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ABSTRACT. In this paper, an integral inequality is studied. An answer to an open problem
proposed by Feng Qi is given.
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In [5], Qi studied a very interesting integral inequality and proved the following result

Theorem 1. Letf(x) be continuous on[a, b], differentiable on(a, b) andf(a) = 0. If f ′(x) ≥ 1
for x ∈ (a, b), then

(1)
∫ b

a

[f(x)]3 dx ≥
[∫ b

a

f(x) dx

]2

.

If 0 ≤ f ′(x) ≤ 1, then the inequality (1) reverses.

Qi extended this result to a more general case [5], and obtained the following inequality (2).

Theorem 2. Let n be a positive integer. Supposef(x) has continuous derivative of then-th
order on the interval[a, b] such thatf (i)(a) ≥ 0 where0 ≤ i ≤ n− 1, andf (n)(x) ≥ n!, then

(2)
∫ b

a

[f(x)]n+2 dx ≥
[∫ b

a

f(x) dx

]n+1

.

Qi then proposed an open problem: Under what condition is the inequality (2) still true ifn
is replaced by any positive real numberr?

Some new results on this subject can be found in [1], [2], [3], and [4].
We now give an answer to Qi’s open problem. The following result is a generalization of

Theorem 1.
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Theorem 3. Let p be a positive number andf(x) be continuous on[a, b] and differentiable on

(a, b) such thatf(a) = 0. If [f
1
p ]′(x) ≥ (p + 1)

1
p
−1 for x ∈ (a, b), then

(3)
∫ b

a

[f(x)]p+2 dx ≥
[∫ b

a

f(x) dx

]p+1

.

If 0 ≤ [f
1
p ]′(x) ≤ (p + 1)

1
p
−1 for x ∈ (a, b), then the inequality (3) reverses.

Proof. Suppose that[f
1
p ]′(x) ≥ 0, x ∈ (a, b). Thenf

1
p (x) is a non-decreasing function. It

follows thatf(x) ≥ 0 for all x ∈ (a, b].
If [f

1
p ]′(x) ≥ (p + 1)

1
p
−1 for x ∈ (a, b), thenf(x) > 0 for x ∈ (a, b]. Thus both sides of

(3) are not 0. Now consider the quotient of both sides of (3). By using Cauchy’s Mean Value
Theorem twice, we have∫ b

a
[f(x)]p+2 dx[∫ b

a
f(x) dx

]p+1 =
[f(b1)]

p+1

(p + 1)
[∫ b1

a
f(x) dx

]p (a < b1 < b)(4)

=

(
[f(b1)]

1+ 1
p

(p + 1)
1
p
∫ b1

a
f(x) dx

)p

(5)

=

(1 + 1
p
)[f(b2)]

1
p f ′(b2)

(p + 1)
1
p f(b2)

p

(a < b2 < b1)(6)

=
(
(1 + p)1− 1

p [f
1
p ]′(b2)

)p

.(7)

≥ 1.(8)

So the inequality (3) holds.
If f ≡ 0 on [a, b], then it is trivial that the equation in (3) holds. Suppose now thatf is

not identically 0 on[a, b]. Sincef(x) is non-decreasing and non-negative, we may assume
f(x) > 0, x ∈ (a, b] (otherwise we can finda1 such thata1 < b, f(a1) = 0 andf(x) > 0 for
a1 < x < b and hence we only need to considerf on (a1, b]). This implies that both sides of (3)
are not 0. Now if0 ≤ [f

1
p ]′(x) ≤ (p + 1)

1
p
−1, then(1 + p)1− 1

p [f
1
p ]′(b2) ≤ 1, which, together

with (7), implies that the inequality (3) reverses. �

Note that ifp = 1, then (3) becomes (1). So Theorem 1 is just a special case of Theorem 3.
In Theorem 1, we see that iff ′(x) = 1, thenf(x) = x − a and the equation in (1) holds.

A very natural question can be asked the same way: For what polynomialf(x) = C(x − a)n

does the equation in (2) hold? It is easy to see thatC = 1
(n+1)(n−1) . Then-th derivative of this

polynomial is a constant n!
(n+1)(n−1) . This motivates the following theorem.

Theorem 4. Supposef(x) has derivative of then-th order on the interval[a, b] such that
f (i)(a) = 0 for i = 0, 1, 2, ..., n − 1. If f (n)(x) ≥ n!

(n+1)(n−1) and f (n)(x) is increasing, then

the inequality (2) holds. If0 ≤ f (n)(x) ≤ n!
(n+1)(n−1) and f (n)(x) is decreasing, then the in-

equality (2) reverses.

Proof. Suppose thatf (n)(x) ≥ n!
(n+1)(n−1) . It is easy to see that

f(x) ≥ (x− a)n

(n + 1)n−1
.
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Using the same argument as in the proof of Theorem 3, we have∫ b

a
[f(x)]n+2 dx[∫ b

a
f(x) dx

]n+1 =
[f(b1)]

n+1

(n + 1)
[∫ b1

a
f(x) dx

]n (a < b1 < b)(9)

≥
(b1−a)n

(n+1)n−1 [f(b1)]
n

(n + 1)
[∫ b1

a
f(x) dx

]n(10)

=

(
(b1 − a)f(b1)

(n + 1)
∫ b1

a
f(x) dx

)n

.(11)

Now for the term in (11), by using Cauchy’s Mean Value Theorem several times, we will have

(b1 − a)f(b1)∫ b1
a

f(x) dx
= 1 +

(b2 − a)f ′(b2)

f(b2)
(a < b2 < b1)(12)

= 2 +
(b3 − a)f ′′(b3)

f ′(b3)
(a < b3 < b2)(13)

...(14)

= n +
(bn+1 − a)f (n)(bn+1)

f (n−1)(bn+1)
(a < bn+1 < bn).(15)

But
f (n−1)(t) = f (n−1)(t)− f (n−1)(a) = f (n)(t1)(t− a)

for somet1 ∈ (a, t). If f (n)(x) is increasing, thenf (n)(t1) ≤ f (n)(t). Therefore

(16) f (n−1)(t) ≤ f (n)(t)(t− a).

Applying (16) to (15) yields

(17)
(b1 − a)f(b1)∫ b1

a
f(x) dx

≥ n + 1.

(2) follows from (17) and (11).
Suppose that0 ≤ f (n)(x) ≤ n!

(n+1)(n−1) and fn(x) is decreasing. It is clearf (n−1)(t) is

increasing. Iff (n−1)(t) = 0 for somet ∈ (a, b), thenf (n−1)(s) = 0 for s ∈ (a, t). Hence
f (i)(s) = 0 for s ∈ (a, t) and0 ≤ s ≤ n − 1. So we can assume thatf (n−1)(x) 6= 0 for
x ∈ (a, b). By Rolle’s Theorem, this means thatf (i)(x) 6= 0 for x ∈ (a, b) and for0 ≤ i ≤ n−1.
Now that the inequalities (10) and (16) reverse, it follows that the inequality (17) reverses, so
does (2). �

Unfortunately there is an additional hypothesis on monotonicity in Theorem 4. Our conjec-
ture is that this hypothesis could be dropped. But we are not able to prove it for the moment.
However, we have

Theorem 5. Supposef(x) has derivative of then-th order on the interval[a, b] such that,
f (i)(a) = 0 for i = 0, 1, 2, ..., n− 1. If f (n)(x) ≥ (n+1)!

nn , then the inequality (2) holds.

Proof. If f(x) ≥ (n+1)!
nn , then

(18) f(x) ≥ n + 1

nn
(x− a)n.
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(11) now becomes

(19)

∫ b

a
[f(x)]n+2 dx[∫ b

a
f(x) dx

]n+1 ≥

(
(b1 − a)f(b1)

n
∫ b1

a
f(x) dx

)n

.

Note that all the terms in (15) are positive, so we have

(20)
(b1 − a)f(b1)∫ b1

a
f(x) dx

≥ n.

The inequality (2) follows from (19) and (20). �

The same argument can be used to prove the following result obtained by Pečaríc and Pe-
jković [3, Theorem 2].

Theorem 6. Let p be a positive number andf(x) be continuous on[a, b] and differentiable on
(a, b) such thatf(a) ≥ 0. If f ′(x) ≥ p(x− a)p−1 for x ∈ (a, b), then the inequality (3) holds.

Proof. Suppose thatf ′(x) ≥ p(x− a)p−1 for x ∈ (a, b). Consider the quotient of the two sides
of (3). By using Cauchy’s Mean Value Theorem three times, we have∫ b

a
[f(x)]p+2 dx[∫ b

a
f(x) dx

]p+1 =
[f(b1)]

p+1

(p + 1)
[∫ b1

a
f(x) dx

]p (a < b1 < b)(21)

=
[f(b2)]

pf ′(b2)

(p− 1)
[∫ b2

a
f(x) dx

]p−1 (a < b2 < b1)(22)

≥

(
f(b2)(b2 − a)∫ b2

a
f(x) dx)

)p−1

(23)

=

(
1 +

f ′(b3)(b3 − a)

f(b3)

)p−1

(24)

≥ 1.(25)

This completes the proof. �
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