Journal of Inequalities in Pure and Applied Mathematics http://jipam.vu.edu.au/

Volume 7, Issue 5, Article 157, 2006

A NOTE ON WEIGHTED IDENTRIC AND LOGARITHMIC MEANS

KENDALL C. RICHARDS AND HILARI C. TIEDEMAN
Department of Mathematics
Southwestern University
Georgetown, Texas, 78627
richards@southwestern.edu

Received 28 July, 2006; accepted 25 August, 2006
Communicated by P.S. Bullen

Abstract

Recently obtained inequalities [12] between the Gaussian hypergeometric function and the power mean are applied to establish new sharp inequalities involving the weighted identric, logartithmic, and power means.

Key words and phrases: Identric mean, Logarithmic mean, Hypergeometric function.
2000 Mathematics Subject Classification. 26D07, 26D15, 33 C05.

1. Introduction

For $x, y>0$, the weighted power mean of order λ is given by

$$
\mathcal{M}_{\lambda}(\omega ; x, y) \equiv\left[(1-\omega) x^{\lambda}+\omega y^{\lambda}\right]^{\frac{1}{\lambda}}
$$

with $\omega \in(0,1)$ and $\mathcal{M}_{0}(\omega ; x, y) \equiv \lim _{\lambda \rightarrow 0} \mathcal{M}_{\lambda}(\omega ; x, y)=x^{1-\omega} y^{\omega}$. Since $\lambda \mapsto \mathcal{M}_{\lambda}$ is increasing, it follows that

$$
\mathcal{G}(x, y) \leq \mathcal{M}_{\lambda}\left(\frac{1}{2} ; x, y\right) \leq \mathcal{A}(x, y), \quad \text { for } 0 \leq \lambda \leq 1
$$

where $\mathcal{G}(x, y) \equiv \mathcal{M}_{0}\left(\frac{1}{2} ; x, y\right)$ and $\mathcal{A}(x, y) \equiv \mathcal{M}_{1}\left(\frac{1}{2} ; x, y\right)$ are the well-known geometric and arithmetic means, respectively (e.g., see [4, p. 203]). Thus, \mathcal{M}_{λ} provides a refinement of the classical inequality $\mathcal{G} \leq \mathcal{A}$. It is natural to seek other bivariate means that separate \mathcal{G} and \mathcal{A}. Two such means are the logarithmic mean and the identric mean. For distinct $x, y>0$, the logarithmic mean \mathcal{L} is given by

$$
\mathcal{L}(x, y) \equiv \frac{x-y}{\ln (x)-\ln (y)},
$$

[^0]and $\mathcal{L}(x, x) \equiv x$. The integral representation
\[

$$
\begin{equation*}
\mathcal{L}(1,1-r)=\left(\int_{0}^{1}(1-r t)^{-1} d t\right)^{-1}, \quad r<1 \tag{1.1}
\end{equation*}
$$

\]

is due to Carlson [6]. Similarly, the identric mean \mathcal{I} is defined by

$$
\mathcal{I}(x, y) \equiv \frac{1}{e}\left(\frac{x^{x}}{y^{y}}\right)^{\frac{1}{x-y}}
$$

$\mathcal{I}(x, x) \equiv x$, and has the integral representation

$$
\begin{equation*}
\mathcal{I}(1,1-r)=\exp \left(\int_{0}^{1} \ln (1-r t) d t\right), \quad r<1 \tag{1.2}
\end{equation*}
$$

The inequality $\mathcal{G} \leq \mathcal{L} \leq \mathcal{A}$ was refined by Carlson [6] who showed that $\mathcal{L}(x, y) \leq$ $\mathcal{M}_{1 / 2}\left(\frac{1}{2} ; x, y\right)$. Lin [8] then sharpened this by proving $\mathcal{L}(x, y) \leq \mathcal{M}_{1 / 3}\left(\frac{1}{2} ; x, y\right)$. Shortly thereafter, Stolarsky [14] introduced the generalized logarithmic mean which has since come to bear his name. These and other efforts (e.g., [11, 15]) led to many interesting results, including the following well-known inequalities:

$$
\begin{equation*}
\mathcal{G} \leq \mathcal{L} \leq \mathcal{M}_{1 / 3} \leq \mathcal{M}_{2 / 3} \leq \mathcal{I} \leq \mathcal{A}, \tag{1.3}
\end{equation*}
$$

where each is evaluated at (x, y), and the power means have equal weights $\omega=1-\omega=1 / 2$. It also should be noted that the indicated orders of the power means in (1.3), namely $1 / 3$ and $2 / 3$, are sharp. Following the work of Leach and Sholander [7], Páles [10] gave a complete ordering of the general Stolarsky mean which provides an elegant generalization of (1.3). (For a more complete discussion of inequalites involving means, see [4].)

2. Main Results

Our main objective is to present a generalization of (1.3) using the weighted logarithmic and identric means. Moreover, sharp power mean bounds are provided. This can be accomplished using the Gaussian hypergeometric function ${ }_{2} F_{1}$ which is given by

$$
{ }_{2} F_{1}(\alpha, \beta ; \gamma ; r) \equiv \sum_{n=0}^{\infty} \frac{(\alpha)_{n}(\beta)_{n}}{(\gamma)_{n} n!} r^{n}, \quad|r|<1,
$$

where $(\alpha)_{n}$ is the Pochhammer symbol defined by $(\alpha)_{0}=1,(\alpha)_{1}=\alpha$, and $(\alpha)_{n+1}=(\alpha)_{n}(\alpha+$ n), for $n \in \mathbb{N}$. For $\gamma>\beta>0,{ }_{2} F_{1}$ has the following integral representation due to Euler (see [2]):

$$
{ }_{2} F_{1}(\alpha, \beta ; \gamma ; r)=\frac{\Gamma(\gamma)}{\Gamma(\gamma-\beta) \Gamma(\beta)} \int_{0}^{1} t^{\beta-1}(1-t)^{\gamma-\beta-1}(1-r t)^{-\alpha} d t
$$

which, by continuation, extends the domain of ${ }_{2} F_{1}$ to all $r<1$. Here $\Gamma(z) \equiv \int_{0}^{\infty} t^{z-1} e^{-t} d t$ for $z>0 ; \Gamma(n)=(n-1)$! for $n \in \mathbb{N}$. Inequalities relating the Gaussian hypergeometric function to various means have been widely studied (see [1, 2, 3, 5, 12]). Of particular use here is the hypergeometric mean of order a discussed by Carlson in [5] and defined by

$$
\begin{aligned}
\mathcal{H}_{a}(\omega ; c ; x, y) & \equiv\left[\frac{\Gamma(c)}{\Gamma\left(c \omega^{\prime}\right) \Gamma(c \omega)} \int_{0}^{1} t^{c \omega-1}(1-t)^{c \omega^{\prime}-1}(x(1-t)+y t)^{a} d t\right]^{\frac{1}{a}} \\
& =x \cdot\left[{ }_{2} F_{1}\left(-a, c \omega ; c ; 1-\frac{y}{x}\right)\right]^{\frac{1}{a}}
\end{aligned}
$$

with the parameter $c>0$ and weights $\omega, \omega^{\prime}>0$ satisfying $\omega+\omega^{\prime}=1$. Clearly $\mathcal{H}_{a}(\omega ; c ; \rho x, \rho y)=$ $\rho \mathcal{H}_{a}(\omega ; c ; x, y)$ for $\rho>0$, so \mathcal{H}_{a} is homogeneous. Euler's integral representation and (1.1) together yield

$$
\mathcal{H}_{-1}\left(\frac{1}{2} ; 2 ; 1,1-r\right)=\left(\frac{\Gamma(2)}{\Gamma(1)^{2}} \int_{0}^{1}(1-r t)^{-1} d t\right)^{-1}=\mathcal{L}(1,1-r) .
$$

Multiplying by x, with $r=1-y / x$, and applying homogeneity yields $\mathcal{H}_{-1}\left(\frac{1}{2} ; 2 ; x, y\right)=$ $\mathcal{L}(x, y)$. This naturally leads to the weighted logarithmic mean $\hat{\mathcal{L}}$ which is defined as

$$
\hat{\mathcal{L}}(\omega ; c ; x, y) \equiv \mathcal{H}_{-1}(\omega ; c ; x, y) .
$$

Weighted logarithmic means have been discussed by Pittenger [11] and Neuman [9], among others (see also [4], p. 391-392]). Similarly, the weighted identric mean $\hat{\mathcal{I}}$ is given by

$$
\begin{aligned}
\hat{\mathcal{I}}(\omega ; c ; x, y) & \equiv \mathcal{H}_{0}(\omega ; c ; x, y) \equiv \lim _{a \rightarrow 0} \mathcal{H}_{a}(\omega ; c ; x, y) \\
& =\exp \left(\frac{\Gamma(c)}{\Gamma\left(c \omega^{\prime}\right) \Gamma(c \omega)} \int_{0}^{1} t^{c \omega-1}(1-t)^{c \omega^{\prime}-1} \ln [x(1-t)+y t] d t\right)
\end{aligned}
$$

(see [5], [13]). Thus, $\hat{\mathcal{I}}\left(\frac{1}{2} ; 2 ; x, y\right)=\mathcal{I}(x, y)$.
The following theorem establishes inequalities between the power means and the weighted identric and logarithmic means.

Theorem 2.1. Suppose $x>y>0$ and $c \geq 1$.
If $0<\omega \leq 1 / 2$, then the weighted identric mean $\hat{\mathcal{I}}$ satisfies

$$
\begin{equation*}
\mathcal{M}_{\frac{c}{c+1}}(\omega ; x, y) \leq \hat{\mathcal{I}}(\omega ; c ; x, y) \tag{2.1}
\end{equation*}
$$

If $1 / 2 \leq \omega<1$ and $c \leq 3$, then the weighted logarithmic mean $\hat{\mathcal{L}}$ satisfies

$$
\begin{equation*}
\hat{\mathcal{L}}(\omega ; c ; x, y) \leq \mathcal{M}_{\frac{c-1}{c+1}}(\omega ; x, y) \tag{2.2}
\end{equation*}
$$

Moreover, the power mean orders $c /(c+1)$ and $(c-1) /(c+1)$ are sharp.
A key step in the proof will be an application of the following recently obtained result:
Proposition 2.2. [12] Suppose $1 \geq a$ and $c>b>0$. If $c \geq \max \{1-2 a, 2 b\}$, then

$$
\begin{equation*}
\mathcal{M}_{\lambda}\left(\frac{b}{c} ; 1,1-r\right) \leq\left[{ }_{2} F_{1}(-a, b ; c ; r)\right]^{\frac{1}{a}} \text { for all } r \in(0,1), \tag{2.3}
\end{equation*}
$$

if and only if $\lambda \leq(a+c) /(1+c)$. If $-a \leq c \leq \min \{1-2 a, 2 b\}$, then the inequality in (2.3) reverses if and only if $\lambda \geq(a+c) /(1+c)$.
Proof of Theorem 2.1] Suppose $x>y>0, c \geq 1, \omega \in(0,1)$ and define $b \equiv c \omega$ with $r \equiv$ $1-y / x \in(0,1)$. If $\omega \leq 1 / 2$ and $a \in(0,1)$, it follows that $c \geq \max \{1-2 a, 2 b\}$. Hence the previous proposition implies

$$
\begin{equation*}
\mathcal{M}_{\frac{a+c}{1+c}}(\omega ; 1,1-r) \leq\left[{ }_{2} F_{1}(-a, b ; c ; r)\right]^{\frac{1}{a}} \tag{2.4}
\end{equation*}
$$

Taking the limit of both sides of (2.4) as $a \rightarrow 0^{+}$yields

$$
\begin{equation*}
\mathcal{M}_{\frac{c}{c+1}}(\omega ; 1,1-r) \leq \mathcal{H}_{0}(\omega ; c ; 1,1-r) \tag{2.5}
\end{equation*}
$$

Now suppose $\omega \geq 1 / 2$ and $c \leq 3$. Then $c \leq 2 b$ and $-a=1 \leq c \leq 3=1-2 a$ for $a=-1$. Thus

$$
\begin{equation*}
\mathcal{H}_{-1}(\omega ; c ; 1,1-r)=\left[{ }_{2} F_{1}(1, b ; c ; r)\right]^{-1} \leq \mathcal{M}_{\frac{c-1}{c+1}}(\omega ; 1,1-r), \tag{2.6}
\end{equation*}
$$

again by the above proposition. Multiplying both sides of the inequalities in (2.5) and 2.6) by x and applying homogeneity yields the desired results.

In the case that $\omega=1 / 2$, we have
Corollary 2.3. If $x, y>0,1 \leq c \leq 3$, and $\omega=1 / 2$ then

$$
\begin{equation*}
\mathcal{H}_{-2} \leq \mathcal{H}_{-1} \leq \mathcal{M}_{\frac{c-1}{c+1}}^{c+1} \leq \mathcal{M}_{\frac{c}{c+1}} \leq \mathcal{H}_{0} \leq \mathcal{H}_{1} \tag{2.7}
\end{equation*}
$$

Moreover, $(c-1) /(c+1)$ and $c /(c+1)$ are sharp. If $c=2$, then (2.7) reduces to (1.3).
Proof. Suppose $x>y>0,1 \leq c \leq 3$, and $\omega=1 / 2$. Hence 2.2) and (2.1), together with the fact that $\lambda \mapsto \mathcal{M}_{\lambda}$ is increasing, imply

$$
\mathcal{H}_{-1}\left(\frac{1}{2} ; c ; x, y\right) \leq \mathcal{M}_{\frac{c-1}{c+1}}\left(\frac{1}{2} ; x, y\right) \leq \mathcal{M}_{\frac{c}{c+1}}\left(\frac{1}{2} ; x, y\right) \leq \mathcal{H}_{0}\left(\frac{1}{2} ; c ; x, y\right)
$$

The remaining inequalities follow directly from Carlson's observation [5] that $a \mapsto \mathcal{H}_{a}$ is increasing. The condition that $x>y$ can be relaxed by noting that \mathcal{H}_{a} is symmetric in (x, y) when $\omega=1 / 2$. This symmetry can be seen by making the substitution $s=1-t$ in Euler's integral representation:

$$
\begin{aligned}
\mathcal{H}_{a}\left(\frac{1}{2} ; c ; x, y\right)^{a} & =\frac{\Gamma(c)}{\Gamma(c / 2)^{2}} \int_{0}^{1}[t(1-t)]^{c / 2-1}((1-t) x+t y)^{a} d t \\
& =\frac{\Gamma(c)}{\Gamma(c / 2)^{2}} \int_{0}^{1}[(1-s) s]^{c / 2-1}(s x+(1-s) y)^{a} d s \\
& =\mathcal{H}_{a}\left(\frac{1}{2} ; c ; y, x\right)^{a}
\end{aligned}
$$

Finally, note that $\mathcal{M}_{\frac{c-1}{c+1}}=\mathcal{M}_{\frac{1}{3}}$ and $\mathcal{M}_{\frac{c}{c+1}}=\mathcal{M}_{\frac{2}{3}}$ when $c=2$. Also,

$$
\mathcal{H}_{-2}\left(\frac{1}{2} ; 2 ; 1,1-r\right)^{-2}={ }_{2} F_{1}(2,1 ; 2 ; r)=\frac{1}{1-r}
$$

for $|r|<1$. It follows that $\mathcal{H}_{-2}\left(\frac{1}{2} ; 2 ; x, y\right)=(x y)^{\frac{1}{2}}=\mathcal{G}(x, y)$. Likewise, $\mathcal{H}_{1}\left(\frac{1}{2} ; 2 ; x, y\right)=$ $x(1-(1-y / x) / 2)=\mathcal{A}(x, y)$. Thus (2.7) implies (1.3).

References

[1] H. ALZER AND S.-L. QIU, Monotonicity theorems and inequalities for the complete elliptic integrals, J. Comp. Appl. Math., 172 (2004), 289-312.
[2] G.E. ANDREWS, R. ASKEY, AND R. ROY, Special Functions, Cambridge University Press, Cambridge, 1999.
[3] R.W. BARNARD, K. PEARCE, AND K.C. RICHARDS, An inequality involving the generalized hypergeometric function and the arc length of an ellipse, SIAM J. Math. Anal., 31 (2000), 693-699.
[4] P.S. BULLEN Handbook of Means and Their Inequalities, Kluwer Academic Publishers, Dordrecht, 2003.
[5] B.C. CARLSON, Some inequalities for hypergeometric functions, Proc. Amer. Math. Soc., 16 (1966), 32-39.
[6] B.C. CARLSON, The logarithmic mean, Amer. Math. Monthly, 79 (1972), 615-618.
[7] E.B. LEACH and M.C. SHOLANDER, Multi-variate extended mean values, J. Math. Anal. Appl., 104 (1984), 390-407.
[8] T.P. LIN, The power and the logarithmic mean, Amer. Math. Monthly, 81 (1974), 271-281.
[9] E. NEUMANN, The weighted logarithmic mean, J. Math. Anal. Appl., 188 (1994) 885-900.
[10] Z. PÁLES, Inequalities for differences of powers, J. Math. Anal. Appl., 131 (1988), 271-281.
[11] A.O. PITTENGER, The logarithmic mean in n variables, Amer. Math. Monthly, 92 (1985), 99-104.
[12] K.C. RICHARDS, Sharp power mean bounds for the Gaussian hypergeometric function, J. Math. Anal. Appl., 308 (2005), 303-313.
[13] J. SÁNDOR And T. TRIF, A new refinement of the Ky Fan inequality, Math. Ineq. Appl., 2 (1999), 529-533.
[14] K. STOLARSKY, Generalizations of the logarithmic means, Math. Mag., 48 (1975), 87-92.
[15] K. STOLARSKY, The power and generalized logarithmic means, Amer. Math. Monthly, 87 (1980), 545-548.

[^0]: ISSN (electronic): 1443-5756
 (C) 2006 Victoria University. All rights reserved.

 202-06

