Journal of Inequalities in Pure and Applied Mathematics

ON THE ABSOLUTE CONVERGENCE OF SMALL GAPS FOURIER SERIES OF FUNCTIONS OF $\varphi \wedge B V$
volume 6, issue 4, article 94, 2005.

Received 06 July, 2005; accepted 29 July, 2005.

Communicated by: L. Leindler
Faculty of Science
The Maharaja Sayajirao University of Baroda
Vadodara-390002, Gujarat, India.
EMail: drrgvyas@yahoo.com

Abstract

Let f be a 2π periodic function in $L^{1}[0,2 \pi]$ and $\sum_{k=-\infty}^{\infty} \widehat{f}\left(n_{k}\right) e^{i n_{k} x}$ be its Fourier series with 'small' gaps $n_{k+1}-n_{k} \geq q \geq 1$. Here we obtain a sufficiency condition for the convergence of the series $\sum_{k \in Z}\left|\widehat{f}\left(n_{k}\right)\right|^{\beta}(0<\beta \leq 2)$ if f is of $\varphi \wedge B V$ locally. We also obtain beautiful interconnections between the types of lacunarity in Fourier series and the localness of the hypothesis to be satisfied by the generic function allows us to interpolate results concerning lacunary Fourier series and non-lacunary Fourier series.

2000 Mathematics Subject Classification: 42A16, 42A28, 26A45.
Key words: Fourier series with small gaps, Absolute convergence of Fourier series and $\varphi \wedge$-bounded variation.

Contents

1 Introduction . 3
References

On The Absolute Convergence

 Of Small Gaps Fourier Series OfFunctions Of $\varphi \wedge B V$
R. G. Vyas

Title Page
Gontents
Close
Quit
Page 2 of 11

[^0] http://jipam.vu.edu.au

1. Introduction

Let f be a 2π periodic function in $L^{1}[0,2 \pi]$ and $\widehat{f}(n), n \in \mathbb{Z}$, be its Fourier coefficients. The series

$$
\begin{equation*}
\sum_{k \in Z} \widehat{f}\left(n_{k}\right) e^{i n_{k} x} \tag{1.1}
\end{equation*}
$$

wherein $\left\{n_{k}\right\}_{1}^{\infty}$ is a strictly increasing sequence of natural numbers and $n_{-k}=$ $-n_{k}$, for all k, satisfies an inequality

$$
\begin{equation*}
\left(n_{k+1}-n_{k}\right) \geq q \geq 1 \quad \text { for all } \quad k=0,1,2, \ldots \tag{1.2}
\end{equation*}
$$

is called the Fourier series of f with 'small' gaps.
Obviously, if $n_{k}=k$, for all k, (i.e. $n_{k+1}-n_{k}=q=1$, for all k), then we get non-lacunary Fourier series and if $\left\{n_{k}\right\}$ is such that

$$
\begin{equation*}
\left(n_{k+1}-n_{k}\right) \rightarrow \infty \quad \text { as } \quad k \rightarrow \infty \tag{1.3}
\end{equation*}
$$

then (1.1) is said to be the lacunary Fourier series.
In 1982 M . Schramm and D. Waterman [3] have introduced the class $\varphi \wedge$ $B V(I)$ of functions of $\varphi \wedge$-bounded variation over I and have studied sufficiency conditions for the absolute convergence of Fourier series of functions of $\wedge B V^{(p)}$ and $\varphi \wedge B V$.

Definition 1.1. Given a nonnegative convex function φ, defined on $[0, \infty)$ such that $\frac{\varphi(x)}{x} \rightarrow 0$ as $x \rightarrow 0$, for some constant $d \geq 2, \varphi(2 x) \leq d \varphi(x)$ for all $x \geq 0$ and given a sequence of non-decreasing positive real numbers $\bigwedge=\left\{\lambda_{m}\right\}$

On The Absolute Convergence Of Small Gaps Fourier Series Of

Functions Of $\varphi \wedge B V$
R. G. Vyas

Title Page
Contents

Go Back
Close
Quit
Page 3 of 11

$(m=1,2, \ldots)$ such that $\sum_{m} \frac{1}{\lambda_{m}}$ diverges we say that $f \in \varphi \bigwedge B V$ (that is f is a function of $\varphi \bigwedge$-bounded variation over (I)) if

$$
V_{\Lambda_{\varphi}}(f, I)=\sup _{\left\{I_{m}\right\}}\left\{V_{\Lambda_{\varphi}}\left(\left\{I_{m}\right\}, f, I\right)\right\}<\infty,
$$

where

$$
V_{\Lambda_{\varphi}}\left(\left\{I_{m}\right\}, f, I\right)=\left(\sum_{m} \frac{\varphi\left|f\left(b_{m}\right)-f\left(a_{m}\right)\right|}{\lambda_{m}}\right),
$$

and $\left\{I_{m}\right\}$ is a sequence of non-overlapping subintervals $I_{m}=\left[a_{m}, b_{m}\right] \subset I=$ $[a, b]$.

Definition 1.2. For $p \geq 1$, the p-integral modulus of continuity $\omega^{(p)}(\delta, f, I)$ of f over I is defined as

$$
\omega^{(p)}(\delta, f, I)=\sup _{0 \leq h \leq \delta}\left\|\left(T_{h} f-f\right)(x)\right\|_{p, I}
$$

where $T_{h} f(x)=f(x+h)$ for all x and $\|(\cdot)\|_{p, I}=\left\|(\cdot) \chi_{I}\right\|_{p}$ in which χ_{I} is the characteristic function of I and $\|(\cdot)\|_{p}$ denotes the L^{p}-norm. $p=\infty$ gives the modulus of continuity $\omega(\delta, f, I)$.

By applying the Wiener-Ingham result [1, Vol. I, p. 222] for the finite trigonometric sums with 'small' gap (1.2) we have already studied the sufficiency conditions for the convergence of the series $\sum_{k \in Z}\left|\widehat{f}\left(n_{k}\right)\right|^{\beta}(0<\beta \leq 2)$ for the functions of $\bigwedge B V$ and $\wedge B V^{(p)}$ in terms of the modulus of continuity [6]. Here we obtain a sufficiency condition if function f is of $\varphi \bigwedge B V$. We prove the following theorem.

On The Absolute Convergence Of Small Gaps Fourier Series Of

Functions Of $\varphi \wedge B V$
R. G. Vyas

Title Page
Contents

Go Back
Close
Quit
Page 4 of 11

Theorem 1.1. Let $f \in L[-\pi, \pi]$ possess a Fourier series with 'small' gaps (1.2) and I be a subinterval of length $\delta_{1}>\frac{2 \pi}{q}$. If $f \in \varphi \bigwedge B V(I), 1 \leq p<2 r$, $1 \leq r<\infty$, and

$$
\sum_{k=1}^{\infty}\left(\left[\varphi^{-1}\left(\frac{\left(\omega^{((2-p) s+p)}\left(\frac{1}{n_{k}}, f, I\right)\right)^{2 r-p}}{\sum_{j=1}^{n_{k}} \frac{1}{\lambda_{j}}}\right)\right]^{\frac{1}{r}} / k\right)^{\frac{\beta}{2}}<\infty
$$

where $\frac{1}{r}+\frac{1}{s}=1$, then

$$
\begin{equation*}
\sum_{k \in Z}\left|\widehat{f}\left(n_{k}\right)\right|^{\beta}<\infty \quad(0<\beta \leq 2) \tag{1.4}
\end{equation*}
$$

Theorem 1.1 with $\beta=1$ is a 'small' gaps analogue of the Schramm and Waterman result [3, Theorem 2]. Observe that the interval I considered in the theorem for the gap condition (1.2) is of length $>\frac{2 \pi}{q}$, so that when $n_{k}=k$, for all k, I is of length 2π. Hence for non-lacunary Fourier series (equality throughout in (1.2)) the theorem with $\beta=1$ gives the Schramm and Waterman result [3, Theorem 2] as a particular case.

We need the following lemmas to prove the theorem.
Lemma 1.2 ([2, Lemma 2]). Let f and I be as in Theorem 1.1. If $f \in L^{2}(I)$ then

$$
\begin{equation*}
\sum_{k \in Z}\left|\widehat{f}\left(n_{k}\right)\right|^{2} \leq A_{\delta}|I|^{-1}\|f\|_{2, I}^{2} \tag{1.5}
\end{equation*}
$$

where A_{δ} depends only on δ.

On The Absolute Convergence Of Small Gaps Fourier Series Of

Functions Of $\varphi \wedge B V$
R. G. Vyas

Title Page

Contents
Go Back
Close
Quit
Page 5 of 11

Lemma 1.3. If $\left|n_{k}\right|>p$ then for $t \in \mathbb{N}$ one has

$$
\int_{0}^{\frac{\pi}{p}} \sin ^{2 t}\left|n_{k}\right| h d h \geq \frac{\pi}{2^{t+1} p}
$$

Proof. Obvious.
Lemma 1.4 (Stechkin, refer to [5]). If $u_{n} \geq 0$ for $n \in \mathbb{N}, u_{n} \neq 0$ and a function $F(u)$ is concave, increasing, and $F(0)=0$, then

$$
\sum_{1}^{\infty} F\left(u_{n}\right) \leq 2 \sum_{1}^{\infty} F\left(\frac{u_{n}+u_{n+1}+\cdots}{n}\right)
$$

Proof of Theorem 1.1. Let $I=\left[x_{0}-\frac{\delta_{1}}{2}, x_{0}+\frac{\delta_{1}}{2}\right]$ for some x_{0} and δ_{2} be such that $0<\frac{2 \pi}{q}<\delta_{2}<\delta_{1}$. Put $\delta_{3}=\delta_{1}-\delta_{2}$ and $J=\left[x_{0}-\frac{\delta_{2}}{2}, x_{0}+\frac{\delta_{2}}{2}\right]$. Suppose integers T and j satisfy

$$
\begin{equation*}
\left|n_{T}\right|>\frac{4 \pi}{\delta_{3}} \quad \text { and } \quad 0 \leq j \leq \frac{\delta_{3}\left|n_{T}\right|}{4 \pi} \tag{1.6}
\end{equation*}
$$

$f \in \varphi \wedge B V(I)$ implies

$$
|f(x)| \leq|f(a)|+|f(x)-f(a)| \leq|f(a)|+C \varphi^{-1}\left(V_{\wedge_{\varphi}}(f, I)\right) \quad \text { for all } x \in I
$$

Since f is bounded over I, we have $f \in L^{2}(I)$, so that (1.5) holds and $f \in$ $L^{2}[-\pi, \pi]$. If we put $f_{j}=\left(T_{2 j h} f-T_{(2 j-1) h} f\right)$ then $f_{j} \in L^{2}(I)$ and the Fourier series of f_{j} also possess gaps (1.2). Hence by Lemma 1.2 we get

$$
\begin{equation*}
\sum_{k \in Z}\left|\hat{f}\left(n_{k}\right)\right|^{2} \sin ^{2}\left(\frac{n_{k} h}{2}\right)=O\left(\left\|f_{j}\right\|_{2, J}^{2}\right) \tag{1.7}
\end{equation*}
$$

On The Absolute Convergence Of Small Gaps Fourier Series Of

Functions Of $\varphi \wedge B V$
R. G. Vyas

Title Page
Contents

Go Back
Close
Quit
Page 6 of 11

because

$$
\hat{f}_{j}\left(n_{k}\right)=2 i \hat{f}\left(n_{k}\right) e^{i n_{k}\left(2 j-\frac{1}{2} h\right)} \sin \left(\frac{n_{k} h}{2}\right) .
$$

Integrating both the sides of (1.7) over $\left(0, \frac{\pi}{n_{T}}\right)$ with respect to h and using Lemma 1.3, we get

$$
\begin{equation*}
R_{n_{T}}=\sum_{\left|n_{k}\right| \geq n_{T}}^{\infty}\left|\hat{f}\left(n_{k}\right)\right|^{2}=O\left(n_{T}\right) \int_{0}^{\frac{\pi}{n_{T}}}\left(\left\|f_{j}\right\|_{2, J}^{2}\right) d h \tag{1.8}
\end{equation*}
$$

Since $2=\frac{(2-p) s+p}{s}+\frac{p}{r}$, by using Hölder's inequality, we get from (1.8)

$$
\begin{aligned}
B & =\int_{J}\left|f_{j}(x)\right|^{2} d x \\
& \leq\left(\int_{J}\left|f_{j}(x)\right|^{(2-p) s+p} d x\right)^{\frac{1}{s}}\left(\int_{J}\left|f_{j}(x)\right|^{p} d x\right)^{\frac{1}{r}} \\
& \leq \Omega_{h, J}^{1 / r}\left(\int_{J}\left|f_{j}(x)\right|^{p} d x\right)^{\frac{1}{r}}
\end{aligned}
$$

where $\Omega_{h, J}=\left(\omega^{(2-p) s+p}(h, f, J)\right)^{2 r-p}$. Thus

$$
\begin{equation*}
B^{r} \leq \Omega_{h, J} \int_{J}\left|f_{j}(x)\right|^{p} d x \tag{1.9}
\end{equation*}
$$

Since f is bounded over I, there exists some positive constant $M \geq \frac{1}{2}$ such that $|f(x)| \leq M$ for all $x \in I$. Dividing f by the positive constant M alters

On The Absolute Convergence Of Small Gaps Fourier Series Of

Functions Of $\varphi \wedge B V$
R. G. Vyas

Title Page

Contents
Go Back
Close
Quit
Page 7 of 11

$\omega_{p}(h, f, J)$ by the same constant M and $\varphi(2|f(x)|) \leq d \varphi(|f(x)|)$ for all x, we may assume that $|f(x)| \leq 1$ for all $x \in I$. Hence from (1.9) we get

$$
B^{r} \leq \Omega_{h, J} \int_{J}\left|f_{j}(x)\right| d x
$$

Since $\varphi(2 x) \leq d \varphi(x)$, we have $\varphi(a x) \leq d^{\log _{2} a} \varphi(x)$, so

$$
\begin{aligned}
\varphi\left(\frac{B^{r}}{\delta_{2}}\right) & \leq d^{\log _{2} C \Omega_{h, J}} \varphi\left(\frac{\int_{J}\left|f_{j}(x)\right| d x}{\delta_{2}}\right) \\
& =C \Omega_{h, J}^{\log _{2} d} \varphi\left(\frac{\int_{J}\left|f_{j}(x)\right| d x}{\delta_{2}}\right) \\
& =C \Omega_{h, J}^{\log _{2} d-1} \Omega_{h, J} \varphi\left(\frac{\int_{J}\left|f_{j}(x)\right| d x}{\int_{J} 1 d x}\right) \\
& \leq C \Omega_{h, J}\left(\frac{\int_{J} \varphi\left|f_{j}(x)\right| d x}{\delta_{2}}\right) \\
& =C \Omega_{h, J}\left(\int_{J} \varphi\left|f_{j}(x)\right| d x\right)
\end{aligned}
$$

$$
\leq C \Omega_{h, J}\left(\frac{\int_{J} \varphi\left|f_{j}(x)\right| d x}{\delta_{2}}\right) \quad \text { (by Jensen's inequality for integrals) }
$$

Multiplying both the sides of the equation by $\frac{1}{\lambda_{j}}$ and then taking the summation over $j=1$ to $n_{T}(T \in \mathbb{N})$ we get

$$
\begin{equation*}
\varphi\left(\frac{B^{r}}{\delta_{2}}\right) \leq C\left(\frac{\Omega_{h, J}}{\sum_{j=1}^{n_{T}}\left(\frac{1}{\lambda_{j}}\right)}\right)\left(\int_{J}\left(\sum_{j=1}^{n_{T}} \frac{\varphi\left|f_{j}(x)\right|}{\lambda_{j}}\right) d x\right) \tag{1.10}
\end{equation*}
$$

On The Absolute Convergence Of Small Gaps Fourier Series Of

Functions Of $\varphi \wedge B V$
R. G. Vyas

Title Page
Contents

Go Back
Close
Quit
Page 8 of 11

Observe that for x in J, h in $\left(0, \frac{\pi}{n_{T}}\right)$ and for each j of the summation the points $x+2 j h$ and $x+(2 j-1) h$ lie in I; moreover $f \in \varphi \wedge B V(I)$ implies

$$
\sum_{j=1}^{n_{T}} \frac{\varphi\left|f_{j}(x)\right|}{\lambda_{j}}=O(1)
$$

Therefore, it follows from (1.10) that

$$
B=O\left(\left[\varphi^{-1}\left(\frac{\Omega_{1 / n_{T}, I}}{\sum_{j=1}^{n_{T}}\left(\frac{1}{\lambda_{j}}\right)}\right)\right]^{\frac{1}{r}}\right)
$$

Substituting back the value of B in the equation (1.8), we get

$$
R_{n_{T}}=\sum_{\left|n_{k}\right| \geq n_{T}}^{\infty}\left|\hat{f}\left(n_{k}\right)\right|^{2}=O\left(\left[\varphi^{-1}\left(\frac{\Omega_{1 / n_{T}, I}}{\sum_{j=1}^{n_{T}}\left(\frac{1}{\lambda_{j}}\right)}\right)\right]^{\frac{1}{r}}\right)
$$

Thus

$$
R_{n_{T}}=O\left(\left[\varphi^{-1}\left(\frac{\left(\omega^{(2-p) s+p}\left(\frac{1}{n_{T}}, f, I\right)\right)^{2 r-p}}{\sum_{j=1}^{n_{T}}\left(\frac{1}{\lambda_{j}}\right)}\right)\right]^{\frac{1}{r}}\right)
$$

On The Absolute Convergence Of Small Gaps Fourier Series Of

Functions Of $\varphi \wedge B V$
R. G. Vyas

Title Page

Go Back
Close
Quit

Page 9 of 11

Finally, Lemma 1.4 with $u_{k}=\left|\hat{f}\left(n_{k}\right)\right|^{2}(k \in \mathbb{Z})$ and $F(u)=u^{\beta / 2}$ gives

$$
\begin{aligned}
\sum_{|k|=1}^{\infty}\left|\hat{f}\left(n_{k}\right)\right|^{\beta} & =2 \sum_{k=1}^{\infty} F\left(\left|\hat{f}\left(n_{k}\right)\right|^{2}\right) \\
& \leq 4 \sum_{k=1}^{\infty} F\left(\frac{R_{n_{k}}}{k}\right) \\
& =4 \sum_{k=1}^{\infty}\left(\frac{R_{n_{k}}}{k}\right)^{\frac{\beta}{2}} \\
& =O(1)\left(\sum_{k=1}^{\infty}\left[\left[\varphi^{-1}\left(\frac{\left(\omega^{(2-p) s+p}\left(\frac{1}{n_{k}}, f, I\right)\right)^{2 r-p}}{\sum_{j=1}^{n_{k}} \frac{1}{\lambda_{j}}}\right)\right]^{\frac{1}{r}} / k\right]^{\frac{\beta}{2}}\right)
\end{aligned}
$$

This proves the theorem.

On The Absolute Convergence Of Small Gaps Fourier Series Of

Functions Of $\varphi \wedge B V$
R. G. Vyas

Title Page
Contents
Go Back
Close
Quit
Page 10 of 11

References

[1] A. ZYMUND, Trigonometric Series, 2nd ed., Cambridge Univ. Press, Cambridge, 1979 (reprint).
[2] J.R. PATADIA AND R.G. VYAS, Fourier series with small gaps and functions of generalized variations, J. Math. Analy. and Appl., 182(1) (1994), 113-126.
[3] M. SCHRAMM And D. WATERMAN, Absolute convergence of Fourier series of functions of $\bigwedge B V^{(p)}$ and $\Phi \bigwedge \mathrm{BV}$, Acta. Math. Hungar, 40 (1982), 273-276.
[4] N.K. BARRY, A Treatise on Trigonometric Series, Pergamon, New York, 1964.
[5] N.V. PATEL AND V.M. SHAH, A note on the absolute convergence of lacunary Fourier series, Proc. Amer. Math. Soc., 93 (1985), 433-439.
[6] R.G. VYAS, On the Absolute convergence of small gaps Fourier series of functions of $\wedge \mathrm{BV}^{(p)}$, J. Inequal. Pure and Appl. Math., 6(1) (2005), Art. 23, 1-6. [ONLINE: http:// jipam.vu.edu.au/article.php?sid= 492]

On The Absolute Convergence Of Small Gaps Fourier Series Of

Functions Of $\varphi \wedge B V$
R. G. Vyas

Title Page
Contents

Go Back
Close
Quit
Page 11 of 11

[^0]: J. Ineq. Pure and Appl. Math. 6(4) Art. 94, 2005

