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1. Introduction and Preliminaries

Letzy,25,...,2, andpy,ps, ..., p, be real numbers such that € [0, 3], p; > 0
with P, = >"" | p;. LetG,, and A, be the weighted geometric mean and arithmetic
mean respectively defined by

1

i Pn 1 n . Cauchy’s Means of
T; ¢ and An = — piT; = . Levinson Type
H P 2 1
1=
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In particular, consider the means Viek Lol € Bl £22% 200

1

n P, n
A\ 1 Title Page
r i o . — .
G, = (H(l — ;)P > and A = 23 Zpl(l ;).
i=1 i=1 Contents
The well known Levinson inequality is the followingl([2] see also, p. 71]). pp »
Theorem 1.1. Let f be a real valued 3-convex function ¢ 2a]. Then for0 < < >
x; < a,p; > 0we have
Page 3 of 16
I I Go Back
(1.1) P, szf(xz) —f (Fn sz$z>
i=1 = Full Screen

< = sz 20' - 1‘7, ( sz T ) . Clese

i L journal of inequalities
In [4], the second author proved the following similar result. in pure and applied

Theorem 1.2. Let f be a real valued 3-convex function @h2a] andz; (1 < i < :ith?rft;:ﬁ,
n) n points on[0, a]. Then
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(12) 5 Y mf() - f (,% sz-xi)
sz fla+ ;) ( sza%—zz).

Lemma 1.3. Let f be a log-convex function. I, < yy, x5 < Yo, 1 # T2, Y1 # Yo, Cauchy's Means of
then the following inequality is valid: Levinson Type
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(1.3) {f(wQ)} o971 < {f(yQ)} y2—v1 | vol. 9, iss. 4, art. 120, 2008
f(x1) f(y)
Lemma 1.4. Let f € C3(I) for some interval C R, such thatf”” is bounded and Title Page
m = min [/ and M = max f"”. Consider the functions, ¢, defined as, S
M
(1.4) o1(t) = gti} — f(¢), « g3
m
(L5) 6a(t) = f(1) = o1* ST
. Page 4 of 16
theng; and ¢, are 3-convex functions.
. . Go Back
Lemma 1.5. Let us define the function
. Full Screen
s(s=1)(s=2) s70.1.2; Close
16 %log x, s=0;
(1.6) () = —zlogz, s=1; journal of inequalities
L _ in pure and applied
z*logx, s=2. mathematics

Theny” (z) = z°3, that is p,(z) is 3-convex forz > 0. issni 1443875k
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Let I C R be an interval and lIeF be some appropriately chosen vector space of
real valued functions defined dn Let ¥ be a functional o and letA : ¥ — R
be a linear operator, whefe is the vector of all real valued functions definedion
Suppose that for eache F, there is & < I such that

(1.7) U(f) = AF)E)-

J. Pearic, |. Pert and H. Srivastava irb] proved the following important result for
¢ and A defined above.

Theorem 1.6. For everyf, g € F, there is a € I such that
(1.8) Alg)(€)¥(f) = AF)(€)¥(g)-
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2. Main Results

Theorem 2.1.Let f € C3(I). Then forz; > 0 andp; > 0 there exist € I such
that the following equality holds true,

1 & 1 <
(21) f (Fn sz$z> - Fn szf(xz) Cauchy’s Means of
=1 =1

Levinson Type

1 - 1 n M. Anwar and J. Pecaric
+ P Zpif(Qa —ai) = f (F Zpi(Qa - xl)) vol. 9, iss. 4, art. 120, 2008
=1 n =1
fm(g) IR ’ 1 ¢ 3 Title Page
= 6 Fn szﬂﬁz - Fn szxz
=1 =1 Contents
3
1 O 1 o «“ >
+ EZQDZ’(%—@)?’ - (Fn Zpi(Qa—xi)) :
=1 =1 < >
Proof. Suppose that” is bounded, that ispin f” = m, max f"” = M. By apply- Page 6 of 16
ing the Levinsen inequalityl(1) to the functionsp; and¢, defined in Lemmal..4, Go Back

we get the following inequalities,
Full Screen

22) f (% Zpian) — % Zpif(xi) Close

journal of inequalities

1 & 1 « in pure and applied
tp Zpif@a —xi) = f (Fn Zpi@a - Ii)) mathematics
i=1 issn: 1443-575k
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i=1 i=1
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- o il o il
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" oi=1 " oi=1

By combining both inequalities and using the fact thatifo< p < M there exist
¢ € I such thatf”(£) = p, we get £.1). Moreover, if f is (for example) bounded
from above we have tha? (2) is valid and again4.1) is valid.

Of course 2.1) is obvious if /" is not bounded from above and below. O]

Theorem 2.2.Let f,g € C3(I). Then forz; > 0 andp; > 0, i = 1,...,n there
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existé € I such that the following equality holds true,

/")
9" (€)

f(p% lezxz) —an A 1pif(xi)+pln ;pif@a - xi)_f(an lez‘@a—l‘i))
g(p% lezxz) —pin pig(xi>+an ;pig@a - in)—g(pln 2;]%(20—%’0

Proof. Consider the linear functionals and A as in (L.7) for 7 = C3(I) andR the
vector space of real valued functions such thét) = A(k)(£) for some function
k. Let A be defined as:

@9 A =112 (Pi Zpixi> - =Y wd

=1

(2.4)

3

-

1

1

3
1 < 5 1 <

Also, consider the linear combinatidn= c, f — cog, Wwheref, g € C3(I) andcy, c;
are defined by

(2.6) c1=T(g9) =y (Pi ZPM%) - Pi > pig(a:)

1 < 1
+ Fnizlpig(za — ;) —g (Fn Zpi@a - l’z)) ;
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27) 2 =¥(f)=f (Pi ZP#&) - % > pif (@)

n .

—i—%n;pif@a—xi) —f (%n izlpi(Za—xi)> .

Obviously, we havel (k) = 0. This implies that (as in Theorefn6): Cauchy’s Means of
Levinson Type
(28) ‘Ij(g)A(f) (5) - \Ij(f>A(g) (g) M. Anwar and J. Pecari¢
Now sinceV(g) # 0 andA(g)(§) # 0 we have from the last equation w0 B s 4 A 20, 2
2.9 () _ AU
' U(g)  Al9)&) Title Page
After putting in the values we ge? (4). O Contents
Corollary 2.3. Let% be invertible thenZ.4) suggests new means. That is, <« >
(f///)fl f(p% ilpifz) —p% _ilpv:f(wi)-i-p% _ilpif(%—fﬁi)—f(p% ilpi@a—?ﬁi)) < 4
(2.10) &=\ = = = =
g g(an ZP:%) —p- Lpig(@i)+p- Y pig(2a—wi)—g (%ﬂ _Zpi(Qa—mi)> Page 9 of 16
=1 i=1 =1 =1
IS a new mean. Go Back
Definition 2.4. Define the function Full Screen
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whens # 0,1,2. s = 0,1, 2 are limiting cases defined by in pure and applied
a mathematics
1 G*A, .
(o ==1In n , issn: 1443-575k
2 G,A2

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au

where

. n i Pn . 1 n
Gy = [H(Za — xi)p] and A) = B ZZH(QCL — ),

=1

1 n
=5 Zpi (:cl Inz; — (2a — x;) In(2a — xl)) + (2a = 7)In(2a — 7) — TIn7, Cauchy's Means of

Levinson Type
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& < 3
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fors#£0,1,2

2 (PLH > izy pil(log(2a — x;))? — (log xi)QD

Moo = exp
0,0 450
(log(2a — 7))* — (log 7)*6o
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In our next result we prove that this new mean is monotonic. il S
Theorem 2.6.Letr < s,t < u,r # t, s # u, then the following inequality is valid: Close
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Proof. Since¢; is log convex as proved irB] Theorem 2.2], then applying Lemma
1.Aforr < s,t <wu,r #t,s # uwe getour required result. O
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3. Related Results

Theorem 3.1.Letf € C3(I). Forz; > 0andp; >0, i = 1,...,nthere exist € [
such that the following equality holds true,

3.1) f (Pi Zp:L“) — %Zpif(xi)
+_Zp2 CL+.T,L ( sza—i‘xz)
1 (% Zpﬂi) Ly

i=1

3
1 < 5 1 <
+ E;Pi(a‘i‘%) - (Fn izlpi(a+$i)>

Proof. Similar to proof of Theorem. 1. O

Theorem 3.2.Let f,g € C3(I). Then forz; > 0O andp; > 0, i = 1,...,n there
existé € I such that the following equality holds true,

f"(€)
/// 5
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Proof. Similar to proof of Theorem.2. ]

Corollary 3.3. Let% be invertible. Theni 2) suggests new means. That is,
o ()

iS a new mean.

-1 f(p% _ilpiiti) — 5 i:lpif(ivi)-*‘p% ilpif(a"'mi)_f(p% lilpi(a""xi))
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Definition 3.4. Define the function
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whens # 0,1,2. s = 0, 1,2 are limiting cases defined by

-1 Ga, A,
50 - 511’1 <anian) )

where
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~ n Pp 3 1 n
Ge, = <H(6L + Z‘Z)pl> , and Aan = F Zpi(a + xi)?
i=1 "i=1

- 1 < _ o
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& =
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We now define new meany; , as:
Definition 3.5. Let us denote:

1

(3.5) Mo, = <§) .
&
fors #t # 0,1, 2. We define these limiting cases as
T — ox 7 3% —6s+2
TN IE (et e —a) —(atay+a0  ss-1)(s—2) )

where
I _ e
N = 2 sz-((a + x;)%log(a + ;) — i logx;) — (a 4+ Z)*log(a + ) + z° log T
" oi=1
fors #0,1,2
2 (4 S0y pillog(a+ )2 — (logz)?])
4&,

_ (log(a + 7))* — (log 5)265_01
480 ’

MO,O = exXp

M1 = exp 28
1

[p% >y pil(a + z)(log(a + x4))* — zy(log ;)?)

(a+ Z)(log(a + _53))2 — Z(log x)Q]
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7 2 Dil(a 4 z3)*(log(a + 2;))* — 27 (log z;)?)

36

(a + 7)*(log(a + ?))2 — 7%(log 7)?
32

In our next result we prove that this new mean is monotonic.

My = exp

-1

Theorem 3.6.Letr < s,t < u, r # t, s # u, then the following inequality is valid:

(3.6) M, < M,

Proof. Since¢, is log convex as proved i8] Theorem 2.5]¢, = p,), then applying
Lemmal.3forr < s,t < wu,r #t,s # uwe get our required result. O
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