n}(p, k, \alpha)}{2(p-\alpha)}\left|a_{p+n-1, j}\right|\right) \\
& \leq \sum_{j=1}^{m} b_{j}=1,
\end{aligned}
$$

which shows that $h(z) \in \Omega_{p}^{*}(\alpha)$. This completes the proof of Theorem 5.1.
Using the same technique as in the proof of Theorem5.1, we have
Theorem 5.2. Let the functions $f_{j}(z), j \in\{1,2, \ldots, m\}$, defined by (5.1) be in the class $\Lambda_{p}^{*}(\alpha)$. Then the function $h(z) \in \Lambda_{p}^{*}(\alpha)$, where $h(z)$ defined by (5.2).

Theorem 5.3. Let

$$
\begin{equation*}
f_{p-1}(z)=\frac{1}{z^{p}} \quad(z \in \mathcal{D}) \tag{5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{p+n-1}(z)=\frac{1}{z^{p}}+\frac{2(p-\alpha)}{\sigma_{n}(p, k, \alpha)} z^{p+n-1} \tag{5.6}
\end{equation*}
$$

where $n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\} ; z \in \mathcal{D}$. Then $f(z) \in \Omega_{p}^{*}(\alpha)$ if and only if it can be expressed in the form

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} \lambda_{p+n-1} f_{p+n-1}(z) \tag{5.7}
\end{equation*}
$$

where $\lambda_{p+n-1} \geq 0,\left(n \in \mathbb{N}_{0}\right)$ and $\sum_{n=0}^{\infty} \lambda_{p+n-1}=1$.
Proof. From (5.5), (5.6) and (5.7), it is easily seen that

$$
\begin{align*}
f(z) & =\sum_{n=0}^{\infty} \lambda_{p+n-1} f_{n+p-1}(z) \tag{5.8}\\
& =\frac{1}{z^{p}}+\frac{2(p-\alpha)}{\sigma_{n}(p, k, \alpha)} \lambda_{p+n-1} z^{p+n-1} .
\end{align*}
$$

Since

$$
\sum_{n=1}^{\infty} \frac{\sigma_{n}(p, k, \alpha)}{2(p-\alpha)} \cdot \frac{2(p-\alpha)}{\sigma_{n}(p, k, \alpha)} \lambda_{p+n-1}=\sum_{n=1}^{\infty} \lambda_{p+n-1}=1-\lambda_{p-1} \leq 1,
$$

it follows from Theorem 2.1 that the function $f(z)$ given by 5.6 is in the class $\Omega_{p}^{*}(\alpha)$.

Conversely, let us suppose that $f(z) \in \Omega_{p}^{*}(\alpha)$. Since

$$
\left|a_{p+n-1}\right| \leq \frac{2(p-\alpha)}{\sigma_{n}(p, k, \alpha)} \quad(n \geq 1)
$$

setting

$$
\lambda_{p+n-1}=\frac{\sigma_{n}(p, k, \alpha)}{2(p-\alpha)}\left|a_{p+n-1}\right|, \quad(n \geq 1)
$$

and

$$
\lambda_{p-1}=1-\sum_{n=1}^{\infty} \lambda_{p+n-1},
$$

it follows that

$$
f(z)=\sum_{n=0}^{\infty} \lambda_{p+n-1} f_{p+n-1}(z) .
$$

This completes the proof of the theorem.
Similarly, we can prove the same result for the class $\Lambda_{p}^{*}(\alpha)$.
Theorem 5.4. Let

$$
\begin{equation*}
g_{p-1}(z)=\frac{1}{z^{p}} \quad(z \in \mathcal{D}) \tag{5.9}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{p+n-1}(z)=\frac{1}{z^{p}}+\frac{2(p-\alpha)}{(p+n-1) \sigma_{n}(p, k, \alpha)} z^{p+n-1} \tag{5.10}
\end{equation*}
$$

where $n \in \mathbb{N}_{0}$ and $z \in \mathcal{D}$. Then $g(z) \in \Lambda_{p}^{*}(\alpha)$ if and only if it can be expressed in the form

$$
\begin{equation*}
g(z)=\sum_{n=0}^{\infty} \lambda_{p+n-1} g_{p+n-1}(z) \tag{5.11}
\end{equation*}
$$

where $\lambda_{p+n-1} \geq 0,\left(n \in \mathbb{N}_{0}\right)$ and $\sum_{n=0}^{\infty} \lambda_{p+n-1}=1$.
Next, we state a theorem which exhibits the fact that the classes $\Omega^{*}(\alpha)$ and $\Lambda_{p}^{*}(\alpha)$ are closed under convex linear combinations. The proof is fairly straightforward so we omit it.
Theorem 5.5. Suppose that $f(z)$ and $g(z)$ are in the class $\Omega^{*}(\alpha)$ (or in $\Lambda_{p}^{*}(\alpha)$). Then the function $h(z)$ defined by

$$
\begin{equation*}
h(z)=t f(z)+(1-t) g(z), \quad(0 \leq t \leq 1) \tag{5.12}
\end{equation*}
$$

is also in the class $\Omega^{*}(\alpha)$ (or in $\Lambda_{p}^{*}(\alpha)$).

6. Convolution Properties

For functions

$$
\begin{equation*}
f_{j}(z)=\frac{1}{z^{p}}+\sum_{n=1}^{\infty} a_{p+n-1, j} z^{p+n-1}, \quad(j=1,2) \tag{6.1}
\end{equation*}
$$

belonging to the class Σ_{p}, we denote by $\left(f_{1} * f_{2}\right)(z)$ the Hadamard product (or convolution) of the functions $f_{1}(z)$ and $f_{2}(z)$, that is,

$$
\begin{equation*}
\left(f_{1} * f_{2}\right)(z)=\frac{1}{z^{p}}+\sum_{n=1}^{\infty} a_{p+n-1,1} a_{p+n-1,2} z^{p+n-1} \tag{6.2}
\end{equation*}
$$

Finally, we prove the following.

Theorem 6.1. Let each of the functions $f_{j}(z)(j=1,2)$ defined by (6.1) be in the class $\Omega^{*}(\alpha)$. Then $\left(f_{1} * f_{2}\right)(z) \in \Omega^{*}(\eta)$, where
(6.3) $\frac{1}{2}(k+1-p-n) \leq \eta=\frac{p\left([p+k+|p+2 \alpha-k|]^{2}-4(p-\alpha)^{2}\right)}{4(p-\alpha)^{2}+[p+k+|p+2 \alpha-k|]^{2}},(k \geq p ; p, n \in \mathbb{N})$.

The result is sharp.
Proof. For $f_{j}(z) \in \Omega^{*}(\alpha)(j=1,2)$, we need to find the largest η such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\sigma_{n}(p, k, \eta)}{2(p-\eta)}\left|a_{p+n-1,1}\right|\left|a_{p+n-1,2}\right| \leq 1 \tag{6.4}
\end{equation*}
$$

From (2.1), we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\sigma_{n}(p, k, \alpha)}{2(p-\alpha)}\left|a_{p+n-1,1}\right| \leq 1 \tag{6.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\sigma_{n}(p, k, \alpha)}{2(p-\alpha)}\left|a_{p+n-1,2}\right| \leq 1 . \tag{6.6}
\end{equation*}
$$

Therefore, by the Cauchy-Schwarz inequality, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\sigma_{n}(p, k, \alpha)}{2(p-\alpha)} \sqrt{\left|a_{p+n-1,1}\right|\left|a_{p+n-1,2}\right|} \leq 1 \tag{6.7}
\end{equation*}
$$

Thus it is sufficient to show that

$$
\begin{equation*}
\frac{\sigma_{n}(p, k, \eta)}{2(p-\eta)}\left|a_{p+n-1,1}\right|\left|a_{p+n-1,2}\right| \leq \frac{\sigma_{n}(p, k, \alpha)}{2(p-\alpha)} \sqrt{\left|a_{p+n-1,1}\right|\left|a_{p+n-1,2}\right|}, \quad(n \geq 1) \tag{6.8}
\end{equation*}
$$

that is, that

$$
\begin{equation*}
\sqrt{\left|a_{p+n-1,1}\right|\left|a_{p+n-1,2}\right|} \leq \frac{(p-\eta) \sigma_{n}(p, k, \alpha)}{(p-\alpha) \sigma_{n}(p, k, \eta)}, \quad(n \geq 1) \tag{6.9}
\end{equation*}
$$

From (6.7), we have

$$
\sqrt{\left|a_{p+n-1,1}\right|\left|a_{p+n-1,2}\right|} \leq \frac{2(p-\alpha)}{\sigma_{n}(p, k, \alpha)} .
$$

Consequently, we need only to prove that

$$
\begin{equation*}
\frac{2(p-\alpha)}{\sigma_{n}(p, k, \alpha)} \leq \frac{(p-\eta) \sigma_{n}(p, k, \alpha)}{(p-\alpha) \sigma_{n}(p, k, \eta)}, \quad(n \geq 1) . \tag{6.10}
\end{equation*}
$$

Let $\eta \geq \frac{1}{2}(k+1-p-n)$, where $k \geq p$ and $p, n \in \mathbb{N}$. It follows from 6.10p that

$$
\begin{equation*}
\eta \leq \frac{p\left[\sigma_{n}(p, k, \alpha)\right]^{2}-4(p-\alpha)^{2}(p+n-1)}{4(p-\alpha)^{2}+\left[\sigma_{n}(p, k, \alpha)\right]^{2}}=\Psi(n) . \tag{6.11}
\end{equation*}
$$

Since $\Psi(k)$ is an increasing function of $n(n \geq 1)$, letting $n=1$ in (6.11), we obtain

$$
\begin{equation*}
\eta \leq \Psi(1)=\frac{p\left([p+k+|p+2 \alpha-k|]^{2}-4(p-\alpha)^{2}\right)}{4(p-\alpha)^{2}+[p+k+|p+2 \alpha-k|]^{2}} \tag{6.12}
\end{equation*}
$$

which proves the main assertion of Theorem 6.1.
Finally, by taking the functions

$$
\begin{equation*}
f_{j}(z)=\frac{1}{z^{p}}+\frac{2(p-\alpha)}{\sigma_{n}(p, k, \alpha)} z^{p+n-1}, \quad(j=1,2) \tag{6.13}
\end{equation*}
$$

we can see the result is sharp.
Similarly, and as the above proof, we can prove the following.
Theorem 6.2. Let each of the functions $f_{j}(z)(j=1,2)$ defined by 6.1) be in the class $\Lambda_{p}^{*}(\alpha)$. Then $\left(f_{1} * f_{2}\right)(z) \in \Lambda_{p}^{*}(\xi)$, where

$$
\text { 4) } \frac{1}{2}(k+1-p-n) \leq \xi=\frac{p\left(p[p+k+|p+2 \alpha-k|]^{2}-4(p-\alpha)^{2}\right)}{4(p-\alpha)^{2}+p[p+k+|p+2 \alpha-k|]^{2}},(k \geq p ; p, n \in \mathbb{N}) \text {. }
$$

The result is sharp for the functions

$$
\begin{equation*}
f_{j}(z)=\frac{1}{z^{p}}+\frac{2(p-\alpha)}{(p+n-1) \sigma_{n}(p, k, \alpha)} z^{p+n-1}, \quad(j=1,2) . \tag{6.15}
\end{equation*}
$$

References

[1] M.K. AOUF, New criteria for multivalent meromorphic starlike functions of order alpha, Proc. Japan. Acad. Ser. A. Math. Sci., 69 (1993), 66-70.
[2] M.K. AOUF and H.M. HOSSEN, New criteria for meromorphic p-valent starlike functions, Tsukuba J. Math., 17 (1993) 481-486.
[3] M.K. AOUF and H.M. SRIVASTAVA, A new criteria for meromorphic p-valent convex functions of order alpha, Math. Sci. Res. Hot-line, 1(8) (1997), 7-12.
[4] S.B. JOSHI AND H.M. SRIVASTAVA, A certain family of meromorphically multivalent functions, Computers Math. Appl., 38 (1999), 201-211.
[5] S.R. KUKARNI, U.H. NAIK and H.M. SRIVASTAVA, A certain class of meromorphically p valent quasi-convex functions, Pan Amer. Math. J., 8(1) (1998), 57-64.
[6] M.L. MOGRA, Meromorphic multivalent functions with positive coefficients I and II, Math. Japon., 35 (1990), 1-11 and 1089-1098.
[7] S. OWA, H.E. DARWISH AND M.K. AOUF, Meromorphic multivalent functions with positive and fixed second coefficients, Math. Japon., 46 (1997), 231-236.
[8] H.M. SRIVASTAVA and S. OWA (Eds.), Current Topics in Analytic Function Theory, World Scientific, Singapore/New Jersey/London/Hong Kong, (1992).
[9] B.A. URALEGADDI and C. SOMANATHA, Certain classes of meromorphic multivalent functions, Tamkang J. Math., 23 (1992), 223-231.
[10] D.G. YANG, On new subclasses of meromorphic p-valent functions, J. Math. Res. Exposition, 15 (1995) 7-13.

