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ABSTRACT. Letf be a2π periodic function inL1[0, 2π] and
∑∞

k=−∞ f̂(nk)einkx be its Fourier
series with ‘small’ gapsnk+1 − nk ≥ q ≥ 1. Here we obtain a sufficiency condition for the
convergence of the series

∑
k∈Z | f̂(nk) |β (0< β ≤2) if f is of ϕ∧BV locally. We also obtain

beautiful interconnections between the types of lacunarity in Fourier series and the localness of
the hypothesis to be satisfied by the generic function allows us to interpolate results concerning
lacunary Fourier series and non-lacunary Fourier series.
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1. I NTRODUCTION

Let f be a2π periodic function inL1[0, 2π] andf̂(n), n ∈ Z, be its Fourier coefficients. The
series

(1.1)
∑
k∈Z

f̂(nk)e
inkx,

wherein{nk}∞1 is a strictly increasing sequence of natural numbers andn−k = −nk, for all k,
satisfies an inequality

(1.2) (nk+1 − nk) ≥ q ≥ 1 for all k = 0, 1, 2, ...,

is called the Fourier series off with ‘small’ gaps.
Obviously, ifnk = k, for all k, (i.e. nk+1 − nk = q = 1, for all k), then we get non-lacunary

Fourier series and if{nk} is such that

(1.3) (nk+1 − nk) →∞ as k →∞
then (1.1) is said to be the lacunary Fourier series.
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In 1982 M. Schramm and D. Waterman [3] have introduced the classϕ ∧ BV (I) of func-
tions ofϕ∧-bounded variation overI and have studied sufficiency conditions for the absolute
convergence of Fourier series of functions of∧BV (p) andϕ ∧BV .

Definition 1.1. Given a nonnegative convex functionϕ, defined on[0,∞) such thatϕ(x)
x

→ 0
asx → 0, for some constantd ≥ 2, ϕ(2x) ≤ dϕ(x) for all x ≥ 0 and given a sequence of
non-decreasing positive real numbers

∧
= {λm} (m = 1, 2, . . .) such that

∑
m

1
λm

diverges we
say thatf ∈ ϕ

∧
BV (that isf is a function ofϕ

∧
-bounded variation over (I)) if

VΛϕ(f, I) = sup
{Im}

{VΛϕ({Im}, f, I)} < ∞,

where

VΛϕ({Im}, f, I) =

(∑
m

ϕ |f(bm)− f(am)|
λm

)
,

and{Im} is a sequence of non-overlapping subintervalsIm = [am, bm] ⊂ I = [a, b].

Definition 1.2. For p ≥ 1, the p-integral modulus of continuityω(p)(δ, f, I) of f over I is
defined as

ω(p)(δ, f, I) = sup
0≤h≤δ

‖(Thf − f)(x)‖p,I ,

whereThf(x) = f(x + h) for all x and‖(·)‖p,I = ‖(·)χI‖p in which χI is the characteristic
function ofI and‖(·)‖p denotes theLp-norm.p = ∞ gives the modulus of continuityω(δ, f, I).

By applying the Wiener-Ingham result [1, Vol. I, p. 222] for the finite trigonometric sums
with ‘small’ gap (1.2) we have already studied the sufficiency conditions for the convergence of

the series
∑

k∈Z

∣∣∣f̂(nk)
∣∣∣β (0 < β ≤ 2) for the functions of

∧
BV and∧BV (p) in terms of the

modulus of continuity [6]. Here we obtain a sufficiency condition if functionf is of ϕ
∧

BV .
We prove the following theorem.

Theorem 1.1. Let f ∈ L[−π, π] possess a Fourier series with ‘small’ gaps (1.2) andI be a
subinterval of lengthδ1 > 2π

q
. If f ∈ ϕ

∧
BV (I), 1 ≤ p < 2r, 1 ≤ r < ∞, and

∞∑
k=1


ϕ−1


(
ω((2−p)s+p)

(
1

nk
, f, I

))2r−p

∑nk

j=1
1
λj




1
r/

k


β
2

< ∞,

where1
r

+ 1
s

= 1, then

(1.4)
∑
k∈Z

∣∣∣f̂(nk)
∣∣∣β < ∞ (0 < β ≤ 2).

Theorem 1.1 withβ = 1 is a ‘small’ gaps analogue of the Schramm and Waterman result [3,
Theorem 2]. Observe that the intervalI considered in the theorem for the gap condition (1.2)
is of length> 2π

q
, so that whennk = k, for all k, I is of length2π. Hence for non-lacunary

Fourier series (equality throughout in (1.2)) the theorem withβ = 1 gives the Schramm and
Waterman result [3, Theorem 2] as a particular case.

We need the following lemmas to prove the theorem.

Lemma 1.2([2, Lemma 2]). Letf andI be as in Theorem 1.1. Iff ∈ L2(I) then

(1.5)
∑
k∈Z

∣∣∣f̂(nk)
∣∣∣2 ≤ Aδ |I|−1 ‖ f ‖2

2,I ,
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whereAδ depends only onδ.

Lemma 1.3. If |nk| > p then fort ∈ N one has∫ π
p

0

sin2t |nk|hdh ≥ π

2t+1p
.

Proof. Obvious. �

Lemma 1.4 (Stechkin, refer to [5]). If un ≥ 0 for n ∈ N, un 6= 0 and a functionF (u) is
concave, increasing, andF (0) = 0, then

∞∑
1

F (un) ≤ 2
∞∑
1

F

(
un + un+1 + · · ·

n

)
.

Proof of Theorem 1.1.Let I =
[
x0 − δ1

2
, x0 + δ1

2

]
for somex0 andδ2 be such that0 < 2π

q
<

δ2 < δ1. Putδ3 = δ1 − δ2 andJ =
[
x0 − δ2

2
, x0 + δ2

2

]
. Suppose integersT andj satisfy

(1.6) |nT | >
4π

δ3

and 0 ≤ j ≤ δ3 |nT |
4π

.

f ∈ ϕ ∧BV (I) implies

|f(x)| ≤ |f(a)|+ |f(x)− f(a)| ≤ |f(a)|+ Cϕ−1(V∧ϕ(f, I)) for all x ∈ I.

Sincef is bounded overI, we havef ∈ L2(I), so that (1.5) holds andf ∈ L2[−π, π]. If we put
fj = (T2jhf − T(2j−1)hf) thenfj ∈ L2(I) and the Fourier series offj also possess gaps (1.2).
Hence by Lemma 1.2 we get

(1.7)
∑
k∈Z

∣∣∣f̂(nk)
∣∣∣2 sin2

(
nkh

2

)
= O

(
‖fj‖2

2,J

)
because

f̂j(nk) = 2if̂(nk)e
ink(2j− 1

2
h) sin

(
nkh

2

)
.

Integrating both the sides of (1.7) over(0, π
nT

) with respect toh and using Lemma 1.3, we get

(1.8) RnT
=

∞∑
|nk|≥nT

∣∣∣f̂(nk)
∣∣∣2 = O(nT )

∫ π
nT

0

(
‖fj‖2

2,J

)
dh.

Since2 = (2−p)s+p
s

+ p
r
, by using Hölder’s inequality, we get from (1.8)

B =

∫
J

|fj(x)|2 dx

≤
(∫

J

|fj(x)|(2−p)s+p dx

) 1
s
(∫

J

|fj(x)|p dx

) 1
r

≤ Ω
1/r
h,J

(∫
J

|fj(x)|p dx

) 1
r

,

whereΩh,J = (ω(2−p)s+p(h, f, J))2r−p. Thus

(1.9) Br ≤ Ωh,J

∫
J

|fj(x)|p dx.

Sincef is bounded overI, there exists some positive constantM ≥ 1
2

such that|f(x)| ≤ M
for all x ∈ I. Dividing f by the positive constantM altersωp(h, f, J) by the same constantM
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andϕ(2 |f(x)|) ≤ dϕ(|f(x)|) for all x, we may assume that|f(x)| ≤ 1 for all x ∈ I. Hence
from (1.9) we get

Br ≤ Ωh,J

∫
J

|fj(x)| dx.

Sinceϕ(2x) ≤ dϕ(x), we haveϕ(ax) ≤ dlog2 aϕ(x), so

ϕ

(
Br

δ2

)
≤ dlog2 CΩh,J ϕ

(∫
J
|fj(x)| dx

δ2

)
= CΩ

log2 d
h,J ϕ

(∫
J
|fj(x)| dx

δ2

)
= CΩ

log2 d−1
h,J Ωh,Jϕ

(∫
J
|fj(x)| dx∫

J
1dx

)
≤ CΩh,J

(∫
J
ϕ |fj(x)| dx

δ2

)
(by Jensen’s inequality for integrals)

= CΩh,J

(∫
J

ϕ |fj(x)| dx

)
.

Multiplying both the sides of the equation by1
λj

and then taking the summation overj = 1 to
nT (T ∈ N) we get

(1.10) ϕ

(
Br

δ2

)
≤ C

 Ωh,J∑nT

j=1

(
1
λj

)
(∫

J

(
nT∑
j=1

ϕ |fj(x)|
λj

)
dx

)
.

Observe that forx in J , h in (0, π
nT

) and for eachj of the summation the pointsx + 2jh and
x + (2j − 1)h lie in I; moreoverf ∈ ϕ ∧BV (I) implies

nT∑
j=1

ϕ |fj(x)|
λj

= O(1).

Therefore, it follows from (1.10) that

B = O


ϕ−1

 Ω1/nT ,I∑nT

j=1

(
1
λj

)
 1

r

 .

Substituting back the value ofB in the equation (1.8), we get

RnT
=

∞∑
|nk|≥nT

∣∣∣f̂(nk)
∣∣∣2 = O


ϕ−1

 Ω1/nT ,I∑nT

j=1

(
1
λj

)
 1

r

 .

Thus

RnT
= O


ϕ−1


(
ω(2−p)s+p

(
1

nT
, f, I

))2r−p

∑nT

j=1

(
1
λj

)



1
r

 .
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Finally, Lemma 1.4 withuk =
∣∣∣f̂(nk)

∣∣∣2 (k ∈ Z) andF (u) = uβ/2 gives

∞∑
|k|=1

∣∣∣f̂(nk)
∣∣∣β = 2

∞∑
k=1

F

(∣∣∣f̂(nk)
∣∣∣2)

≤ 4
∞∑

k=1

F

(
Rnk

k

)

= 4
∞∑

k=1

(
Rnk

k

)β
2

= O(1)

 ∞∑
k=1

[ϕ−1

(
(ω(2−p)s+p( 1

nk
, f, I))2r−p∑nk

j=1
1
λj

)] 1
r
/

k


β
2

 .

This proves the theorem. �
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