Journal of Inequalities in Pure and

 Applied Mathematicshttp://jipam.vu.edu.au/
Volume 7, Issue 2, Article 41, 2006

CERTAIN INEQUALITIES FOR CONVEX FUNCTIONS

P.G. POPESCU AND J.L. DÍAZ-BARRERO
Automatics and Computer Science Faculty Politehnica University, București, Romania.
pgpopescu@yahoo.com
Applied Mathematics III
Universitat Politècnica de Catalunya
Jordi Girona 1-3, C2, 08034 Barcelona, Spain

jose.luis.diaz@upc.edu
Received 12 July, 2005; accepted 09 December, 2005
Communicated by S.S. Dragomir

Abstract

Classical inequalities like Jensen and its reverse are used to obtain some elementary numerical inequalities for convex functions. Furthermore, imposing restrictions on the data points several new constrained inequalities are given.

Key words and phrases: Convex functions, Numerical Inequalities, Inequalities with constraints.
2000 Mathematics Subject Classification 26D15.

1. Introduction

It is well known ([1], [2]) that a continous function, f, convex in a real interval $I \subseteq \mathbb{R}$ has the property

$$
\begin{equation*}
f\left(\frac{1}{P_{n}} \sum_{k=1}^{n} p_{k} a_{k}\right) \leq \frac{1}{P_{n}} \sum_{k=1}^{n} p_{k} f\left(a_{k}\right), \tag{1.1}
\end{equation*}
$$

where $a_{k} \in I, 1 \leq k \leq n$ are given data points and $p_{1}, p_{2}, \ldots, p_{n}$ is a set of nonnegative real numbers constrained by $\sum_{k=1}^{j} p_{k}=P_{j}$. If f is concave the preceding inequality is reversed.

A broad consideration of inequalities for convex functions can be found, among others, in ([3], [4]). Furthermore, in [5] a reverse of Jensen's inequality is presented. It states that if $p_{1}, p_{2}, \ldots, p_{n}$ are real numbers such that $p_{1}>0, p_{k} \leq 0$ for $2 \leq k \leq n$ and $P_{n}>0$, then

$$
\begin{equation*}
f\left(\frac{1}{P_{n}} \sum_{k=1}^{n} p_{k} a_{k}\right) \geq \frac{1}{P_{n}} \sum_{k=1}^{n} p_{k} f\left(a_{k}\right) \tag{1.2}
\end{equation*}
$$

holds, where $f: I \rightarrow \mathbb{R}$ is a convex function in I and $a_{k} \in I, 1 \leq k \leq n$ are such that $\frac{1}{P_{n}} \sum_{k=1}^{n} p_{k} x_{k} \in I$. If f is concave 1.2 is reversed. Our aim in this paper is to use the preceding

[^0]results to get new inequalities for convex functions. In addition, when the x_{k} 's are constrained some inequalities are obtained.

2. Unconstrained Inequalities

In the sequel, applying the preceding results and some numerical identities, some elementary inequalities are obtained. We begin with:
Theorem 2.1. Let $a_{0}, a_{1}, \ldots, a_{n}$ be nonnegative real numbers. Then, the following inequality

$$
\exp \left[\sum_{k=0}^{n}\binom{n}{k} \frac{a_{k}}{2^{n}}\right] \leq \frac{1}{8^{n}}\left[\sum_{k=0}^{n}\binom{n}{k} \frac{e^{a_{k}}}{\left(1+a_{k}\right)^{2}}\right]\left[\sum_{k=0}^{n}\binom{n}{k}\left(1+a_{k}\right)\right]^{2}
$$

holds.
Proof. Since $f(t)=\frac{e^{t}}{(1+t)^{2}}$ is convex in $[0,+\infty)$, then setting $p_{k}=\binom{n}{k} / 2^{n}, 0 \leq k \leq n$, into 1.1) and taking into account the well known identity $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$, we have

$$
\exp \left(\sum_{k=0}^{n}\binom{n}{k} \frac{a_{k}}{2^{n}}\right)\left[1+\frac{1}{2^{n}} \sum_{k=0}^{n}\binom{n}{k} a_{k}\right]^{-2} \leq \frac{1}{2^{n}} \sum_{k=0}^{n}\binom{n}{k} \frac{e^{a_{k}}}{\left(1+a_{k}\right)^{2}} .
$$

After rearranging terms, the inequality claimed immediately follows and the proof is complete.
Theorem 2.2. Let $p_{1}, p_{2}, \ldots, p_{n}$ be a set of nonnegative real numbers constrained by $\sum_{k=1}^{j} p_{k}=$ P_{j}. If $a_{1}, a_{2}, \ldots, a_{n}$ are positive real numbers, then

$$
\left[\prod_{k=1}^{n}\left(a_{k}+\sqrt{1+a_{k}^{2}}\right)^{p_{k}}\right]^{\frac{1}{P_{n}}} \leq \frac{1}{P_{n}} \sum_{k=1}^{n} p_{k} a_{k}+\sqrt{1+\left(\frac{1}{P_{n}} \sum_{k=1}^{n} p_{k} a_{k}\right)^{2}}
$$

holds.
Proof. Let $f:(0,+\infty) \rightarrow \mathbb{R}$ be the function defined by $f(t)=\ln \left(t+\sqrt{1+t^{2}}\right)$. Then, we have $f^{\prime}(t)=\frac{1}{\sqrt{1+t^{2}}}>0$ and $f^{\prime \prime}(t)=-\frac{t}{\sqrt{\left(1+t^{2}\right)^{3}}} \leq 0$. Therefore, f is concave and applying 1.1) yields

$$
\begin{aligned}
\ln \left[\frac{1}{P_{n}} \sum_{k=1}^{n} p_{k} a_{k}+\right. & \left.\sqrt{1+\left(\frac{1}{P_{n}} \sum_{k=1}^{n} p_{k} a_{k}\right)^{2}}\right] \\
& \geq \frac{1}{P_{n}} \sum_{k=1}^{n} p_{k} \ln \left(a_{k}+\sqrt{1+a_{k}^{2}}\right)=\ln \left[\prod_{k=1}^{n}\left(a_{k}+\sqrt{1+a_{k}^{2}}\right)^{p_{k}}\right]^{\frac{1}{P_{n}}} .
\end{aligned}
$$

Taking into account that $f(t)=\log (t)$ is injective, the statement immediately follows and this completes the proof.
Setting $p_{k}=\frac{1}{n}, 1 \leq k \leq n$ into the preceding result we get
Corollary 2.3. Let $a_{1}, a_{2}, \ldots, a_{n}$ be a set of positive real numbers. Then

$$
\prod_{k=1}^{n}\left(a_{k}+\sqrt{1+a_{k}^{2}}\right)^{1 / n} \leq \frac{1}{n}\left(\sum_{k=1}^{n} a_{k}+\sqrt{n^{2}+\left(\sum_{k=1}^{n} a_{k}\right)^{2}}\right)
$$

holds.

Let T_{n} be the $n^{\text {th }}$ triangular number defined by $T_{n}=\frac{n(n+1)}{2}$. Then, setting $a_{k}=T_{k}, 1 \leq k \leq$ n into the preceding result, we get

Corollary 2.4. For all $n \geq 1$,

$$
\prod_{k=1}^{n}\left(T_{k}+\sqrt{1+T_{k}^{2}}\right)^{\frac{1}{n}} \leq \frac{1}{3}\left(T_{n+1}+\sqrt{9+T_{n+1}^{2}}\right)
$$

holds.
An interesting result involving Fibonacci numbers that can be proved using convex functions is the following

Theorem 2.5. Let n be a positive integer and ℓ be a whole number. Then,

$$
\left(F_{1}^{\ell}+F_{2}^{\ell}+\ldots+F_{n}^{\ell}\right)\left[\frac{1}{F_{1}^{\ell-4}}+\frac{1}{F_{2}^{\ell-4}}+\cdots+\frac{1}{F_{n}^{\ell-4}}\right] \geq F_{n}^{2} F_{n+1}^{2}
$$

holds, where F_{n} is the $n^{\text {th }}$ Fibonacci number defined by $F_{0}=0, F_{1}=1$ and for all $n \geq 2$, $F_{n}=F_{n-1}+F_{n-2}$.
Proof. Taking into account that $F_{1}^{2}+F_{2}^{2}+\cdots+F_{n}^{2}=F_{n} F_{n+1}$, as is well known, and the fact that the function $f:(0, \infty) \rightarrow \mathbb{R}$, defined by $f(t)=1 / t$ is convex, we get after setting $p_{i}=\frac{F_{i}^{2}}{F_{n} F_{n+1}}, 1 \leq i \leq n$ and $a_{i}=F_{n} F_{i}^{\ell-2}, 1 \leq i \leq n:$

$$
\frac{1}{\frac{F_{1}^{\ell}}{F_{n+1}}+\frac{F_{2}^{\ell}}{F_{n+1}}+\cdots+\frac{F_{n}^{\ell}}{F_{n+1}}} \leq \frac{1}{F_{n}^{2} F_{n+1}}\left[\frac{1}{F_{1}^{\ell-4}}+\frac{1}{F_{2}^{\ell-4}}+\cdots+\frac{1}{F_{n}^{\ell-4}}\right] .
$$

From the preceding expression immediately follows

$$
\left(F_{1}^{\ell}+F_{2}^{\ell}+\cdots+F_{n}^{\ell}\right)\left[\frac{1}{F_{1}^{\ell-4}}+\frac{1}{F_{2}^{\ell-4}}+\cdots+\frac{1}{F_{n}^{\ell-4}}\right] \geq F_{n}^{2} F_{n+1}^{2}
$$

and this completes the proof.
Finally, using the reverse Jensen's inequality, we state and prove:
Theorem 2.6. Let $a_{0}, a_{1}, \ldots, a_{n}$ be positive real numbers such that $a_{0} \geq a_{1} \geq \cdots \geq a_{n}$ and let $p_{0}=n(n+1)$ and $p_{k}=-k, k=1,2, \ldots, n$. Then

$$
\begin{equation*}
\left(\sum_{k=0}^{n} p_{k} a_{k}\right)\left(\sum_{k=0}^{n} \frac{p_{k}}{a_{k}}\right) \leq\binom{ n+1}{2}^{2} . \tag{2.1}
\end{equation*}
$$

Proof. Setting $f(t)=\frac{1}{t}$, that is convex in $(0,+\infty)$, and taking into account that $\sum_{k=1}^{n} k=$ $\frac{n(n+1)}{2}$ from 1.2 we have

$$
f\left(\frac{2}{n(n+1)} \sum_{k=0}^{n} p_{k} a_{k}\right) \geq \frac{2}{n(n+1)} \sum_{k=0}^{n} p_{k} f\left(a_{k}\right)
$$

or

$$
\left(\frac{2}{n(n+1)} \sum_{k=0}^{n} p_{k} a_{k}\right)^{-1} \geq \frac{2}{n(n+1)} \sum_{k=0}^{n} \frac{p_{k}}{a_{k}}
$$

from which, after rearranging terms, (2.1) immediately follows and the proof is complete.

3. CONSTRAINED INEQUALITIES

In the sequel, imposing restrictions on $x_{1}, x_{2}, \ldots, x_{n}$, some inequalities with constraints are given. We begin with the following.

Theorem 3.1. Let $p_{1}, p_{2}, \ldots, p_{n} \in[0,1)$ be a set of real numbers constrained by $\sum_{k=1}^{j} p_{k}=P_{j}$. If $x_{1}, x_{2}, \ldots, x_{n}$ are positive real numbers such that $\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}=1$, then

$$
\left(\sum_{k=1}^{n} p_{k} x_{k}\right)\left(\sum_{k=1}^{n} \frac{1}{x_{k}^{p_{k}}}\right) \geq P_{n}^{2}
$$

holds.
Proof. Taking into account the weighted AM-HM inequality, we have

$$
\frac{1}{P_{n}} \sum_{k=1}^{n} p_{k} x_{k} \geq \frac{P_{n}}{\sum_{k=1}^{n}\left(\frac{p_{k}}{x_{k}}\right)}
$$

Since $0 \leq p_{k}<1$ for $1 \leq k \leq n$, then $\frac{p_{k}}{x_{k}} \leq \frac{1}{x_{k}^{p_{k}}}$. From which, we get

$$
\frac{P_{n}}{\sum_{k=1}^{n}\left(\frac{p_{k}}{x_{k}}\right)} \geq \frac{P_{n}}{\sum_{k=1}^{n} \frac{1}{x_{k}^{p_{k}}}} .
$$

Then,

$$
\frac{1}{P_{n}} \sum_{k=1}^{n} p_{k} x_{k} \geq \frac{P_{n}}{\sum_{k=1}^{n} \frac{1}{x_{k}^{x_{k}}}}
$$

and the statement immediately follows.
Corollary 3.2. If $x_{1}, x_{2}, \ldots, x_{n}$ are positive real numbers such that $\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}=1$, then

$$
\frac{1}{n} \leq \sum_{k=1}^{n} \frac{1}{x_{k}^{1 / x_{k}}}
$$

Proof. Setting $p_{k}=1 / x_{k}, 1 \leq k \leq n$ into Theorem 3.1 yields

$$
\left(\sum_{k=1}^{n} p_{k} x_{k}\right)\left(\sum_{k=1}^{n} \frac{1}{x_{k}^{p_{k}}}\right)=n\left(\sum_{k=1}^{n} \frac{1}{x_{k}^{1 / x_{k}}}\right) \geq\left(\sum_{k=1}^{n} \frac{1}{x_{k}}\right)^{2}=1
$$

completing the proof.
Finally, we give two inequalities similar to the ones obtained in [6] for the triangle.
Theorem 3.3. Let a, b and c be positive real numbers such that $a+b+c=1$. Then, the following inequality

$$
a^{a(a+2 b)} \cdot b^{b(b+2 c)} \cdot c^{c(c+2 a)} \geq \frac{1}{3}
$$

holds.
Proof. Since $a+b+c=1$, then $a^{2}+b^{2}+c^{2}+2(a b+b c+c a)=1$. Therefore, choosing $p_{1}=a^{2}, p_{2}=b^{2}, p_{3}=c^{2}, p_{4}=2 a b, p_{5}=2 b c, p_{6}=2 c a$ and $x_{1}=1 / a, x_{2}=1 / b, x_{3}=1 / c$,
$x_{4}=1 / a, x_{5}=1 / b, x_{6}=1 / c$, and applying Jensen's inequality to the function $f(t)=\ln t$ that is concave for all $t \geq 0$, we obtain

$$
\begin{aligned}
& \ln \left(a^{2} \frac{1}{a}+b^{2} \frac{1}{b}+c^{2} \frac{1}{c}+2 a b \frac{1}{a}+2 b c \frac{1}{b}+2 c a \frac{1}{c}\right) \\
& \geq a^{2} \ln \frac{1}{a}+b^{2} \ln \frac{1}{b}+c^{2} \ln \frac{1}{c}+2 a b \ln \frac{1}{a}+2 b c \ln \frac{1}{b}+2 c a \ln \frac{1}{c}
\end{aligned}
$$

from which, we get

$$
\ln 3 \geq \ln \left(\frac{1}{a^{a(a+2 b)} \cdot b^{b(b+2 c)} \cdot c^{c(c+2 a)}}\right)
$$

and this completes the proof.
Theorem 3.4. Let a, b, c be positive numbers such that $a b+b c+c a=a b c$. Then,

$$
\sqrt[b]{a} \sqrt[c]{b} \sqrt[a]{c}(a+b+c) \geq a b c
$$

holds.
Proof. Since $a b+b c+c a=a b c$, then $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$. So, choosing $p_{1}=\frac{1}{a}, p_{2}=\frac{1}{b}, p_{3}=\frac{1}{c}$ and $x_{1}=a b, x_{2}=b c, x_{3}=c a$, and applying Jensen's inequality to $f(t)=\ln t$ again, we get

$$
\ln (a+b+c) \geq \frac{1}{a} \ln a b+\frac{1}{b} \ln b c+\frac{1}{c} \ln c a
$$

or

$$
a+b+c \geq a^{\frac{1}{a}+\frac{1}{c}} \cdot b^{\frac{1}{b}+\frac{1}{a}} \cdot c^{\frac{1}{c}+\frac{1}{b}}
$$

Now, taking into account that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$, we obtain: $a+b+c \geq a^{1-\frac{1}{b}} \cdot b^{1-\frac{1}{c}} \cdot c^{1-\frac{1}{a}}$, from which the statement immediately follows and the proof is complete.

References

[1] J.L.W.V. JENSEN, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta Math., 30 (1906), 175-193.
[2] Th.M. RASSIAS, Survey on Classical Inequalities, Kluwer Academic Publishers, Dordrecht, 2000.
[3] M. BENCZE, Octogon Mathematical Magazine Collection, 1993-2004.
[4] J.F. STEFFENSEN, On certain inequalities and methods of approximation, J. Institute Actuaries, 51 (1919), 279-297.
[5] P.M. VASIĆ AND J.E. PEČARIĆ, On Jensen inequality, Univ. Beograd. Publ. Elektrotehn Fak. Ser. Mat. Fis., 639-677 (1979), 50-54.
[6] J.L. DÍAZ-BARRERO, Some cyclical inequalities for the triangle, J. Ineq. Pure and Appl. Math., 6(1) (2005), Art. 20. [ONLINE: http://jipam.vu.edu.au/article.php?sid=489]

[^0]: ISSN (electronic): 1443-5756
 (C) 2006 Victoria University. All rights reserved.

 206-05

