## Journal of Inequalities in Pure and Applied Mathematics

A NOTE ON WEIGHTED IDENTRIC AND LOGARITHMIC MEANS
volume 7, issue 5, article 157, 2006.

Received 28 July, 2006;
accepted 25 August, 2006.
Communicated by: P.S. Bullen


## Abstract

Recently obtained inequalities [12] between the Gaussian hypergeometric function and the power mean are applied to establish new sharp inequalities involving the weighted identric, logartithmic, and power means.

2000 Mathematics Subject Classification: 26D07, 26D15, 33C05.
Key words: Identric mean, Logarithmic mean, Hypergeometric function.

## Contents

1 Introduction ..... 3
2 Main Results ..... 5
References

A Note on Weighted Identric and Logarithmic Means

Kendall C. Richards and Hilari C. Tiedeman

J. Ineq. Pure and Appl. Math. 7(5) Art. 157, 2006 http://jipam.vu.edu.au

## 1. Introduction

For $x, y>0$, the weighted power mean of order $\lambda$ is given by

$$
\mathcal{M}_{\lambda}(\omega ; x, y) \equiv\left[(1-\omega) x^{\lambda}+\omega y^{\lambda}\right]^{\frac{1}{\lambda}}
$$

with $\omega \in(0,1)$ and $\mathcal{M}_{0}(\omega ; x, y) \equiv \lim _{\lambda \rightarrow 0} \mathcal{M}_{\lambda}(\omega ; x, y)=x^{1-\omega} y^{\omega}$. Since $\lambda \mapsto \mathcal{M}_{\lambda}$ is increasing, it follows that

$$
\mathcal{G}(x, y) \leq \mathcal{M}_{\lambda}\left(\frac{1}{2} ; x, y\right) \leq \mathcal{A}(x, y), \quad \text { for } 0 \leq \lambda \leq 1
$$

where $\mathcal{G}(x, y) \equiv \mathcal{M}_{0}\left(\frac{1}{2} ; x, y\right)$ and $\mathcal{A}(x, y) \equiv \mathcal{M}_{1}\left(\frac{1}{2} ; x, y\right)$ are the well-known geometric and arithmetic means, respectively (e.g., see [4, p. 203]). Thus, $\mathcal{M}_{\lambda}$ provides a refinement of the classical inequality $\mathcal{G} \leq \mathcal{A}$. It is natural to seek other bivariate means that separate $\mathcal{G}$ and $\mathcal{A}$. Two such means are the logarithmic mean and the identric mean. For distinct $x, y>0$, the logarithmic mean $\mathcal{L}$ is given by

$$
\mathcal{L}(x, y) \equiv \frac{x-y}{\ln (x)-\ln (y)},
$$

and $\mathcal{L}(x, x) \equiv x$. The integral representation

$$
\begin{equation*}
\mathcal{L}(1,1-r)=\left(\int_{0}^{1}(1-r t)^{-1} d t\right)^{-1}, \quad r<1 \tag{1.1}
\end{equation*}
$$

is due to Carlson [6]. Similarly, the identric mean $\mathcal{I}$ is defined by

$$
\mathcal{I}(x, y) \equiv \frac{1}{e}\left(\frac{x^{x}}{y^{y}}\right)^{\frac{1}{x-y}}
$$

## A Note on Weighted Identric and Logarithmic Means

Kendall C. Richards and Hilari C. Tiedeman

Title Page
Contents

| Go Back |
| :---: |
| Close |
| Quit |
| Page 3 of 11 |

$\mathcal{I}(x, x) \equiv x$, and has the integral representation

$$
\begin{equation*}
\mathcal{I}(1,1-r)=\exp \left(\int_{0}^{1} \ln (1-r t) d t\right), \quad r<1 . \tag{1.2}
\end{equation*}
$$

The inequality $\mathcal{G} \leq \mathcal{L} \leq \mathcal{A}$ was refined by Carlson [6] who showed that $\mathcal{L}(x, y)$ $\mathcal{M}_{1 / 2}\left(\frac{1}{2} ; x, y\right)$. Lin [8] then sharpened this by proving $\mathcal{L}(x, y) \leq \mathcal{M}_{1 / 3}\left(\frac{1}{2} ; x, y\right)$. Shortly thereafter, Stolarsky [14] introduced the generalized logarithmic mean which has since come to bear his name. These and other efforts (e.g., [11, 15]) led to many interesting results, including the following well-known inequalities:

$$
\begin{equation*}
\mathcal{G} \leq \mathcal{L} \leq \mathcal{M}_{1 / 3} \leq \mathcal{M}_{2 / 3} \leq \mathcal{I} \leq \mathcal{A}, \tag{1.3}
\end{equation*}
$$

where each is evaluated at $(x, y)$, and the power means have equal weights $\omega=1-\omega=1 / 2$. It also should be noted that the indicated orders of the power means in (1.3), namely $1 / 3$ and $2 / 3$, are sharp. Following the work of Leach and Sholander [7], Páles [10] gave a complete ordering of the general Stolarsky mean which provides an elegant generalization of (1.3). (For a more complete discussion of inequalites involving means, see [4].)


A Note on Weighted Identric and Logarithmic Means

Kendall C. Richards and Hilari C. Tiedeman

Title Page
Contents

| Go Back |
| :---: |
| Close |
| Quit |
| Page 4 of 11 |

J. Ineq. Pure and Appl. Math. 7(5) Art. 157, 2006 http://jipam.vu.edu.au

## 2. Main Results

Our main objective is to present a generalization of (1.3) using the weighted logarithmic and identric means. Moreover, sharp power mean bounds are provided. This can be accomplished using the Gaussian hypergeometric function ${ }_{2} F_{1}$ which is given by

$$
{ }_{2} F_{1}(\alpha, \beta ; \gamma ; r) \equiv \sum_{n=0}^{\infty} \frac{(\alpha)_{n}(\beta)_{n}}{(\gamma)_{n} n!} r^{n}, \quad|r|<1
$$

where $(\alpha)_{n}$ is the Pochhammer symbol defined by $(\alpha)_{0}=1,(\alpha)_{1}=\alpha$, and $(\alpha)_{n+1}=(\alpha)_{n}(\alpha+n)$, for $n \in \mathbb{N}$. For $\gamma>\beta>0,{ }_{2} F_{1}$ has the following integral representation due to Euler (see [2]):

$$
{ }_{2} F_{1}(\alpha, \beta ; \gamma ; r)=\frac{\Gamma(\gamma)}{\Gamma(\gamma-\beta) \Gamma(\beta)} \int_{0}^{1} t^{\beta-1}(1-t)^{\gamma-\beta-1}(1-r t)^{-\alpha} d t
$$

which, by continuation, extends the domain of ${ }_{2} F_{1}$ to all $r<1$. Here $\Gamma(z) \equiv$ $\int_{0}^{\infty} t^{z-1} e^{-t} d t$ for $z>0 ; \Gamma(n)=(n-1)$ ! for $n \in \mathbb{N}$. Inequalities relating the Gaussian hypergeometric function to various means have been widely studied (see [1, 2, 3, 5, 12]). Of particular use here is the hypergeometric mean of order $a$ discussed by Carlson in [5] and defined by

$$
\begin{aligned}
\mathcal{H}_{a}(\omega ; c ; x, y) & \equiv\left[\frac{\Gamma(c)}{\Gamma\left(c \omega^{\prime}\right) \Gamma(c \omega)} \int_{0}^{1} t^{c \omega-1}(1-t)^{c \omega^{\prime}-1}(x(1-t)+y t)^{a} d t\right]^{\frac{1}{a}} \\
& =x \cdot\left[{ }_{2} F_{1}\left(-a, c \omega ; c ; 1-\frac{y}{x}\right)\right]^{\frac{1}{a}}
\end{aligned}
$$



A Note on Weighted Identric and Logarithmic Means

Kendall C. Richards and Hilari C. Tiedeman

Title Page
Contents

| $\mathbf{4}$ |  |
| :---: | :---: |
| Go Back |  |
| Close |  |
| Quit |  |
| Page 5 of 11 |  |

with the parameter $c>0$ and weights $\omega, \omega^{\prime}>0$ satisfying $\omega+\omega^{\prime}=1$. Clearly $\mathcal{H}_{a}(\omega ; c ; \rho x, \rho y)=\rho \mathcal{H}_{a}(\omega ; c ; x, y)$ for $\rho>0$, so $\mathcal{H}_{a}$ is homogeneous. Euler's integral representation and (1.1) together yield

$$
\mathcal{H}_{-1}\left(\frac{1}{2} ; 2 ; 1,1-r\right)=\left(\frac{\Gamma(2)}{\Gamma(1)^{2}} \int_{0}^{1}(1-r t)^{-1} d t\right)^{-1}=\mathcal{L}(1,1-r)
$$

Multiplying by $x$, with $r=1-y / x$, and applying homogeneity yields $\mathcal{H}_{-1}\left(\frac{1}{2} ; 2 ; x, y\right)=\mathcal{L}(x, y)$. This naturally leads to the weighted logarithmic mean $\hat{\mathcal{L}}$ which is defined as

$$
\hat{\mathcal{L}}(\omega ; c ; x, y) \equiv \mathcal{H}_{-1}(\omega ; c ; x, y)
$$

Weighted logarithmic means have been discussed by Pittenger [11] and Neuman [9], among others (see also [4, p. 391-392]). Similarly, the weighted identric mean $\hat{\mathcal{I}}$ is given by

$$
\begin{aligned}
\hat{\mathcal{I}}(\omega ; c ; x, y) & \equiv \mathcal{H}_{0}(\omega ; c ; x, y) \equiv \lim _{a \rightarrow 0} \mathcal{H}_{a}(\omega ; c ; x, y) \\
& =\exp \left(\frac{\Gamma(c)}{\Gamma\left(c \omega^{\prime}\right) \Gamma(c \omega)} \int_{0}^{1} t^{c \omega-1}(1-t)^{c \omega^{\prime}-1} \ln [x(1-t)+y t] d t\right)
\end{aligned}
$$

(see [5], [13]). Thus, $\hat{\mathcal{I}}\left(\frac{1}{2} ; 2 ; x, y\right)=\mathcal{I}(x, y)$.
The following theorem establishes inequalities between the power means and the weighted identric and logarithmic means.


A Note on Weighted Identric and Logarithmic Means

Kendall C. Richards and Hilari C. Tiedeman

Title Page
Contents

| Go Back |
| :---: |
| Close |
| Quit |
| Page 6 of 11 |

Theorem 2.1. Suppose $x>y>0$ and $c \geq 1$.
If $0<\omega \leq 1 / 2$, then the weighted identric mean $\hat{\mathcal{I}}$ satisfies

$$
\begin{equation*}
\mathcal{M}_{\frac{c}{c+1}}(\omega ; x, y) \leq \hat{\mathcal{I}}(\omega ; c ; x, y) \tag{2.1}
\end{equation*}
$$

If $1 / 2 \leq \omega<1$ and $c \leq 3$, then the weighted logarithmic mean $\hat{\mathcal{L}}$ satisfies

$$
\begin{equation*}
\hat{\mathcal{L}}(\omega ; c ; x, y) \leq \mathcal{M}_{\frac{c-1}{c+1}}(\omega ; x, y) \tag{2.2}
\end{equation*}
$$

Moreover, the power mean orders $c /(c+1)$ and $(c-1) /(c+1)$ are sharp.
A key step in the proof will be an application of the following recently obtained result:

Proposition 2.2. [12] Suppose $1 \geq a$ and $c>b>0$. If $c \geq \max \{1-2 a, 2 b\}$, then

$$
\begin{equation*}
\mathcal{M}_{\lambda}\left(\frac{b}{c} ; 1,1-r\right) \leq\left[{ }_{2} F_{1}(-a, b ; c ; r)\right]^{\frac{1}{a}} \text { for all } r \in(0,1), \tag{2.3}
\end{equation*}
$$

if and only if $\lambda \leq(a+c) /(1+c)$. If $-a \leq c \leq \min \{1-2 a, 2 b\}$, then the inequality in (2.3) reverses if and only if $\lambda \geq(a+c) /(1+c)$.

Proof of Theorem 2.1. Suppose $x>y>0, c \geq 1, \omega \in(0,1)$ and define $b \equiv c \omega$ with $r \equiv 1-y / x \in(0,1)$. If $\omega \leq 1 / 2$ and $a \in(0,1)$, it follows that $c \geq \max \{1-2 a, 2 b\}$. Hence the previous proposition implies

A Note on Weighted Identric and Logarithmic Means

Kendall C. Richards and Hilari C. Tiedeman

Title Page
Contents

| Go Back |
| :---: |
| Close |
| Quit |
| Page 7 of 11 |

J. Ineq. Pure and Appl. Math. 7(5) Art. 157, 2006 http://jipam.vu.edu.au

Taking the limit of both sides of (2.4) as $a \rightarrow 0^{+}$yields

$$
\begin{equation*}
\mathcal{M}_{\frac{c}{c+1}}(\omega ; 1,1-r) \leq \mathcal{H}_{0}(\omega ; c ; 1,1-r) \tag{2.5}
\end{equation*}
$$

Now suppose $\omega \geq 1 / 2$ and $c \leq 3$. Then $c \leq 2 b$ and $-a=1 \leq c \leq 3=1-2 a$ for $a=-1$. Thus

$$
\begin{equation*}
\mathcal{H}_{-1}(\omega ; c ; 1,1-r)=\left[{ }_{2} F_{1}(1, b ; c ; r)\right]^{-1} \leq \mathcal{M}_{\frac{c-1}{c+1}}(\omega ; 1,1-r), \tag{2.6}
\end{equation*}
$$

again by the above proposition. Multiplying both sides of the inequalities in (2.5) and (2.6) by $x$ and applying homogeneity yields the desired results.

In the case that $\omega=1 / 2$, we have
Corollary 2.3. If $x, y>0,1 \leq c \leq 3$, and $\omega=1 / 2$ then

$$
\begin{equation*}
\mathcal{H}_{-2} \leq \mathcal{H}_{-1} \leq \mathcal{M}_{\frac{c-1}{c+1}} \leq \mathcal{M}_{\frac{c}{c+1}} \leq \mathcal{H}_{0} \leq \mathcal{H}_{1} \tag{2.7}
\end{equation*}
$$

Moreover, $(c-1) /(c+1)$ and $c /(c+1)$ are sharp. If $c=2$, then (2.7) reduces to (1.3).

Proof. Suppose $x>y>0,1 \leq c \leq 3$, and $\omega=1 / 2$. Hence (2.2) and (2.1), together with the fact that $\lambda \mapsto \mathcal{M}_{\lambda}$ is increasing, imply
$\mathcal{H}_{-1}\left(\frac{1}{2} ; c ; x, y\right) \leq \mathcal{M}_{\frac{c-1}{c+1}}\left(\frac{1}{2} ; x, y\right) \leq \mathcal{M}_{\frac{c}{c+1}}\left(\frac{1}{2} ; x, y\right) \leq \mathcal{H}_{0}\left(\frac{1}{2} ; c ; x, y\right)$.
The remaining inequalities follow directly from Carlson's observation [5] that $a \mapsto \mathcal{H}_{a}$ is increasing. The condition that $x>y$ can be relaxed by noting

A Note on Weighted Identric and Logarithmic Means

Kendall C. Richards and Hilari C. Tiedeman

Title Page
Contents

| $\mathbf{4}$ |  |
| :---: | :---: |
| Go Back |  |
| Close |  |
| Quit |  |
| Page 8 of 11 |  |

that $\mathcal{H}_{a}$ is symmetric in $(x, y)$ when $\omega=1 / 2$. This symmetry can be seen by making the substitution $s=1-t$ in Euler's integral representation:

$$
\begin{aligned}
\mathcal{H}_{a}\left(\frac{1}{2} ; c ; x, y\right)^{a} & =\frac{\Gamma(c)}{\Gamma(c / 2)^{2}} \int_{0}^{1}[t(1-t)]^{c / 2-1}((1-t) x+t y)^{a} d t \\
& =\frac{\Gamma(c)}{\Gamma(c / 2)^{2}} \int_{0}^{1}[(1-s) s]^{c / 2-1}(s x+(1-s) y)^{a} d s \\
& =\mathcal{H}_{a}\left(\frac{1}{2} ; c ; y, x\right)^{a}
\end{aligned}
$$

Finally, note that $\mathcal{M}_{\frac{c-1}{c+1}}=\mathcal{M}_{\frac{1}{3}}$ and $\mathcal{M}_{\frac{c}{c+1}}=\mathcal{M}_{\frac{2}{3}}$ when $c=2$. Also,

$$
\mathcal{H}_{-2}\left(\frac{1}{2} ; 2 ; 1,1-r\right)^{-2}={ }_{2} F_{1}(2,1 ; 2 ; r)=\frac{1}{1-r}
$$

for $|r|<1$. It follows that $\mathcal{H}_{-2}\left(\frac{1}{2} ; 2 ; x, y\right)=(x y)^{\frac{1}{2}}=\mathcal{G}(x, y)$. Likewise, $\mathcal{H}_{1}\left(\frac{1}{2} ; 2 ; x, y\right)=x(1-(1-y / x) / 2)=\mathcal{A}(x, y)$. Thus (2.7) implies (1.3).

## References

[1] H. ALZER and S.-L. QIU, Monotonicity theorems and inequalities for the complete elliptic integrals, J. Comp. Appl. Math., 172 (2004), 289312.
[2] G.E. ANDREWS, R. ASKEY, And R. ROY, Special Functions, Cambridge University Press, Cambridge, 1999.
[3] R.W. BARNARD, K. PEARCE, AND K.C. RICHARDS, An inequality involving the generalized hypergeometric function and the arc length of an ellipse, SIAM J. Math. Anal., 31 (2000), 693-699.
[4] P.S. BULLEN Handbook of Means and Their Inequalities, Kluwer Academic Publishers, Dordrecht, 2003.
[5] B.C. CARLSON, Some inequalities for hypergeometric functions, Proc. Amer. Math. Soc., 16 (1966), 32-39.
[6] B.C. CARLSON, The logarithmic mean, Amer. Math. Monthly, 79 (1972), 615-618.
[7] E.B. LEACH AND M.C. SHOLANDER, Multi-variate extended mean values, J. Math. Anal. Appl., 104 (1984), 390-407.
[8] T.P. LIN, The power and the logarithmic mean, Amer. Math. Monthly, 81 (1974), 271-281.
[9] E. NEUMANN, The weighted logarithmic mean, J. Math. Anal. Appl., 188 (1994), 885-900.


A Note on Weighted Identric and Logarithmic Means

Kendall C. Richards and Hilari C. Tiedeman

Title Page

| Contents |
| :---: |
| Go Back |
| Close |
| Quit |
| Page 10 of 11 |

[10] Z. PÁLES, Inequalities for differences of powers, J. Math. Anal. Appl., 131 (1988), 271-281.
[11] A.O. PITTENGER, The logarithmic mean in $n$ variables, Amer. Math. Monthly, 92 (1985), 99-104.
[12] K.C. RICHARDS, Sharp power mean bounds for the Gaussian hypergeometric function, J. Math. Anal. Appl., 308 (2005), 303-313.
[13] J. SÁNDOR AND T. TRIF, A new refinement of the Ky Fan inequality, Math. Ineq. Appl., 2 (1999) 529-533.
[14] K. STOLARSKY, Generalizations of the logarithmic means, Math. Mag., 48 (1975), 87-92.
[15] K. STOLARSKY, The power and generalized logarithmic means, Amer. Math. Monthly, 87 (1980), 545-548.


A Note on Weighted Identric and Logarithmic Means

Kendall C. Richards and Hilari C. Tiedeman

Title Page
Contents


Page 11 of 11
J. Ineq. Pure and Appl. Math. 7(5) Art. 157, 2006

