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Abstract: The aim of this article is the construction of a spanning set for the spacesSk(Γ)
of super cusp forms on a complex bounded symmetric super domainB of rank
1 with respect to a latticeΓ. The main ingredients are a generalization of the
ANOSOV closing lemma for partially hyperbolic diffeomorphisms and an un-
bounded realizationH of B, in particular FOURIER decomposition at the cusps
of the quotientΓ\B mapped to∞ via a partial CAYLEY transformation. The
elements of the spanning set are in finite-to-one correspondence with closed
geodesics of the bodyΓ\B of Γ\B, the number of elements corresponding to
a geodesic growing linearly with its length.
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1. Introduction

Automorphic and cusp forms on a complex bounded symmetric domainB are al-
ready a well established field of research in mathematics. They play a fundamental
role in representation theory of semisimple LIE groups of Hermitian type, and they
have applications to number theory, especially in the simplest case whereB is the
unit disc inC, biholomorphic to the upper half planeH via a CAYLEY transform,
G = SL(2, R) acting onH via MÖBIUS transformations andΓ @ SL(2, Z) of finite
index. The aim of the present paper is to generalize an approach used by Tatyana
FOTH and Svetlana KATOK in [4] and [8] for the construction of spanning sets for the
space of cusp forms on a complex bounded symmetric domainB of rank1, which
then by classification is (biholomorphic to) the unit ball of someCn, n ∈ N, and a
latticeΓ @ G = Aut1(B) for sufficiently high weightk. This is done in Theorem
4.3, which is the main theorem of this article, again for sufficiently large weightk.

The new idea in [4] and [8] is to use the concept of a hyperbolic (or ANOSOV)
diffeomorphism resp. flow on a Riemannian manifold and an appropriate version
of the ANOSOV closing lemma. This concept originally comes from the theory of
dynamical systems, see for example in [7]. Roughly speaking a flow(ϕt)t∈R on
a Riemannian manifoldM is called hyperbolic if there exists an orthogonal and
(ϕt)t∈R-stable splittingTM = T+⊕T−⊕T 0 of the tangent bundleTM such that the
differential of the flow(ϕt)t∈R is uniformly expanding onT+, uniformly contracting
on T− and isometric onT 0, and finallyT 0 is one-dimensional, generated by∂tϕt.
In this situation the ANOSOV closing lemma says that given an ’almost’ closed orbit
of the flow (ϕt)t∈R there exists a closed orbit ’nearby’. Indeed given a complex
bounded symmetric domainB of rank1, G = Aut1(B) is a semisimple LIE group
of real rank1, and the root space decomposition of its LIE algebrag with respect to a
CARTAN subalgebraa @ g shows that the geodesic flow(ϕt)t∈R on the unit tangent
bundleS(B), which is at the same time the left-invariant flow onS(B) generated by
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a ' R, is hyperbolic. The final result in this direction is Theorem5.5(i).
For the super case, first it is necessary to develop the theory of super automor-

phic resp. cusp forms, while the general theory of (Z2-) graded structures and super
manifolds is already well established, see for example [3]. It was first developed by
F. A. BEREZIN as a mathematical method for describing super symmetry in physics
of elementary particles. However, even for mathematicians the elegance within the
theory of super manifolds is really amazing and satisfying. Here I deal with a simple
case of super manifolds, namely complex super domains. Roughly speaking a com-
plex super domainB is an object which has a super dimension(n, r) ∈ N2 and the
characteristics:

(i) it has a bodyB = B# being an ordinary domain inCn,

(ii) the complex unital graded commutative algebraO(B) of holomorphic super
functions onB is (isomorphic to)O(B) ⊗

∧
(Cr), where

∧
(Cr) denotes the

exterior algebra ofCr. FurthermoreO(B) naturally embeds into the first two
factors of the complex unital graded commutative algebraD(B) ' C∞(B)C ⊗∧

(Cr) �
∧

(Cr) ' C∞(B)C ⊗
∧

(C2r) of ’smooth’ super functions onB,
whereC∞(B)C = C∞(B, C) denotes the algebra of ordinary smooth functions
with values inC, which is at the same time the complexification ofC∞(B), and
’�’ denotes the graded tensor product.

We see that for each pair(B, r) whereB ⊂ Cn is an ordinary domain andr ∈ N
there exists exactly one(n, r)-dimensional complex super domainB of super di-
mension(n, r) with body B, and we denote it byB|r. Now let ζ1, . . . , ζn ∈ Cr

denote the standard basis vectors ofCr. Then they are the standard generators of∧
(Cr), and so we get the standard even (commuting) holomorphic coordinate func-

tionsz1, . . . , zn ∈ O(B) ↪→ O
(
B|r) and odd (anticommuting) coordinate functions

ζ1, . . . , ζr ∈
∧

(Cr) ↪→ O
(
B|r). So omitting the tensor products, as there is no
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danger of confusion, we can decompose everyf ∈ O
(
B|r) uniquely as

f =
∑

I∈℘(r)

fIζ
I ,

where℘(r) denotes the power set of{1, . . . , r}, all fI ∈ O(B), I ∈ ℘(r), and
ζI := ζi1 · · · ζis for all I = {i1, . . . , is} ∈ ℘(r), i1 < · · · < is.
D
(
B|r) is a graded∗-algebra, and the graded involution

: D
(
B|r)→ D (B|r)

is uniquely defined by the rules

{i} f = f andfh = hf for all f, h ∈ D
(
B|r),

{ii} is C-antilinear, and restricted toC∞(B) it is just the identity,

{iii} ζi is thei-th standard generator of
∧

(Cr) ↪→ D
(
B|r) embedded as thethird

factor, whereζi denotes thei-th odd holomorphic standard coordinate onB|r,
which is thei-th standard generator of

∧
(Cr) ↪→ D

(
B|r) embedded as the

secondfactor,i = 1, . . . , r.

With the help of this graded involution we are able to decompose everyf ∈
D
(
B|r) uniquely as

f =
∑

I,J∈℘(r)

fIJζIζ
J
,

wherefIJ ∈ C∞(B)C, I, J ∈ ℘(r), andζ
J

:= ζi1 . . . ζis for all J = {j1, . . . , js} ∈
℘(r), j1 < · · · < js.

For a discussion of super automorphic and super cusp forms we restrict ourselves
to the case of the LIE groupG := sS (U(n, 1)× U(r)), n ∈ N \ {0}, r ∈ N, acting
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on the complex(n, r)-dimensional super unit ballB|r. So far there seems to be no
classification of super complex bounded symmetric domains although we know the
basic examples, see for example Chapter IV of [2], which we follow here. The group
G is the body of the super LIE groupSU(n, 1|r) studied in [2] acting onB|r. The
fact that an ordinary discrete subgroup (which means a sub super LIE group of super
dimension(0, 0)) of a super LIE group is just an ordinary discrete subgroup of the
body justifies our restriction to an ordinary LIE group acting onB|r since purpose of
this article is to study automorphic and cusp forms with respect to a lattice. In any
case one can see the odd directions of the complex super domainB|r already inG
since it is an almost direct product of the semisimple LIE groupSU(n, 1) acting on
the bodyB andU(r) acting on

∧
(Cr). Observe that ifr > 0 the full automorphism

group ofB|r, without any isometry condition, is never a super LIE group since one
can show that otherwise its super LIE algebra would be the super LIE algebra of
integrable super vector fields onB|r, which has unfortunately infinite dimension.

Let us remark on two striking facts:

(i) the construction of our spanning set uses FOURIERdecomposition exactly three
times, which is not really surprising, since this corresponds to the three factors
in the IWASAWA decompositionG = KAN .

(ii) super automorphic resp. cusp forms introduced this way are equivalent (but
not one-to-one) to the notion of ’twisted’ vector-valued automorphic resp. cusp
forms.

Acknowledgement: Since the research presented in this article is partially based
on my PhD thesis I would like to thank my doctoral advisor Harald UPMEIER for
mentoring during my PhD but also Martin SCHLICHENMAIER and Martin OLBRICH

for their helpful comments.
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2. The Space of Super Cusp Forms

Let n ∈ N \ {0}, r ∈ N and

G := sS (U(n, 1)× U(r))

:=

{(
g′ 0
0 E

)
∈ U(n, 1)× U(r)

∣∣∣∣ det g′ = det E

}
,

which is a real((n + 1)2 + r2 − 1)-dimensional LIE group. LetB := B|r, where

B := {z ∈ Cn| z∗z < 1} ⊂ Cn

denotes the usual unit ball, with even coordinate functionsz1, . . . , zn and odd coor-
dinate functionsζ1, . . . , ζr. Then we have a holomorphic action ofG onB given by
super fractional linear (MÖBIUS) transformations

g

(
z
ζ

)
:=

(
(Az + b) (cz + d)−1

Eζ (cz + d)−1

)
,

where we split

g :=

 A b
c d

0

0 E

 }n
← n + 1
}r

.

The stabilizer of0 ↪→ B is

K := sS ((U(n)× U(1))× U(r))

=


 A 0

0 d
0

0 E

 ∈ U(n)× U(1)× U(r)

∣∣∣∣∣∣ d det A = det E

 .
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On G × B we define the cocyclej ∈ C∞(G)C⊗̂O(B) asj(g, z) := (cz + d)−1 for
all g ∈ G andz ∈ B. Observe thatj(w) := j(w, z) ∈ U(1) is independent ofz ∈ B
for all w ∈ K and therefore defines a character on the groupK.

Let k ∈ Z be fixed. Then we have a right-representation ofG

|g : D(B)→ D(B), f 7→ f |g := f

(
g

(
z
ζ

))
j(g, z)k,

for all g ∈ G, which fixesO(B). Finally letΓ be a discrete subgroup ofG.

Definition 2.1 (Super Automorphic Forms). Let f ∈ O(B). Thenf is called a
super automorphic form forΓ of weightk if and only iff |γ = f for all γ ∈ Γ. We
denote the space of super automorphic forms forΓ of weightk bysMk(Γ).

Let us define a lift:˜ : D(B)→ C∞(G)C ⊗D
(
C0|r) ' C∞(G)C ⊗

∧
(Cr)�

∧
(Cr) ,

f 7→ f̃ ,

where

f̃(g) := f |g
(

0
η

)
= f

(
g

(
0
η

))
j (g,0)k

for all f ∈ D(B) andg ∈ G and we use the odd coordinate functionsη1, . . . , ηr on
C0|r. Let f ∈ O(B). Then clearlyf̃ ∈ C∞(G)C⊗O

(
C0|r) andf ∈ sMk(Γ)⇔ f̃ ∈
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C∞ (Γ\G)C ⊗O
(
C0|r) since for allg ∈ G

C∞(G)C ⊗D
(
C0|r) lg−→ C∞(G)C ⊗D

(
C0|r)

↑˜ ↑˜
D(B) −→

|g
D(B)

commutes, wherelg : C∞(G) → C∞(G) denotes the left translation withg ∈ G,
lg(f)(x) := f(gx) for all x ∈ G. Let 〈 , 〉 be the canonical scalar product on
D
(
C0|r) ' ∧ (C2r) (semilinear in the second entry). Then for alla ∈ D

(
C0|r) we

write |a| :=
√
〈a, a〉, and〈 , 〉 induces a ’scalar product’

(f, h)Γ :=

∫
Γ\G

〈
h̃, f̃

〉
for all f, h ∈ D(B) such that

〈
h̃, f̃

〉
∈ L1(Γ\G), and for alls ∈]0,∞] a ’norm’

||f ||(k)
s,Γ :=

∣∣∣∣∣∣∣∣ ∣∣∣f̃ ∣∣∣ ∣∣∣∣∣∣∣∣
s,Γ\G

for all f ∈ D(B) such that
∣∣∣f̃ ∣∣∣ ∈ C∞ (Γ\G). OnG we always use the (left and right)

HAAR measure. Let us define

Ls
k(Γ\B) :=

{
f ∈ D(B)

∣∣∣∣ f̃ ∈ C∞(Γ\G)C ⊗D
(
C0|r) , ||f ||(k)

s,Γ <∞
}

.

Definition 2.2 (Super Cusp Forms).Let f ∈ sMk(Γ). f is called a super cusp
form forΓ of weightk if and only iff ∈ L2

k(Γ\B). TheC- vector space of all super
cusp forms forΓ of weightk is denoted bysSk(Γ). It is a HILBERT space with inner
product( , )Γ.
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Observe that|g respects the splitting

O(B) =
r⊕

ρ=0

O(ρ)(B)

for all g ∈ G, whereO(ρ)(B) is the space of allf =
∑

I∈℘(r),|I|=ρ fI , all fI ∈ O(B),

I ∈ ℘(r), |I| = ρ, ρ = 0, . . . , r, and˜ maps the spaceO(ρ)(B) into C∞(G)C ⊗
O(ρ)

(
C0|r). Therefore we have splittings

sMk(Γ) =
r⊕

ρ=0

sM
(ρ)
k (Γ) and sSk(Γ) =

r⊕
ρ=0

sS
(ρ)
k (Γ),

wheresM
(ρ)
k (Γ) := sMk(Γ)∩O(ρ)(B), sS(ρ)

k (Γ) := sSk(Γ)∩O(ρ)(B), ρ = 0, . . . , r,
and the last sum is orthogonal.

As shown in [10] and in Section 3.2 of [11] there is an analogon to SATAKE ’s
theorem in the super case:

Theorem 2.3. Let ρ ∈ {0, . . . , r}. AssumeΓ\G is compact orn ≥ 2 andΓ @ G
is a lattice (discrete such thatvol Γ\G < ∞, Γ\G not necessarily compact). If
k ≥ 2n− ρ then

sS
(ρ)
k (Γ) = sM

(ρ)
k (Γ) ∩ Ls

k (Γ\B)

for all s ∈ [1,∞].

As in the classical case this theorem implies that ifΓ\G is compact orn ≥ 2,
Γ @ G is a lattice andk ≥ 2n − ρ, then the HILBERT spacesS

(ρ)
k (Γ) is finite

dimensional.
We will use the JORDAN triple determinant∆ : Cn × Cn → C given by

∆ (z,w) := 1−w∗z
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for all z,w ∈ Cn. Let us recall the basic properties:

(i) |j (g,0)| = ∆ (g0, g0)
1
2 for all g ∈ G,

(ii) ∆ (gz, gw) = ∆ (z,w) j (g, z) j (g,w) for all g ∈ G andz,w ∈ B, and

(iii)
∫

B
∆ (z, z)λ dVLeb <∞ if and only if λ > −1.

We have theG-invariant volume element∆(z, z)−(n+1)dVLeb onB.
For all I ∈ ℘(r), h ∈ O(B), z ∈ B and

g =

(
∗ 0
0 E

)
∈ G

we have
hζI
∣∣
g
(z) = h (gz) (Eη)I j (g, z)k+|I| ,

whereE ∈ U(r). So for alls ∈]0,∞], f =
∑

I∈℘(r) fIζ
I andh =

∑
I∈℘(r) hIζ

I ∈
O(B) we have

||f ||(k)
s,Γ ≡

∣∣∣∣∣∣
∣∣∣∣∣∣
√ ∑

I∈℘(r)

f 2
I ∆ (z, z)k+|I|

∣∣∣∣∣∣
∣∣∣∣∣∣
s,Γ\B,∆(z,z)−(n+1)dVLeb

if f̃ ∈ C∞(G)⊗O
(
C0|r) and

(f, h)Γ ≡
∑

I∈℘(r)

∫
Γ\B

fIhI∆ (z, z)k+|I|−(n+1) dVLeb

if
〈
h̃, f̃

〉
∈ L1(Γ\G), where ’≡’ means equality up to a constant6= 0 depending on

Γ.
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For the explicit computation of the elements of our spanning set in Theorem4.3
we need the following lemmas:

Lemma 2.4 (Convergence of relativePOINCARÉ series).LetΓ0 @ Γ be a subgroup
and

f ∈ sMk (Γ0) ∩ L1
k (Γ0\B) .

Then
Φ :=

∑
γ∈Γ0\Γ

f |γ andΦ′ :=
∑

γ∈Γ0\Γ

f̃(γ♦)

converge absolutely and uniformly on compact subsets ofB resp.G,

Φ ∈ sMk(Γ) ∩ L1
k (Γ\B) ,

Φ̃ = Φ′, and for allϕ ∈ sMk(Γ) ∩ L∞k (Γ\B) we have

(Φ, ϕ)Γ = (f, ϕ)Γ0
.

The symbol ’♦’ here and also later simply stands for the argument of the function.
So f̃(γ♦) ∈ C∞(G)C ⊗

∧
(Cr) is a short notation for the smooth map

G→
∧

(Cr) , g 7→ f̃(γg).

Proof. Standard, on using the mean value property of holomorphic functions for all
k ∈ Z without any further assumption onk.

Lemma 2.5. Let I ∈ ℘(r) andk ≥ 2n + 1− |I|. Then for allw ∈ B

∆ (♦,w)−k−|I| ζI ∈ O|I|(B) ∩ L1
k(B),
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and for allf =
∑

J∈℘(r) fJζJ ∈ O(B) ∩ L∞k (B) we have(
∆ (♦,w)−k−|I| ζI , f

)
≡ fI (w) ,

where( , ) := ( , ){1}.

Since the proof is also standard, we will omit it here. It can be found in [11].
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3. The Structure of the Group G

We have a canonical embedding

G′ := SU(p, q) ↪→ G, g′ 7→
(

g′ 0
0 1

)
,

and the canonical projection

G→ U(r), g :=

(
g′ 0
0 E

)
7→ Eg := E

induces a group isomorphism

G /G′ ' U(r).

ObviouslyK ′ = K ∩ G′ = S(U(n) × U(1)) is the stabilizer of0 in G′. Let A
denote the common standard maximal split abelian subgroup ofG andG′ given by
the image of the LIE group embedding

R ↪→ G′, t 7→ at :=

 cosh t 0
0 1

sinh t1
0

sinh t 0 cosh t

 .

Then the centralizerM of A in K is the group of all
ε 0
0 u

0

0 ε
0

0 E

 ,
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whereε ∈ U (1), u ∈ U (p− 1) andE ∈ U(r) such thatε2 det u = det E. Let
M ′ = K ′ ∩M = G′ ∩M be the centralizer ofA in K ′. The centralizer ofG′ in G
is precisely

ZG (G′) :=

{(
ε1 0
0 E

)∣∣∣∣ ε ∈ U(1), E ∈ U(r), εp+1 = det E

}
@M,

andG′ ∩ ZG (G′) = Z (G′). An easy calculation shows thatG = G′ZG (G′). So
K = K ′ZG (G′) andM = M ′Z (G′). Therefore if we decompose the adjoint repre-
sentation ofA as

g =
⊕
α∈Φ

gα,

where for allα ∈ R
gα :=

{
ξ ∈ g

∣∣Adat(ξ) = eαt
}

is the corresponding root space and

Φ := {α ∈ R| gα 6= 0}

is the root system, then we see thatΦ is at the same time the root system ofG′, so
Φ = {0,±2} if n = 1 andΦ = {0,±1,±2} if n ≥ 2. Furthermore, ifα 6= 0
thengα @ g′ is at the same time the corresponding root space ofg′, and finally
g0 = a⊕m = a⊕m′ ⊕ zg (g′).

Lemma 3.1.
N(A) = ANK(A) = N(AM) @ N(M).

Proof. Simple calculation.

In particular we have the WEYL group

W := M \NK(A) 'M ′ \NK′(A) ' {±1}
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acting onA ' R via sign change. For the main result, Theorem4.3, of this article
the following definition is crucial:

Definition 3.2. Letg0 ∈ G.

(i) g0 is called loxodromic if and only if there existsg ∈ G such thatg0 ∈ gAMg−1.

(ii) If g0 is loxodromic, it is called regular if and only ifg0 = gatwg−1 with t ∈ R\{0}
andw ∈M .

(iii) If γ ∈ Γ is regular loxodromic then it is called primitive inΓ if and only if
γ = γ′ν impliesν ∈ {±1} for all loxodromicγ′ ∈ Γ andν ∈ Z.

Clearly for all γ ∈ Γ regular loxodromic there existsγ′ ∈ Γ primitive regular
loxodromic andν ∈ N \ {0} such thatγ = γ′ν .

Lemma 3.3. Let g0 ∈ G be regular loxodromic,g ∈ G, w ∈ M and t ∈ R \ {0}
such thatg0 = gatwg−1. Theng is uniquely determined up to right translation by
elements ofANK(A), andt is uniquely determined up to sign.

Proof. By straight forward computation or using the following strategy: Letg′ ∈ G,
w′ ∈M andt′ ∈ R such thatg0 = g′at′w

′g′−1 also. Thenatw = (g−1g′) at′w
′ (g−1g′)

−1.
Sincet ∈ R \ {0} and because of the root space decomposition,a + m must be the
largest subspace ofg on whichAdatw is orthogonal with respect to an appropiate
scalar product. SoAdg−1g′ mapsa + m into itself. This impliesg−1g′ ∈ N(AM) =
ANK(A) by Lemma3.1.
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4. The Main Result

Let ρ ∈ {0, . . . , r}. AssumeΓ\G compactor n ≥ 2, vol Γ\G <∞ andk ≥ 2n−ρ.
Let C > 0 be given. Let us consider a regular loxodromicγ0 ∈ Γ. Let g ∈ G,
w0 ∈M andt0 > 0 such thatγ0 = gat0w0g

−1.
There exists a torusT := 〈γ0〉\ gAM belonging toγ0. From Lemma3.3 it

follows that T is independent ofg up to right translation with an element of the
WEYL groupW = M\NK(A).

Let f ∈ sSk(Γ). Thenf̃ ∈ C∞ (Γ\G)C⊗O
(
C0|r). Defineh ∈ C∞ (R×M)C⊗

O
(
C0|r) as

h (t, w) := f̃ (gatw)

for all (t, w) ∈ R ×M ’screening’ the values of̃f on T. Then clearlyh (t, w) =

h(t, 1, Ewηj(w))j(w)k, and soh(t, w) = h(t, 1, Ewη)j(w)k+ρ if f ∈ sS
(ρ)
k (Γ), for

all (t, w) ∈ R × M . Clearly E0 := Ew0 ∈ U(r). So we can chooseg ∈ G
such thatE0 is diagonal without changingT. ChooseD ∈ Rr×r diagonal such
that exp(2πiD) = E0 andχ ∈ R such thatj (w0) = e2πiχ. D andχ are uniquely
determined byw0 up toZ. If

D =

 d1 0
...

0 dr


with d1, . . . , dr ∈ R andI ∈ ℘(r), then we definetrID :=

∑
j∈I dj.
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Theorem 4.1 (FOURIER expansion ofh ).

(i) h (t + t0, w) = h
(
t, w−1

0 w
)

for all (t, w) ∈ R×M , and there exist uniquebI,m ∈
C, I ∈ ℘(r), m ∈ 1

t0
(Z− (k + |I|) χ− trID), such that

h (t, w) =
∑

I∈℘(r)

j(w)k+|I|
∑

m∈ 1
t0

(Z−(k+|I|)χ−trID)

bI,me2πimt (Ewη)I

for all (t, w) ∈ R×M , where the sum converges uniformly in all derivatives.

(ii) If f ∈ sS
(ρ)
k (Γ), bI,m = 0 for all I ∈ ℘(r), |I| = ρ, andm ∈ 1

t0
(Z − (k + ρ) χ

−trID)∩] − C, C[ then there existsH ∈ C∞ (R×M)C ⊗
∧

(Cr) uniformlyL IPS-
CHITZ continuous with aL IPSCHITZ constantC2 ≥ 0 independent ofγ0 such that

h = ∂tH,

H (t, w) = j(w)kH (t, 1, Ewηj(w))

and
H (t + t0, w) = H

(
t, w−1

0 w
)

for all (t, w) ∈ R×M .

Proof. (i) Let t ∈ R andw ∈M . Then

h (t + t0, w) = f̃ (gat0atw) = f̃
(
γ0gw−1

0 atw
)

= f̃
(
gatw

−1
0 w

)
= h

(
t, w−1

0 w
)
,
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and so

h (t + t0, 1) = h
(
t, w−1

0

)
= j (w0)

−k h
(
t, 1, E−1

0 ηj (w0)
−1)

= j (w0)
−k
∑

I∈℘(r)

h (t, 1) e−2πitrIDηIj (w0)
−|I|

=
∑

I∈℘(r)

e−2πi((k+|I|)χ+trID)hI(t, 1)ηI .

ThereforehI (t + t0, 1) = e−2πi((k+|I|)χ+trID)hI(t, 1) for all I ∈ ℘(r), and the rest
follows by a standard FOURIER expansion.

To prove (ii) we need the following lemma:

Lemma 4.2 (Generalization of the reverseBERNSTEIN inequality). Let t0 ∈ R \
{0}, ν ∈ R andC > 0. LetS be the space of all convergentFOURIER series

s =
∑

m∈ 1
t0

(Z−ν),|m|≥C

sle
2πim♦ ∈ C∞ (R)C ,

for all sm ∈ C. Then

̂ : S → S, s =
∑

m∈ 1
t0

(Z−ν),|m|≥C

sme2πim♦ 7→ ŝ :=
∑

m∈ 1
t0

(Z−ν),|m|≥C

sm

2πim
e2πim♦

is a well-defined linear map, and||ŝ||∞ ≤
6

πC
||s||∞ for all s ∈ S.

Proof. This can be deduced from the ordinary reverse BERNSTEIN inequality, see
for example Theorem 8.4 in Chapter I of [9].
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Now we prove Theorem4.1(ii). Fix someI ∈ ℘(r) such that|I| = ρ andbI,m = 0 for
all m ∈ 1

t0
(Z− (k + ρ) χ− trID)∩]− C, C[. Then if we defineν := (k + ρ) χ +

trID ∈ R we have

hI(♦, 1) =
∑

m∈ 1
t0

(Z−ν),|m|≥C

bI,me2πim♦,

and so we can apply the generalized reverse BERNSTEIN inequality, Lemma4.2, to
hI . Therefore we can define

H ′
I := ̂hI (♦, 1) =

∑
m∈ 1

t0
(Z−ν),|m|≥C

bI,m

2πim
e2πim♦ ∈ C∞ (R)C .

∣∣∣f̃ ∣∣∣ ∈ L∞(G) by SATAKE ’s theorem, Theorem2.3, and so there exists a constant

C ′ > 0 independent ofγ0 andI such that||hI ||∞ < C ′, and now Lemma4.2tells us
that

||H ′
I ||∞ ≤

6

πC
||h (♦, 1)||∞ ≤

6C ′

πC
.

ClearlyhI (♦, 1) = ∂tH
′
I .

Sincej is smooth on the compact setM , jk+ρ (Ewη)I is uniformly LIPSCHITZ

continuous onM with a common LIPSCHITZ constantC ′′ independent ofγ0 andI.
So we see thatH ∈ C∞(R, M)C ⊗

∧
(Cr) defined as

H(t, w) :=
∑

I∈℘(r)

j(w)k+ρH ′
I(t) (Ewη)I

for all (t, w) ∈ R×M is uniformly LIPSCHITZcontinuous with LIPSCHITZconstant
C2 :=

(
6C′′

πC
+ 1
)
C ′ independent ofγ0, and the rest is trivial.
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Let I ∈ ℘(r) andm ∈ 1
t0

(Z− (k + |I|) χ− trID). SincesSk(Γ) is a HILBERT

space andsSk(Γ) → C, f 7→ bI,m is linear and continuous, there exists exactly
oneϕγ0,I,m ∈ sSk(Γ) such thatbI,m = (ϕγ0,I,m, f) for all f ∈ sSk(Γ). Clearly
ϕγ0,I,m ∈ sS

(|I|)
k (Γ).

For the remainder of the article for simplicity we writem ∈] − C, C[ instead of
m ∈ 1

t0
(Z− (k + |I|) χ− trID)∩] − C, C[. In the last section we will compute

ϕγ0,I,m as a relative POINCARÉ series. One can check that the family

{ϕγ0,I,m}I∈℘(r),|I|=ρ,m∈]−C,C[

is independent of the choice ofg, D andχ up to multiplication with a unitary matrix
with entries inC and invariant under conjugatingγ0 with elements ofΓ.

Now we can state our main theorem: LetΩ be a fundamental set for all primitive
regular loxodromicγ0 ∈ Γ modulo conjugation by elements ofΓ and

Z̃ :=
{

m ∈ ZG (G′)
∣∣∣ ∃g′ ∈ G′ : mg′ ∈ Γ

}
@ ZG (G′) .

Then clearlyΓ @ G′Z̃. Recall that we still assume

• Γ\G compactor

• n ≥ 2, vol Γ\G <∞ andk ≥ 2n− ρ.

Theorem 4.3 (Spanning set forsSk(Γ) ). Assume that the right translation ofA on
Γ\G′Z̃ is topologically transitive. Then

{ϕγ0,I,m| γ0 ∈ Ω, I ∈ ℘(r), |I| = ρ, m ∈]− C, C[}

is a spanning set forsS(ρ)
k (Γ).
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For proving this result we need an ANOSOV type theorem forG and the un-
bounded realization ofB, which we will discuss in the following two sections.

Remark1.

(i) If there is some subgroup̃M @ ZG (G′) such thatΓ @ G′M̃ and the right trans-
lation ofA onΓ\G′M̃ is topologically transitive then necessarilỹMZ(G′) = Z̃

and there existsg0 ∈ G′ such thatG′Z̃ = Γg0A. The latter statement is a trivial
consequence of the fact thatZ̃ @M .

(ii) In the case whereΓ ∩ G′ @ Γ is of finite index or equivalentlỹZ is finite then
we know that the right translation ofA on Γ\G′Z̃ is topologically transitive
because of MOORE’s ergodicity theorem, see [13] Theorem 2.2.6, and since
thenΓ ∩G′ @ G′ is a lattice.

(iii) There is a finite-to-one correspondence betweenΩ and the set of closed geodesics
of Γ\B assigning to each primitive loxodromic element
γ0 = gat0w0g

−1 ∈ Γ, g ∈ G, t0 > 0 andw0 ∈ M , the image of the unique
geodesicgA0 of B normalized byγ0 under the canonical projectionB → Γ\B.
It is of lengtht0 if there is no irregular point ofΓ\B ongA0.
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5. An ANOSOV Type Result for the Group G

On the LIE groupG we have a smooth flow(ϕt)t∈R given by the right translation by
elements ofA:

ϕt : G→ G, g 7→ gat.

This turns out to be partially hyperbolic, and so we can apply a partial ANOSOVclos-
ing lemma. Let me mention that the flow(ϕt)t∈R descends to the ordinary geodesic
flow on the unit tangent bundleSB ' G/M . Let us first have a look at the general
theory of partial hyperbolicity: LetW be, for the moment, a smooth Riemannian
manifold.

Definition 5.1 (Partially Hyperbolic Diffeomorphism and Flow). LetC > 1.

(i) Let ϕ be aC∞-diffeomorphism ofW . Thenϕ is called partially hyperbolic with
constantC if and only if there exists an orthogonalDϕ (and thereforeDϕ−1 ) -
invariantC∞-splitting

(5.1) TW = T 0 ⊕ T+ ⊕ T−

of the tangent bundleTW such thatT 0 ⊕ T+, T 0 ⊕ T−, T 0, T+ andT− are closed
under the commutator,Dϕ|T 0 is an isometry,||Dϕ|T−|| ≤ 1

C
and||Dϕ−1|T+ || ≤ 1

C
.

(ii) Let (ϕt)t∈R be aC∞-flow onW . Then(ϕt)t∈R is called partially hyperbolic with
constantC if and only if allϕt, t > 0 are partially hyperbolic diffeomorphisms with
a common splitting (5.1) and constantseCt resp. andT 0 contains the generator of
the flow.

A partially hyperbolic diffeomorphismϕ gives rise toC∞-foliations onW corre-
sponding to the splittingTW = T 0 ⊕ T+ ⊕ T−. Let us denote the distances along
theT 0 ⊕ T+-, T 0-, T+- respectivelyT−-leaves byd0,+, d0, d+ andd−.
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Definition 5.2. Let TW = T 0 ⊕ T+ ⊕ T− be an orthogonalC∞-splitting of the
tangent bundleTW of W such thatT 0 ⊕ T+, T 0, T+ andT− are closed under the
commutator,C ′ ≥ 1 andU ⊂ W . U is calledC ′-rectangular (with respect to the
splittingTW = T 0 ⊕ T+ ⊕ T− ) if and only if for ally, z ∈ U

{i} there exists a unique intersection pointa ∈ U of theT 0 ⊕ T+-leaf containing
y and theT−-leaf containingz and a unique intersection pointb ∈ U of the
T 0 ⊕ T+-leaf containingz and theT−-leaf containingy,

d0,+ (y, a) , d− (y, b) , d− (z, a) , d0,+ (z, b) ≤ C ′d (y, z) ,

and

1

C ′d
0,+ (z, b) ≤ d0,+ (y, a) ≤ C ′d0,+ (z, b) ,

1

C ′d
− (z, a) ≤ d− (y, b) ≤ C ′d− (z, a) .

{ii} if y andz belong to the sameT 0 ⊕ T+-leaf there exists a unique intersection
point c ∈ U of theT 0-leaf containingy and theT+-leaf containingz and a
unique intersection pointd ∈ U of theT 0-leaf containingz and theT+-leaf
containingy,

d0 (y, c) , d+ (y, d) , d+ (z, c) , d0 (z, d) ≤ C ′d0,+ (y, z) ,

and

1

C ′d
0 (z, d) ≤ d0 (y, c) ≤ C ′d0 (z, d) ,

1

C ′d
+ (z, c) ≤ d+ (y, d) ≤ C ′d+ (z, c) .
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Figure 1: Intersection points in {i}.

Since the splittingTW = T 0 ⊕ T+ ⊕ T− is orthogonal and smooth we see that
for all x ∈ W andC ′ > 1 there exists aC ′-rectangular neighbourhood ofx.

Theorem 5.3 (Partial ANOSOV closing lemma). Let ϕ be a partially hyperbolic
diffeomorphism with constantC, let x ∈ W , C ′ ∈]1, C[ andδ > 0 such thatUδ(x)
is contained in aC ′-rectangular subsetU ⊂ W .

If d (x, ϕ(x)) ≤ δ
1−C′

C

C′2+1
then there existy, z ∈ U such that

(i) x andy belong to the sameT−-leaf and

d− (x, y) ≤ C ′

1− C′

C

d (x, ϕ(x)) ,
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(ii) y andϕ(y) belong to the sameT 0 ⊕ T+-leaf and

d0,+ (y, ϕ(y)) ≤ C ′2d (x, ϕ(x)) ,

(iii) y andz belong to the sameT+-leaf and

d+ (ϕ(y), ϕ(z)) ≤ C ′3

1− C′

C

d (x, ϕ(x)) ,

(iv) z andϕ(z) belong to the sameT 0-leaf and

d0 (z, ϕ(z)) ≤ C′4d (x, ϕ(x)) .

The proof, which will not be given here, uses a standard argument obtaining the
pointsy andϕ(z) as limits of certain CAUCHY sequences. The interested reader will
find it in [11].

Now let us return to the flow(ϕt)t∈R onG and choose a left invariant metric onG
such thatgα, α ∈ Φ\{0}, a andm are pairwise orthogonal and the isomorphismR '
A ⊂ G is isometric. Then since the flow(ϕt)t∈R commutes with left translations it
is indeed partially hyperbolic with constant1 and the unique left invariant splitting
of TG given by

T1G = g = a⊕m︸ ︷︷ ︸
T 0
1 :=

⊕
⊕

α∈Φ,α>0

gα

︸ ︷︷ ︸
T−
1 :=

⊕
⊕

α∈Φ,α<0

gα

︸ ︷︷ ︸
T+
1 :=

.

For allL ⊂ G compact,T, ε > 0 define

ML,T :=
{

gatg
−1
∣∣ g ∈ L, t ∈ [−T, T ]

}
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and
NL,T,ε := {g ∈ G |dist (g,ML,T ) ≤ ε} .

Lemma 5.4. For all L ⊂ G compact there existT0, ε0 > 0 such thatΓ ∩NL,T0,ε0 =
{1}.
Proof. Let L ⊂ G be compact andT > 0. ThenML,T is compact, and so there
existsε > 0 such thatNL,T,ε is again compact. SinceΓ is discrete,Γ ∩ NL,T,ε is
finite. Clearly for allT, T ′, ε andε′ > 0 if T ≤ T ′ andε ≤ ε′ thenNL,T,ε ⊂ NL,T ′,ε′,
and finally ⋂

T,ε>0

NT,ε = {1}.

Here now is the quintessence of this section:

Theorem 5.5.

(i) For all T1 > 0 there existC1 ≥ 1 andε1 > 0 such that for allx ∈ G, γ ∈ Γ and
T ≥ T1 if

ε := d (γx, xaT ) ≤ ε1

then there existz ∈ G, w ∈M andt0 > 0 such thatγz = zat0w (and soγ is regular
loxodromic),d ((t0, w), (T, 1)) ≤ C1ε and for all τ ∈ [0, T ]

d (xaτ , zaτ ) ≤ C1ε
(
e−τ + e−(T−τ)

)
.

(ii) For all L ⊂ G compact there existsε2 > 0 such that for allx ∈ L, γ ∈ Γ and
T ∈ [0, T0], T0 > 0 given by Lemma5.4, if

ε := d (γx, xaT ) ≤ ε2

thenγ = 1 andT ≤ ε.
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Proof. (i) Let T1 > 0 and define

C1 := max

(
e

3
2
T1

1− e−
T1
2

, e2T1

)
≥ 1.

DefineC ′ := e
T1
2 , let U be aC ′-rectangular neighbourhood of1 ∈ G and letδ > 0

such thatUδ(1) ⊂ U . Then by the left invariance of the splitting and the metric onG

we see thatgU is aC ′-rectangular neighbourhood ofg andUδ(g) = gUδ(1) ⊂ gU
for all g ∈ G. Define

ε1 := min

(
δ
1− e−

T1
2

eT1 + 1
,
T1

C1

)
> 0.

Now assumeγ ∈ Γ andT ≥ T1 such that

ε := d (γx, xaTv) ≤ ε1.

Then ϕ : G → G, g 7→ γ−1gaT is a partially hyperbolic diffeomorphism with
constanteT1 > 1 and the corresponding splittingTG = T 0 ⊕ T+ ⊕ T−. Then since

ε ≤ δ
1− e−

T1
2

eT1 + 1
= δ

1− C ′e−T1

C ′2 + 1

the partial ANOSOV closing lemma, Theorem5.3, tells us that there existy, z ∈ G
such that

(i) x andy belong to the sameT−-leaf and

d− (x, y) ≤ ε
C ′

1− C′

C

,
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(iii) y andz belong to the sameT+-leaf and

d+ (yaTv, zaTv) ≤ ε
C ′3

1− C′

C

,

(iv) γz andzaTv belong to the sameT 0-leaf and

d0 (γz, zaTv) ≤ εC ′4.

In (iii) and (iv) we already used that the metric and the flow are left invariant. So
by (iv) and since theT 0-leaf containingzaT is zAM , there existw ∈M andt0 ∈ R
such thatγz = zat0w. So

d0 (at0−T w, 1) ≤ εC ′4,

and so, sinceAM ' R×M isometrically, we see that

d ((t0, w) , (T, 1)) ≤ εC ′4 = εe2T1 ≤ εC1.

In particular,|t0 − T | ≤ T1, and sot0 > 0.
Now let τ ∈ [0, T ]. Then sincex andy belong to the sameT−-leaf, the same is

true forxaτ andyaτ , and

d− (xaτ , yaτ ) ≤ d− (x, y) e−τ ≤ ε
C ′

1− C′

C

e−τ ≤ εC1e
−τ .

Sincey andz belong to the sameT+-leaf, the same is true foryaτ andzaτ , and

d+ (yaτ , zaτ ) ≤ d+ (yaT , zaT ) e−(T−τ)

≤ ε
C ′3

1− C′

C

e−(T−τ) ≤ εC1e
−(T−τ).
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Combining these two inequalities we obtain

d (xaτ , zaτ ) ≤ εC1

(
e−τ + e−(T−τ)

)
.

(ii) Let L ⊂ G be compact and letc ≥ 1 be given such that||Adg|| ,
∣∣∣∣Ad−1

g

∣∣∣∣ ≤ c
and therefore

1

c
d(ag, bg) ≤ d(a, b) ≤ cd(ag, bg)

for all g ∈ L anda, b ∈ G. Let ε0 > 0 be given by Lemma5.4and define

ε2 :=
ε0

c
> 0.

Let x ∈ L, γ ∈ Γ andT ∈ [0, T0] such that

ε := d (γx, xaT ) ≤ ε2.

Then sincex ∈ L, we get

d
(
γ, xaT x−1

)
≤ cε ≤ ε0

and soγ ∈ Γ ∩ NL,T0,ε0 . This impliesγ = 1 and sod (1, aT ) = ε and therefore
T ≤ ε.
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6. The Unbounded Realization

Let n @ g′ be the standard maximal nilpotent sub LIE algebra, which is at the same
time the direct sum of all root spaces ofg′ of positive roots with respect toa. Let
N := exp n. Then we have an IWASAWA decomposition

G = NAK,

N is 2-step nilpotent, and soN ′ := [N, N ] is at the same time the center ofN .
Now we transform the whole problem to the unbounded realization via the partial

CAYLEY transformation

R :=

 1√
2

0 1√
2

0 1 0
− 1√

2
0 1√

2

 ← 1
}n− 1
← n + 1

∈ G′C = SL(n + 1, C)

mappingB biholomorphically onto the unbounded domain

H :=

{
w =

(
w1

w2

)
← 1
}n− 1

∈ Cn

∣∣∣∣Re w1 >
1

2
w∗

2w2

}
.

We see that

RG′R−1 @ G′C = SL(n + 1, C) ↪→ GL(n + 1, C)×GL(r, C)

acts holomorphically and transitively onH via fractional linear transformations, and
explicit calculations show that

a′t := RatR
−1 =

 et 0 0
0 1 0
0 0 e−t

 ← 1
}n− 1
← n + 1
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for all t ∈ R, andRNR−1 is the image of

R× Cn−1 → RG′R−1, (λ,u) 7→ n′λ,u :=

 1 u∗ iλ + 1
2
u∗u

0 1 u
0 0 1

 ,

which is aC∞-diffeomorphism onto its image, with the multiplication rule

n′λ,un′µ,v = n′λ+µ+Im (u∗v),u+v

for all λ, µ ∈ R andu,v ∈ Cn−1, soN is exactly the HEISENBERGgroupHn acting
onH as pseudo translations

w 7→
(

w1 + u∗w2 + iλ + 1
2
u∗u

w2 + u

)
.

Define j (R, z) =
√

2
1−z1

∈ O(B), j (R−1,w) := j (R,R−1w)
−1

=
√

2
1+w1

∈
O(H), and for all

g ∈ RGR−1 =

 A b
c d

0

0 E

 ∈ RGR−1

define

j (g,w) = j
(
R, R−1gw

)
j
(
R−1gR, R−1w

)
j
(
R−1,w

)
=

1

cw + d
.

LetH := H |r with even coordinate functionsw1, . . . , wn and odd coordinate func-
tionsϑ1, . . . , ϑr. R commutes with allg ∈ ZG (G′), and we have a right-representation
of the groupRGR−1 onD(H) given by

|g : D(H)→ D(H), f 7→ f

(
g

(
♦
ϑ

))
j (g,♦)k
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for all g ∈ RGR−1. If we define

|R : D(H)→ D(B), f 7→ f

(
R

(
♦
ζ

))
j (R,♦)k

and

|R−1 : D(B)→ D(H), f 7→ f

(
R−1

(
♦
ϑ

))
j
(
R−1,♦

)k
,

then we see that we get a commuting diagram

D(H)
|RgR−1

−→ D(H)
|R ↓ ↓ |R
D(B) −→

|g
D(B)

.

Now define the sesqui polynomial∆′ on H × H, holomorphic in the first and
antiholomorphic in the second variable, as

∆′ (z,w) := ∆
(
R−1z, R−1w

)
j
(
R−1, z

)−1
j (R−1,w)

−1
= z1 + w1 −w∗

2z2

for all z,w ∈ H. Clearly
∣∣det (z 7→ Rz)′

∣∣ = |j (R, z)|n+1 for all z ∈ B. So∣∣det (w 7→ gw)′
∣∣ = |j (g,w)|n+1 ,

|j (g, e1)| = ∆′ (ge1, ge1)
1
2

for all g ∈ RGR−1 and ∆′ (w,w)−(n+1) dVLeb is the RGR−1 -invariant volume
element onH. If f =

∑
I∈℘(r) fIζ

I ∈ O(B), all fI ∈ O(B)C, I ∈ ℘(r), then

f |R−1 =
∑

I∈℘(r)

fI

(
R−1♦

)
j
(
R−1,♦

)k+|I|
ϑI ∈ O(H),
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and if f =
∑

I∈℘(r) fIϑ
I ∈ O(H), all fI ∈ C∞(H)C, I ∈ ℘(r), andg ∈ RGR−1,

then
f |g =

∑
I∈℘(r)

fI (g♦) j (g,♦)k+|I| (Egϑ)I ∈ O(H).

Let ∂H =
{
w ∈ Cn

∣∣Re w1 = 1
2
w∗

2w
}

be the boundary ofH in Cn. Then∆′

and∂H areRNR−1-invariant, andRNR−1 acts transitively on∂H and on each{
w ∈ H

∣∣∆′ (w,w) = e2t
}

= RNat0,

t ∈ R.
All geodesics inH can be written in the form

R→ H, t 7→ wt := Rgat0 = RgR−1a′te1

with someg ∈ G, and conversely all these curves are geodesics inH. We have
to distinguish two cases: Either the geodesic connects∞ with a point in∂H, or it
connects two points in∂H. In the second case we have

lim
t→±∞

∆′ (wt,wt) = 0,

so we may assume without loss of generality that∆′ (wt,wt) is maximal fort = 0,
otherwise we have to reparametrize the geodesic usinggaT , T ∈ R appropriately
chosen, instead ofg.

Lemma 6.1.

(i) Let
R→ H, t 7→ wt := Rgat0 = RgR−1a′te1

be a geodesic inH such thatlimt→∞wt = ∞ and limt→−∞wt ∈ ∂H with respect
to the euclidian metric onCp. Then for allt ∈ R

∆′ (wt,wt) = e2t∆′ (w0,w0) ,
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Figure 2: The geometry ofH.

and if insteadlimt→−∞wt =∞ andlimt→∞wt ∈ ∂H, then

∆′ (wt,wt) = e−2t∆′ (w0,w0) .

(ii) Let
R→ H, t 7→ wt := Rgat0 = RgR−1a′te1
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be a geodesic inH connecting two points in∂H such that∆′ (wt,wt) is maximal
for t = 0. Then

R→ R>0, t 7→ ∆′ (wt,wt)

is strictly increasing onR≤0 and strictly decreasing onR≥0, and for all t ∈ R

∆′ (w−t,w−t) = ∆′ (wt,wt)

and
e−2|t|∆′ (w0,w0) ≤ ∆′ (wt,wt) ≤ 4e−2|t|∆′ (w0,w0) .

Proof. (i) SinceRNR−1 acts transitively on∂H and∆′ is RNR−1-invariant we can
assume without loss of generality that the geodesic connects0 and∞. But in H a
geodesic is uniquely determined up to reparametrization by its endpoints. So we see
that in the first case

wt = a′txe1 = e2txe1

and in the second case
wt = a′−txe1 = e−2txe1

both with an appropriately chosenx > 0.

(ii) Let u, y ∈ R ands ∈ Cp−1 such thaty2 + s∗s = 1. Then

R→ H, t 7→ w
(u,y,s)
t :=

eu

1 + y2 tanh2 t

(
eu
(
1− y2 tanh2 t + 2iy tanh t

)
√

2 tanh t (1 + iy tanh t) s

)
is a geodesic throughe2ue1 in H since it is the image of the standard geodesic

R→ B, t 7→ at0 =

(
tanh t

0

)
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in B under the transformation

a′u︸ ︷︷ ︸
∈RAR−1@RG′R−1

R

 iy −s∗ 0
s −iy 0
0 0 1


︸ ︷︷ ︸

∈K′@G′

.

So we see that

∂tw
(u,y,s)
t

∣∣∣
t=0

=

(
2ie2uy√

2eus

)
∈ Te2ue1

H

is a unit vector with respect to theRGR−1-invariant metric onH coming fromB
via R. Now sinceRNR−1 acts transitively on each{

w ∈ H
∣∣∆′ (w,w) = e2t

}
= RNat0,

t ∈ R, and∆′ is invariant underRNR−1 we may assume without loss of generality
thatw0 = e2ue1 with an appropriateu ∈ R. Since∆′ (wt,wt) is maximal fort = 0
we know that∂twt|t=0 is a unit vector iniR ⊕ Cp−1 @ Te1H, and therefore there
existy ∈ R ands ∈ Cp−1 such thaty2 + s∗s = 1 and

∂twt|t=0 =

(
2ie2uy√

2eus

)
.

Since the geodesic is uniquely determined byw0 and ∂twt|t=0 we see thatwt =

w
(u,y,s)
t for all t ∈ R, and so a straight forward calculation shows that

∆′ (wt,wt) = 2e2u 1− tanh2 t

1 + y2 tanh2 t

=
8e2u

(1 + y2) (e2t + e−2t) + 2s∗s
.
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The rest is an easy exercise usingy2 + s∗s = 1.

For all t ∈ R defineA>t := {aτ | τ > t} ⊂ A.

Theorem 6.2 (A ’fundamental domain’ for Γ\G ). There existη ⊂ N open and
relatively compact,t0 ∈ R andΞ ⊂ G′ finite such that if we define

Ω :=
⋃
g∈Ξ

gηA>t0K

then

(i) g−1Γg ∩ NZG (G′) @ NZG (G′) andg−1Γg ∩ N ′ZG (G′) @ N ′ZG (G′) are lat-
tices, and

NZG (G′) =
(
g−1Γg ∩NZG (G′)

)
ηZG (G′)

for all g ∈ Ξ ,

(ii) G = ΓΩ,

(iii) the set{γ ∈ Γ|γΩ ∩ Ω 6= ∅} is finite.

Proof. The theorem is a direct consequence of Theorem 0.6 (i) - (iii), Theorem 0.7,
Lemma 3.16 and Lemma 3.18 of [5]. For a detailed derivation see [10] or Section
3.2 of [11].

Now clearly the set of cusps ofΓ\B in Γ\∂B is contained in the set{
lim

t→+∞
Γgat0

∣∣∣∣ g ∈ Ξ

}
,

and is therefore finite as expected, where the limits are taken with respect to the
Euclidian metric onB.

http://jipam.vu.edu.au
mailto:roland.knevel@uni.lu
http://jipam.vu.edu.au


A Spanning Set for the
Space of Super Cusp Forms

Roland Knevel

vol. 10, iss. 1, art. 2, 2009

Title Page

Contents

JJ II

J I

Page 39 of 66

Go Back

Full Screen

Close

Corollary 6.3. Let t0 ∈ R, η ⊂ N andΞ ⊂ G be given by Theorem6.2. Let h ∈
C (Γ\G)C ands ∈]0,∞]. Thenh ∈ Ls (Γ\G) if and only ifh (g♦) ∈ Ls (ηA>t0K)
for all g ∈ Ξ.

Let f ∈ sMk(Γ) andg ∈ Ξ. Then we can decomposef |g|R−1 =
∑

I∈℘(r) qIϑ
I ∈

O(H), all qI ∈ O(H), I ∈ ℘(r), and by Theorem6.2 (i) we know thatg−1Γg ∩
N ′ZG (G′) 6@ ZG (G′). So letn ∈ g−1Γg ∩N ′ZG (G′) \ ZG (G′),

RnR−1 = n′λ0,0

(
ε1 0
0 E0

)
,

λ0 ∈ R \ {0}, ε ∈ U(1), E0 ∈ U(r), εn+1 = det E.
j (RnR−1) := j (RnR−1,w) = ε−1 ∈ U(1) is independent ofw ∈ H. So

there existsχ ∈ R such thatj (RnR−1) = e2πiχ. Without loss of generality we can
assume thatE0 is diagonal, otherwise conjugaten with an appropriate element of
ZG (G′). So there existsD ∈ Rr×r diagonal such thatE0 = exp (2πiD).

Theorem 6.4 (FOURIER expansion off |g|R−1 ).

(i) There exist uniquecI,m ∈ O (Cn−1), I ∈ ℘(r), m ∈ 1
λ0

(Z− trID − (k + |I|) χ),
such that

qI (w) =
∑

m∈ 1
λ0

(Z−trID−(k+|I|)χ)

cI,m (w2) e2πmw1

for all w ∈ H andI ∈ ℘(r), and so

f |g|R−1 (w) =
∑

I∈℘(r)

∑
m∈ 1

λ0
(Z−trID−(k+|I|)χ)

cI,m (w2) e2πmw1ϑI

for all w =

(
w1

w2

)
← 1
}n− 1

∈ H, where the convergence is absolute and com-

pact.

http://jipam.vu.edu.au
mailto:roland.knevel@uni.lu
http://jipam.vu.edu.au


A Spanning Set for the
Space of Super Cusp Forms

Roland Knevel

vol. 10, iss. 1, art. 2, 2009

Title Page

Contents

JJ II

J I

Page 40 of 66

Go Back

Full Screen

Close

(ii) cI,m = 0 for all I ∈ ℘(r) andm > 0 (this is a super analogon forKOECHER’s
principle, see for example Section 11.5 of [1] ), and if trID + (k + |I|) χ ∈ Z, then
cI,0 is a constant.

(iii) Let I ∈ ℘(r) ands ∈ [1,∞] . If trID + (k + |I|) χ 6∈ Z, then

qI∆
′ (w,w)

k+|I|
2 ∈ Ls (RηA>t00)

with respect to theRGR−1 -invariant measure∆′ (w,w)−(n+1) dVLeb on H. If
trID + (k + |I|) χ ∈ Z andk ≥ 2n− |I| then

qI∆
′ (w,w)

k+|I|
2 ∈ Ls (RηA>t00)

with respect to theRGR−1 -invariant measure onH if and only ifcI,0 = 0.

A proof can be found in [10] or [11] Section 3.2.
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7. Proof of the Main Result

We have a LIE algebra embedding

ρ : sl(2, C) ↪→ g′C = sl(n + 1, C),

(
a b
c −a

)
7→

 a 0
0 0

b
0

c 0 −a

 .

Obviously the preimage ofg′ underρ is su(1, 1), the preimage ofk′ underρ is
s (u(1)⊕ u(1)) ' u(1) andρ lifts to a LIE group homomorphism

ρ̃ : SL(2, C)→ G′C = SL(n + 1, C),

(
a b
c d

)
7→

 a 0
0 0

b
0

c 0 d


such that̃ρ (SU(1, 1)) @ G′.

Let us now identify the elements ofg with the corresponding left invariant differ-
ential operators. They are defined on a dense subset ofL2 (Γ\G), and define

D := ρ

(
0 1
1 0

)
∈ a , D′ := ρ

(
0 i
−i 0

)
∈ g′ and

φ := ρ

(
i 0
0 −i

)
∈ k′.

TheR-linear span ofD,D′ andφ is the3-dimensional sub LIE algebraρ (su(1, 1))
of g′ @ g, andD generates the flowϕt. φ generates a subgroup ofK ′, being the im-
age of the LIE group embedding

R/2πZ ↪→ K, t 7→ exp (tφ) = ρ̃

(
eit 0
0 e−it

)
.
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Now define

D+ :=
1

2
(D − iD′) ,D− :=

1

2
(D + iD′) andΨ := −iφ

as left invariant differential operators onG. Then we get the commutation relations[
Ψ,D+

]
= 2D+,

[
Ψ,D−

]
= −2D− and

[
D+,D−

]
= Ψ,

and sinceG is unimodular(
D+
)∗

= −D−,
(
D−
)∗

= −D+ andΨ∗ = Ψ.

So by standard FOURIER analysis

L2 (Γ\G) =
⊕̂
ν∈Z

Hν

as an orthogonal sum, where

Hν :=
{

F ∈ L2 (Γ\G) ∩ domainΨ
∣∣ΨF = νF

}
for all ν ∈ Z. By a simple calculation we obtain

D+
(
Hν ∩ domainD+

)
⊂ Hν+2 andD−

(
Hν ∩ domainD−

)
⊂ Hν−2

for all ν ∈ Z.

Lemma 7.1.D−h̃ = 0 for all h ∈ O(B).

Proof. Let g ∈ G. Then againh|g ∈ O(B), andh̃ (g♦) = h̃|g. So

D−h̃(g) = D−
(
h̃ (g♦)

)
(1) = ∂1h|g(0) = 0.
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Lemma 7.2. Letf ∈ sS
(ρ)
k (Γ). Thenf̃ is uniformlyL IPSCHITZ continuous.

Proof. Since onG we use a left invariant metric it suffices to show that there exists
a constantc ≥ 0 such that for allg ∈ G andξ ∈ g with ||ξ||2 ≤ 1∣∣∣ξf̃(g)

∣∣∣ ≤ c.

Thenc is a LIPSCHITZ constant forf̃ . So choose an orthonormal basis(ξ1, . . . , ξN)
of g and a compact neighbourhoodL of 0 in B. Then by CAUCHY ’s integral formula
there existC ′, C ′′ ≥ 0 such that for allh ∈ O(B) ∩ L∞k (B) andn ∈ {1, . . . , N}∣∣∣(ξnh̃

)
(1)
∣∣∣ ≤ C ′

∫
L

|h| ≤ C ′vol L ||h||∞,L ≤ C ′′vol L
∣∣∣∣∣∣h̃∣∣∣∣∣∣

∞
,

and sinceg→ C, ξ 7→
(
ξh̃
)

(1) is linear we obtain∣∣∣(ξh̃) (1)
∣∣∣ ≤ NC ′′vol L

∣∣∣∣∣∣h̃∣∣∣∣∣∣
∞

for generalξ ∈ g with ||ξ||2 ≤ 1. Now let g ∈ G. Then againf |g ∈ O(B),

f̃ (g♦) = f̃ |g, and by SATAKE ’s theorem, Theorem2.3, f and sof |g ∈ L∞k (B). So∣∣∣ξf̃(g)
∣∣∣ =

∣∣∣(ξf̃ (g♦)
)

(1)
∣∣∣ ≤ NC ′′vol L

∣∣∣∣∣∣f̃ (g♦)
∣∣∣∣∣∣
∞
≤ NC ′′vol L

∣∣∣∣∣∣f̃ ∣∣∣∣∣∣
∞

,

and we can definec := NC ′′vol L
∣∣∣∣∣∣f̃ ∣∣∣∣∣∣

∞
.

Now letf ∈ sS
(ρ)
k (Γ) such that(ϕγ0,I,m, f)Γ = 0 for all ϕγ0,I,m, γ0 ∈ Γ primitive

loxodromic,I ∈ ℘(r), |I| = ρ, m ∈] − C, C[. We will show thatf = 0 in several
steps.
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Lemma 7.3. There existsF ∈ C (Γ\G)C⊗
∧

(Cr) uniformlyL IPSCHITZcontinuous
on compact sets and differentiable along the flowϕt such that

f = ∂τF (♦aτ )|τ=0 = DF.

Proof. Here we use that the right translation withA onΓ\G′Z̃ is topologically tran-
sitive. So letg0 ∈ G′ such thatΓg0A = G′Z̃ and defines ∈ C∞ (R)C ⊗

∧
(Cr)

by

s(t) :=

∫ t

0

f̃ (g0aτ ) dτ

for all t ∈ R.

Step I. Show that for all L ⊂ G′Z̃ compact there exist constantsC3 ≥ 0 and
ε3 > 0 such that for all t ∈ R, T ≥ 0 and γ ∈ Γ if g0at ∈ L and

ε := d (γg0at, g0at+T ) ≤ ε3

then |s(t)− s(t + T )| ≤ C3ε.
Let L ⊂ G′Z̃ be compact,T0 > 0 be given by Lemma5.4andC1 ≥ 1 andε1 be

given by Theorem5.5(i) with T1 := T0. DefineC3 := max
(
C1 (C2 + 2c) ,

∣∣∣∣∣∣f̃ ∣∣∣∣∣∣
∞

)
≥

0, whereC2 ≥ 0 is the LIPSCHITZ constant from Theorem4.1 (ii) and c ≥ 0 is the

L IPSCHITZ constant off̃ . Defineε3 := min
(
ε1, ε2,

T0

2C1

)
> 0, whereε2 > 0 is

given by Theorem5.5(ii).

Let t ∈ R, T ≥ 0 andγ ∈ Γ such thatg0at ∈ L andε := d (γg0at, g0at+T ) ≤ ε3.
First assumeT ≥ T0. Then by Theorem5.5 (i) sinceε ≤ ε1 there existg ∈ G,

w0 ∈ M andt0 > 0 such thatγg = gat0w0, d ((t0, w0) , (T, 1)) ≤ C1ε, and for all
τ ∈ [0, T ]

d (g0at+τ , gaτ ) ≤ C1ε
(
e−τ + e−(T−τ)

)
.
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We get

s(t + T )− s(t) =

∫ T

0

f̃ (gaτ ) dτ︸ ︷︷ ︸
I1:=

+

∫ T

0

(
f̃ (g0at+τ )− f̃ (gaτ )

)
dτ︸ ︷︷ ︸

I2:=

and

|I2| ≤
∫ T

0

∣∣∣f̃ (g0at+τ )− f̃ (gaτ )
∣∣∣ dτ

≤ c

∫ T

0

d (g0at+τ , gaτ ) dτ

≤ cC1ε

∫ T

0

(
e−τ + e−(T−τ)

)
dτ

≤ 2cC1ε.

Sinceγ ∈ Γ is regular loxodromic, there existsγ0 ∈ Γ primitive loxodromic
andν ∈ N \ {0} such thatγ = γν

0 . γ0 ∈ gAWg−1 since Lemma3.3 tells us that
g ∈ G is already determined byγ up to right translation with elements ofANK(A).
Choosew′ ∈ NK(M), t′0 > 0 andw′

0 ∈ M such thatEw′
0

is diagonal andγ =

gw′at′0
w′

0 (gw′)−1, and letg′ := gw′. We defineh ∈ C∞ (R×M)C ⊗
∧

(Cr) as

h(τ, w) := f̃ (g′aτw) = f̃ (gaτw
′w)

for all τ ∈ R andw ∈M . Then

I1 =

∫ T

0

h
(
τ, w′−1

)
dτ.

http://jipam.vu.edu.au
mailto:roland.knevel@uni.lu
http://jipam.vu.edu.au


A Spanning Set for the
Space of Super Cusp Forms

Roland Knevel

vol. 10, iss. 1, art. 2, 2009

Title Page

Contents

JJ II

J I

Page 46 of 66

Go Back

Full Screen

Close

We can apply Theorem4.1(i) and, sincef is perpendicular to allϕγ0,I,m, I ∈ ℘(r),
m ∈]− C, C[, also Theorem4.1(ii) with g′ := gw′ instead ofg, and so

|I1| =
∣∣H (T, w′−1

)
−H

(
0, w′−1

)∣∣
=
∣∣H (T, w′−1

)
−H

(
t0, w

′−1w0

)∣∣
≤ C2d ((T, 1) , (t0, w0))

≤ C1C2ε,

where we used thatH (0, w′−1) = H (t′0, w
′
0w

′−1), choosing the left invariant metric
onM , and the claim follows.

Now assumeT ≤ T0. Then by Theorem5.5 (ii), sinceε ≤ ε0 we getT ≤ ε and
so

|s(t + T )− s(t)| =
∣∣∣∣∫ T

0

f̃ (g0at+τ ) dτ

∣∣∣∣ ≤ ε
∣∣∣∣∣∣f̃ ∣∣∣∣∣∣

∞
.

Step II. Show that there exists a uniqueF1 ∈ C
(
Γ\G′Z̃

)C
⊗
∧

(Cr) uniformly
L IPSCHITZ continuous on compact sets such that for allt ∈ R

s(t) = F1 (g0at) .

By Step I for allL ⊂ Γ\G′Z̃ compact withL◦ ⊂
dense

L there exists a uniqueFL ∈

C
(
Γ\G′Z̃

)C
uniformly LIPSCHITZ continuous such that for allt ∈ R if Γg0at ∈ L

thens(t) = FL (Γg0at). So we see that there exists a uniqueF1 ∈ C
(
Γ\G′Z̃

)C
⊗∧

(Cr) such thatF1|L = FL for all L ⊂ Γ\G′Z̃ compact withL◦ ⊂
dense

L.
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Step III. Show thatF1 is differentiable along the flow and that for all g ∈ G′Z̃

∂τF1 (gaτ ) |τ=0 = f̃(g).

Let g ∈ G′Z̃. It suffices to show that for allT ∈ R∫ T

0

f̃ (gaτ ) dτ = F1 (gaT )− F1(g).

If g = g0at for somet ∈ R then it is clear by construction. For generalg ∈ G′Z̃,
sinceΓg0A = G′Z̃ there exists(γn, tn)n∈N ∈ (Γ× R)N such that

lim
n→∞

γng0atn = g,

and so
lim

n→∞
γng0aτ+tn = gaτ

compact inτ ∈ R. Finally f̃ is uniformly LIPSCHITZ continuous. Therefore we can
interchange integration and taking the limitn ∞:∫ T

0

f̃ (gaτ ) dτ = lim
n→∞

∫ T

0

f̃ (γng0aτ+tn) dτ

= lim
n→∞

(F1 (γng0aT+tn)− F1 (γng0atn))

= F1 (gaT )− F1(g).

Step IV. Conclusion.
DefineF ∈ C(G)C ⊗

∧
(Cr) as

F (gw) :=

∫
Z̃

F1

(
gu−1, Euwη

)
j(uw)k+ρdu
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for all g ∈ G′Z̃ andw ∈ ZG (G′), where we normalize the HAAR measure on the
compact LIE groupZ̃ such thatvol Z̃ = 1. Then we see thatF is well defined and
fulfills all the desired properties.

Lemma 7.4.

(i) For all L ⊂ G compact there existsε4 > 0 such that for allg, h ∈ L if g andh
belong to the sameT−-leaf andd−(g, h) ≤ ε4 then

lim
t→∞

(F (gat)− F (hat)) = 0,

and ifg andh belong to the sameT+-leaf andd+(g, h) ≤ ε4 then

lim
t→−∞

(F (gat)− F (hat)) = 0.

(ii) F is continuously differentiable alongT−- and T+-leafs, more precisely ifρ :
I → G is a continuously differentiable curve in aT−-leaf, then

∂t (F ◦ ρ) (t) = −
∫ ∞

0

∂tf̃ (ρ(t)aτ ) dτ,

and ifρ : I → G is a continuously differentiable curve in aT+-leaf then

∂t (F ◦ ρ) (t) =

∫ 0

−∞
∂tf̃ (ρ(t)aτ ) dτ.

Proof. (i) Let L ⊂ G be compact, and letL′ ⊂ G be a compact neighbourhood of
L. Let T0 > 0 be given by Lemma5.4 andε2 > 0 by Theorem5.5 (ii) both with
respect toL′. Define

ε4 :=
1

3
min

(
ε1, ε2,

T0

2C1

)
> 0,
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whereε1 > 0 andC1 ≥ 1 are given by Theorem5.5 (i) with T1 := T0. Let δ0 > 0
such thatUδ0(L) ⊂ L′ and let

δ ∈ ]0, min (δ0, ε4)[ .

Let g, h ∈ L be in the sameT−-leaf such thatε := d−(g, h) ≤ ε4. Since the
splitting of TG is left invariant andT−

1 (G) @ g′ we see that there existg′, h′ ∈ G′

andu ∈ ZG (G′) such thatg = g′u andh = h′u. Fix someT ′ > 0. Again by
assumption there existsg0 ∈ G′ such thatΓg0A = G′Z̃, and sog, h ∈ Γg0uA. So
there existγg, γh ∈ Γ andtg, th ∈ R such that

d
(
gat, γgg0uatg+t

)
, d (hat, γhg0uath+t) ≤ δ

for all t ∈ [0, T ′], and so in particularγgg0uatg , γhg0uath ∈ L′. We will show that
for all t ∈ [0, T ′]∣∣F (γgg0uatg+t

)
− F (γhg0uath+t)

∣∣ ≤ C ′
3

(
εe−t + 2δ

)
with the same constantC ′

3 ≥ 0 as in Step I of the proof of Lemma7.3with respect
to L′.

Without loss of generality we may assumeT := th − tg ≥ 0. Define
γ := γgγ

−1
h ∈ Γ. Then for allt ∈ [0, T ′]

d
(
γγhg0uatg+t, γhg0uatg+t+T

)
≤ εe−t + 2δ.

First assumeT ≥ T0 and fix t ∈ [0, T ′]. Then by Theorem5.5 (i), since

εe−t + 2δ ≤ ε + 2δ ≤ min
(
ε1,

T0

2C1

)
, there existz ∈ G, t0 ∈ R and

w ∈M such thatγz = zat0w,

d ((t0, w) , (T, 1)) ≤ C1

(
2δ + εe−t

)
,
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and for allτ ∈ [0, T ]

d
(
γgg0uatg+t+τ , zaτ

)
≤ C1

(
εe−t + 2δ

) (
e−τ + e−(T−τ)

)
.

And so by the same calculations as in the proof of Lemma7.3we obtain
the estimate∣∣F (γgg0uatg+t

)
− F (γhg0uath+t)

∣∣ ≤ C ′
3

(
εe−t + 2δ

)
.

Now assumeT ≤ T0. Then by Theorem5.5(ii) sinceγgg0matg ∈ L′ and
ε+2δ ≤ ε2 we obtainγ = 1 and so by the left invariance of the metric on
G

d (1, aT ) ≤ εe−T ′
+ 2δ,

thereforeT ≤ εe−T ′
+ 2δ. So as in the proof of Lemma7.3,∣∣F (γgg0uatg+t

)
− F (γhg0uath+t)

∣∣ ≤ ∣∣∣∣∣∣f̃ ∣∣∣∣∣∣
∞

(
εe−T ′

+ 2δ
)

≤ C ′
3

(
εe−t + 2δ

)
.

Now let us take the limitδ  0. Thenγgg0uatg  g andγhg0uath  h, so since
F is continuous

|F (gat)− F (hat)| ≤ C ′
3εe

−t

for all t ∈ [0, T ′], and sinceT ′ > 0 has been arbitrary, we obtain this estimate for
all t ≥ 0 and solimt→∞ F (gat) − F (hat) = 0. By similar calculations we can
prove thatlimt→−∞ F (gat) − F (hat) = 0 if g andh belong to the sameT+-leaf
andd+ (g, h) ≤ ε4.

(ii) Let ρ : I → G be a continuously differentiable curve in aT−-leaf, and let
t0, t1 ∈ I, t1 > t0. It suffices to show that

F (ρ (t1))− F (ρ (t0)) = −
∫ t1

t0

∫ ∞

0

∂tf̃ (ρ(t)aτ ) dτdt.
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Let C ′ ≥ 0 such that||∂tρ(t)|| ≤ C ′ for all t ∈ [t0, t1]. Then sinceρ lies in aT−-leaf
we have||∂t (ρ(t)aτ )|| ≤ C ′e−τ and so∣∣∣∂tf̃ (ρ(t)aτ )

∣∣∣ ≤ cC ′e−τ

for all τ ≥ 0 andt ∈ [t0, t1] wherec ≥ 0 is the LIPSCHITZ constant off̃ . So the
double integral on the right side is absolutely convergent and so we can interchange
the order of integration:∫ t1

t0

∫ ∞

0

∂tf̃ (ρ(t)aτ ) dτdt =

∫ ∞

0

∫ t1

t0

∂tf̃ (ρ(t)aτ ) dtdτ

=

∫ ∞

0

(
f̃ (ρ (t1) aτ )− f̃ (ρ (t0) aτ )

)
dτ

= lim
T→∞

(F (ρ (t1) aT )− F (ρ (t0) aT ))

− F (ρ (t1)) + F (ρ (t0)) .

Now let L ⊂ G be compact such thatρ([t1, t2]) ⊂ L and letε4 > 0 as in (i).
Without loss of generality we may assume thatd− (ρ (t0) , ρ (t1)) ≤ ε4. Then

lim
T→∞

(F (ρ (t1) aT )− F (ρ (t0) aT )) = 0

by (i). By similar calculations one can also prove

∂t (F ◦ ρ) (t) =

∫ 0

−∞
∂tf̃ (ρ(t)aτ ) dτ

in the case whenρ : I → G is a continuously differentiable curve in aT+-leaf.
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Lemma 7.5.

(i) F ∈ L2 (Γ\G)⊗
∧

(Cr),

(ii) ξF ∈ L2 (Γ\G)⊗
∧

(Cr) for all ξ ∈ RD ⊕ g ∩ (T+ ⊕ T−).

Proof. (i) If Γ\G is compact then the assertion is trivial. So assume thatΓ\G is not
compact, then we use the unbounded realizationH of B introduced in Section6.
Sincevol (Γ\G) < ∞, it suffices to prove thatF is bounded, and by Corollary6.3
it is even enough to show thatF (g♦) is bounded onNA>t0K for all g ∈ Ξ, where
t0 ∈ R andΞ ⊂ G′ are given by Theorem6.2. So letg ∈ Ξ.

Step I. Show thatF (g♦) is bounded onNat0K.
Let η ⊂ N also be given by Theorem6.2. ThenF (g♦) is clearly bounded on the

compact setηat0K. On the other handF (g♦) is left-g−1Γg -invariant, so it is also
bounded on

Nat0K =
(
gΓg−1 ∩NZG (G′)

)
ηat0K

by Theorem6.2(i).

Step II. Show that there existsC ′ ≥ 0 such that for all g′ ∈ NA>t0K∣∣∣f̃ (gg′)
∣∣∣ ≤ C ′

∆′ (Rg′0, Rg′0)
.

As in Section6, let qI ∈ O(H) such thatf |g|R−1 =
∑

I∈℘(r) qIϑ
I . Then since

f̃ (g♦) ∈ L2 (ηA>t0K)⊗
∧

(Cr), by Theorem6.4we have FOURIER expansions

(7.1) qI (w) =
∑

m∈ 1
λ0

(Z−trID−(k+|I|)χ)∩R<0

cI,m (w2) e2πmw1
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for all I ∈ ℘(I) andw =

(
w1

w2

)
← 1
}n− 1

∈ H, wherecI,m ∈ O (Cn−1), I ∈

℘(r), m ∈ 1
λ0

(z− trID − (k + |I|) χ) ∩ R<0. Define

M0 := max
⋃

I∈℘(r)

1

λ0

(Z− trID − (k + |I|) χ) ∩ R<0 < 0.

Rηat00 ⊂ H is compact, and so since the convergence of the FOURIER series (7.1)
is absolute and compact we can define

C ′′ := e−2πM0e2t0

× max
I∈℘(r)

∑
m∈ 1

λ0
(Z−trID−(k+|I|)χ)∩R<0

∣∣∣∣cI,m (w2) e2πmw1
∣∣∣∣
∞,Rηat00

<∞.

Then we have
|qI (w)| ≤ C ′′eπM0∆′(w,w)

for all I ∈ ℘(r) andw ∈ RηA>t00. Now let

g′ =

(
∗ 0
0 E ′

)
∈ ηA>0K,

E ′ ∈ U(r). Then

f̃ (gg′) = f |g|R−1

∣∣
RgR−1 (e1)

= f |g|R−1

(
Rg′R−1

(
e1

η

))
j
(
Rg′R−1, e1

)k
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= f |g|R−1

(
Rg′0

Eηj (Rg′R−1)

)
j
(
Rg′R−1, e1

)k
=
∑

I∈℘(r)

qI (Rg′0) (Eη)I j
(
Rg′R−1, e1

)k+|I|
.

Therefore since|j (Rg′R−1, e1)| =
√

∆′ (Rg′0, Rg′0) we get∣∣∣f̃ (gg′)
∣∣∣ ≤ 2rC ′′eπM0∆′(Rg′0,Rg′0)

×
(
∆′ (Rg′0, Rg′0)

k
2 + ∆′ (Rg′0, Rg′0)

k+r
2

)
.

So we see that there existsC ′ > 0 such that∣∣∣f̃ (gg′)
∣∣∣ ≤ C ′

∆′ (Rg′0, Rg′0)

for all g′ ∈ ηA>t0K. However, on the one hand̃f (g♦) is left- g−1Γg -invariant, and
on the other hand∆′ is RNZG (G′) R−1 -invariant. Therefore the estimate is correct
even for all

g′ ∈ NA>t0K =
(
gΓg−1 ∩NZG (G′)

)
ηA>t0K

by Theorem6.2(i).

Step III. Conclusion: Prove that

|F (g♦)| ≤ ||F (g♦)||∞,Nat0K + 2C ′e−2t0

on NA>t0K.
Let g′ ∈ G be arbitrary. We will show the estimate ong′A ∩NA>t0K.

R→ H, t 7→ wt := Rg′at0
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is a geodesic inH, and for all t ∈ R we haveg′at ∈ NA>t0K if and only if
∆′ (wt,wt) > 2e2t0. Now we have to distinguish two cases.

In the first case the geodesic connects∞ with a point in ∂H. First assume
that limt→∞wt = ∞ and limt→−∞wt ∈ ∂H. Then limt→∞ ∆′ (wt,wt) = ∞
and limt→−∞ ∆′ (wt,wt) = 0. So we may assume without loss of generality that
∆′ (w0,w0) = 2e2t0 , and thereforeg′ = g′a0 ∈ Nat0K andg′at ∈ NA>t0K if and
only if t > 0. So lett > 0. Then

F (gg′at) = F (gg′) +

∫ t

0

f̃ (gg′aτ ) dτ,

and so

|F (gg′at)| ≤ ||F (g♦)||∞,Nat0K +

∫ t

0

∣∣∣f̃ (gg′aτ )
∣∣∣ dτ.

By Step II and Lemma6.1(i),∫ t

0

∣∣∣f̃ (gg′aτ )
∣∣∣ dτ ≤ C ′

∫ t

0

dτ

∆′ (wτ ,wτ )

=
C ′

∆′ (w0,w0)

∫ t

0

e−2τdτ

≤ C ′e−2t0 .

The case wherelimt→−∞ =∞ andlimt→∞ ∈ ∂H is done similarly.
In the second case the geodesic connects two points in∂H. Then without loss

of generality we may assume that∆′ (Rwt, Rwt) is maximal for t = 0. So if
∆′ (w0,w0) < 2e2t0 , we haveg′A ∩ NA>t0K = ∅. Otherwise by Lemma6.1
(ii) there existsT ≥ 0 such that∆′ (wT ,wT ) = ∆′ (w−T ,w−T ) = 2e2t0, and since
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∆′ (wT ,wT ) ≤ 4
e2|T |∆

′ (w0,w0), we see that

T ≤ 1

2
log (2∆′ (wT ,wT ))− t0.

So g′aT , g′a−T ∈ Nat0K and g′at ∈ NA>t0K if and only if t ∈] − T, T [. Let
t ∈]− T, T [ and assumet ≥ 0 first. Then

F (gg′at) = F (gg′aT )−
∫ T

t

f̃ (gg′aτ ) dτ,

and so

|F (gg′at)| ≤ ||F (g♦)||∞,Nat0K +

∫ T

0

∣∣∣f̃ (gg′aτ )
∣∣∣ dτ.

By Step II and Lemma6.1(ii), now∫ T

0

∣∣∣f̃ (gg′aτ )
∣∣∣ dτ ≤ C ′

∫ T

0

dτ

∆′ (wτ ,wτ )

≤ C ′

∆′ (w0,w0)

∫ T

0

e2τdτ

≤ C ′

2∆′ (w0,w0)
e2T

≤ 2C ′e−2t0 .

The caset ≤ 0 is done similarly.

(ii) Since on one hand∂τF (♦aτ ) |τ=0 = f̃ ∈ L2 (Γ\G) ⊗
∧

(Cr) and on the other
handvol (Γ\G) < ∞, it suffices to show thatξF is bounded for allα ∈ Φ \ {0}
andξ ∈ gα. So letα ∈ Φ \ {0} andξ ∈ gα. First assumeα > 0, which clearly
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implies thatα ≥ 1 andξ ∈ T−. So there exists a continuously differentiable curve
ρ : I → G contained in theT−-leaf containing1 such that0 ∈ I, ρ(0) = 1 and
∂tρ(t)|t=0 = ξ. Let g ∈ G. Then by Theorem7.4(ii), we have

(ξF ) (g) = ∂tF (gρ(t))|t=0

= −
∫ ∞

0

∂tf̃ (gρ(t)aτ )
∣∣∣
t=0

dτ

= −
∫ ∞

0

∂tf̃ (gaτa−τρ(t)aτ )
∣∣∣
t=0

dτ

= −
∫ ∞

0

((
Ada−τ (ξ)

)
f̃
)

(gaτ ) dτ

= −
∫ ∞

0

e−ατ
(
ξf̃
)

(gaτ ) dτ,

so
|(ξF ) (g)| ≤ c ||ξ||2 <∞,

wherec is the LIPSCHITZ constant off̃ . The caseα < 0 is done similarly.

Therefore by the FOURIER decomposition described above we have

F =
∑

I∈℘(r),|I|=ρ

∑
ν∈Z

FIνη
I ,

whereFIν ∈ Hν for all I ∈ ℘(r), |I| = ρ, andν ∈ Z. D = D+ +D−, and a simple
calculation shows thatD+ andD− ∈ RD ⊕ g ∩ (T+ ⊕ T−), and soD+F,D−F ∈
L2 (Γ\G)⊗

∧
(Cr) by Lemma7.5(ii). So we get the FOURIER decomposition of̃f

as
f̃ = DF =

∑
I∈℘(r),|I|=ρ

∑
ν∈Z

(
D+FI,ν−2 +D−FI,ν+2

)
ηI
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with D+FI,ν−2 +D−FI,ν+2 ∈ Hν for all ν ∈ Z. But sincef ∈ sSρ
k(Γ) the FOURIER

decomposition of̃f is exactly

f̃ =
∑

I∈℘(r),|I|=ρ

qIη
I

with qI ∈ C∞(G)C ∩Hk+ρ, and so for allI ∈ ℘(r), |I| = ρ, andν ∈ Z

D+FI,ν−2 +D−FI,ν+2 =

{
qI if ν = k + ρ
0 otherwise

.

Lemma 7.6. FI,ν = 0 for I ∈ ℘(r), |I| = ρ, andν ≥ k + ρ.

Proof. Similar to the argument of GUILLEMIN and KAZHDAN in [6]. Let I ∈ ℘(r)
such that|I| = ρ. Then by the commutation relations ofD+ andD− we get for all
n ∈ Z

(7.2)
∣∣∣∣D+FI,n

∣∣∣∣2
2

=
∣∣∣∣D−FI,n

∣∣∣∣2
2
+ ν ||FI,n||22 ,

and for alln ≥ k + ρ + 1 we haveD+FI,n−2 +D−FI,n+2 = 0 and so∣∣∣∣D−FI,n+2

∣∣∣∣
2

=
∣∣∣∣D+FI,n−2

∣∣∣∣
2
.

Now letν ≥ k + ρ. We will prove that∣∣∣∣D+FI,ν+4l

∣∣∣∣
2
≥ ||FI,ν ||2

for all l ∈ N by induction onl:

If l = 0 then the inequality is clear by (7.2). So let us assume that the
inequality is true for somel ∈ N. Then again by (7.2) we have∣∣∣∣D+FI,ν+4l+4

∣∣∣∣2
2
≥
∣∣∣∣D−FI,ν+4l+4

∣∣∣∣2
2

=
∣∣∣∣D+FI,ν+4l

∣∣∣∣2
2
≥ ||FI,ν ||22 .
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On the other hand,D+FI ∈ L2 (Γ\G) by Lemma7.5and so||D+FI,n||2  0 for
n ∞. This impliesFν = 0. �

So for allI ∈ ℘(r), |I| = ρ, we obtainD+FI,k+ρ−2 = qI and finallyD−qI = 0
by Lemma7.1, sincef ∈ O(B), so

||qI ||22 =
(
qI ,D+FI,k+ρ−2

)
= −

(
D−qI , FI,k+ρ−2

)
= 0,

and sof̃ = 0, which completes the proof of our main theorem.
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8. Computation of the ϕγ0,I,m

Fix a regular loxodromicγ0 ∈ Γ, g ∈ G, t0 > 0 andw0 ∈ M such thatE0 :=
Ew0 is diagonal andγ0 = gat0w0g

−1 ∈ gAMg−1. Let D ∈ Rr×r be diagonal
such thatexp(2πiD) = E0 andχ ∈ R such thatj(w0) = e2πiχ. Now we will
computeϕγ0,I,m ∈ sSk(Γ), I ∈ ℘(r), m ∈ 1

t0
(Z− (k + |I|) χ− trID), as a relative

POINCARÉ series with respect toΓ0 := 〈γ0〉 @ Γ. Hereby again ’≡’ means equality
up to a constant6= 0 not necessarily independent ofγ0, I andm.

Theorem 8.1.LetI ∈ ℘(r) andk ≥ 2n+1−|I|. Then for allm ∈ 1
t0

(Z−(k + |I|) χ

−trID)

(i)
ϕγ0,I,m ≡

∑
γ∈Γ0\Γ

q|γ ∈ sS
(|I|)
k (Γ),

where

q :=

∫ ∞

−∞
e2πimt∆ (♦, gat0)−k−|I| j (gat,0)

k+|I|
dt
(
E−1

g ζ
)I

∈ sM
(|I|)
k (Γ0) ∩ L1

k (Γ0\B) .

(ii) For all z ∈ B we have

q (z) ≡
(
∆
(
z,X+

)
∆
(
z,X−))− k+|I|

2

(
1 + v1

1− v1

)πim (
E−1

g ζ
)I

,

where

X+ := g


1
0
...
0

 and X− := g


−1
0
...
0
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are the two fixpoints ofγ0 in ∂B, and

v := g−1z ∈ B ⊂ Cp.

Proof. Let ρ := |I|.
(i) Let f ∈ sS

(ρ)
k (Γ), and defineh =

∑
J∈℘(r),|J |=ρ hJηJ ∈ C∞ (R×M)C⊗

∧
(Cr),

all hJ ∈ C∞ (R×M)C, and bI,m ∈ C, m ∈ 1
t0

(Z− (k + |I|) χ− trID), as in
Theorem4.1. Then by standard FOURIER theory and Lemma2.5we have

bI,m ≡
∫ t0

0

e−2πimthI(t, 1)dt

≡
∫ t0

0

e−2πimt
(
∆ (♦, gat0)−k−ρ (E−1

g ζ
)I

, f
)

j (gat,0)k+ρ dt

=

∫ t0

0

e−2πimt

∫
G

〈
f̃ ,
(
∆ (♦, gat0)−k−ρ (E−1

g ζ
)I)∼〉

j (gat,0)k+ρ dt.

Since by SATAKE ’s theorem, Theorem2.3, f̃ ∈ L∞(G)⊗
∧

(Cr), and∫ t0

0

∫
G

∣∣∣(∆ (♦, gat0)−k−ρ (E−1
g ζ
)I)∼

j (gat,0)k+ρ
∣∣∣ dt

=

∫ t0

0

∫
G

∣∣∣(∆ (♦,0)−k−ρ ζI
)∼ (

(gat)
−1♦

)∣∣∣ dt

≡
∫

G

∣∣∣ζ̃I

∣∣∣
=

∫
G

∣∣∣j (♦,0)k+ρ
∣∣∣

≡
∫

B

∆ (Z,Z)
k+ρ
2
−(p+1) dVLeb <∞,
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by TONELLI ’s and FUBINI ’s theorem we can interchange the order of integration:

bI,m ≡
∫

G

〈
f̃ ,

∫ t0

0

e2πimt
(
∆ (♦, gat0)−k−ρ (E−1

g ζ
)I)∼

j (gat,0)
k+ρ

dt

〉
=

(∫ t0

0

e2πimt∆ (♦, gat0)−k−ρ j (gat,0)
k+ρ

dt
(
E−1

g ζ
)I

, f

)
= (q, f)Γ0 ,

where(∫ t0

0

e2πimt∆ (♦, gat0)−k−ρ j (gat,0)
k+ρ

dt
(
E−1

g ζ
)I)∼ ∈ L1(G)⊗

∧
(Cr) ,

∫ t0

0

e2πimt∆ (♦, gat0)−k−ρ j (gat,0)
k+ρ

dt
(
E−1

g ζ
)I ∈ O(B)

since∆ (♦,w) ∈ O(B) for all w ∈ B and the convergence of the integral is com-
pact, and so by Lemma2.4,

q :=
∑

γ′∈Γ0

∫ t0

0

e2πimt∆ (♦, gat0)−k−ρ j (gat,0)
k+ρ

dt
(
E−1

g ζ
)I∣∣∣∣

γ′

∈ sMk (Γ0) ∩ L1
k (Γ0\B) .

Clearly

∆ (♦, gat0)−k−ρ (E−1
g ζ
)I∣∣∣

γ0

= ∆ (γ0♦, gat0)−k−ρ (E0E
−1
g ζ
)I

j (γ0,♦)k+ρ

= ∆
(
♦, γ−1

0 gat0
)−k−ρ (

E0E
−1
g ζ
)I

j
(
γ−1

0 , gat0
)k+ρ

,
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so for allz ∈ B we can computeq (z) as

q (z) =
∑
ν∈Z

∫ t0

0

e2πimt∆ (♦, gat0)−k−ρ (E−1
g ζ
)I

j (gat,0)
k+ρ

dt

∣∣∣∣
γν
0

(z)

=
∑
ν∈Z

∫ t0

0

e2πimt∆
(
z, γ−ν

0 gat0
)−k−ρ (

Eν
0E−1

g ζ
)I × j

(
γ−ν

0 gat,0
)k+ρ

dt

=
∑
ν∈Z

∫ t0

0

e2πimt∆ (z, gat−νt00)−k−ρ (E−1
g ζ
)I

e2πiνtrIDj (gat−νt0 ,0)
k+ρ

e2πiν(k+ρ)χdt

=
∑
ν∈Z

∫ t0

0

e2πim(t−νt0)∆ (z, gat−νt00)−k−ρ j (gat−νt0 ,0)
k+ρ

dt
(
E−1

g ζ
)I

=

∫ ∞

−∞
e2πimt∆ (z, gat0)−k−ρ j (gat,0)

k+ρ
dt
(
E−1

g ζ
)I

.

Again by Lemma2.4 we see that
∑

γ∈Γ0\Γ q|γ ∈ sM
(ρ)
k (Γ) ∩ L1

k (Γ\B), and so by

SATAKE ’s theorem, Theorem2.3, it is even an element ofsS(ρ)
k (Γ), such that

bI,m ≡

 ∑
γ∈Γ0\Γ

q|γ, f


Γ

,

and so we conclude thatϕγ0,I,m ≡
∑

γ∈Γ0\Γ q|γ.
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(ii) ∫ ∞

−∞
e2πimt∆ (z, gat0)−k−ρ j (gat,0)

k+ρ
dt

= j
(
g−1, z

)k+ρ
∫ ∞

−∞
e2πimt∆

(
g−1z, at0

)−k−ρ
j (at,0)

k+ρ
dt

= j
(
g−1, z

)k+ρ
∫ ∞

−∞
e2πimt (1− v1 tanh t)−k−ρ 1

(cosh t)k+ρ
dt

= j
(
g−1, z

)k+ρ
∫ ∞

−∞

e2πimt

(cosh t− v1sinh t)k+ρ
dt

≡ j
(
g−1, z

)k+ρ 1

(1− v2
1)

k+ρ
2

(
1 + v1

1− v1

)πim

= j
(
g−1, z

)k+ρ
((1− v1) (1 + v1))

− k+ρ
2

(
1 + v1

1− v1

)πim

≡
(
∆
(
z,X+

)
∆
(
z,X−))− k+ρ

2

(
1 + v1

1− v1

)πim

.
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