ON AN INTEGRATION-BY-PARTS FORMULA FOR MEASURES

A. ČIVLJAK, LJ. DEDIĆ, AND M. MATIĆ
American College of Management and Technology
Rochester Institute of Technology
Don Frana Bulica 6, 20000 Dubrovnik
Croatia
acivljak@acmt.hr
Department of Mathematics
Faculty of Natural Sciences, Mathematics and Education
University of Split
Teslina 12, 21000 Split
Croatia
ljuban@pmfst.hr
Department of Mathematics
Faculty of Natural Sciences, Mathematics and Education
University of Split
Teslina 12, 21000 Split
Croatia
mmatic@pmfst.hr

Received 21 June, 2007; accepted 15 November, 2007
Communicated by W.S. Cheung

Abstract

An integration-by-parts formula, involving finite Borel measures supported by intervals on real line, is proved. Some applications to Ostrowski-type and Grüss-type inequalities are presented.

Key words and phrases: Integration-by-parts formula, Harmonic sequences, Inequalities.

2000 Mathematics Subject Classification. 26D15, 26D20, 26D99.

1. Introduction

In the paper [4], S.S. Dragomir introduced the notion of a w_{0}-Appell type sequence of functions as a sequence $w_{0}, w_{1}, \ldots, w_{n}$, for $n \geq 1$, of real absolutely continuous functions defined on $[a, b]$, such that

$$
w_{k}^{\prime}=w_{k-1}, \text { a.e. on }[a, b], \quad k=1, \ldots, n .
$$

For such a sequence the author proved a generalisation of Mitrinović-Pečarić integration-byparts formula

$$
\begin{equation*}
\int_{a}^{b} w_{0}(t) g(t) d t=A_{n}+B_{n} \tag{1.1}
\end{equation*}
$$

where

$$
A_{n}=\sum_{k=1}^{n}(-1)^{k-1}\left[w_{k}(b) g^{(k-1)}(b)-w_{k}(a) g^{(k-1)}(a)\right]
$$

and

$$
B_{n}=(-1)^{n} \int_{a}^{b} w_{n}(t) g^{(n)}(t) d t
$$

for every $g:[a, b] \rightarrow \mathbb{R}$ such that $g^{(n-1)}$ is absolutely continuous on $[a, b]$ and $w_{n} g^{(n)} \in L_{1}[a, b]$. Using identity (1.1) the author proved the following inequality

$$
\begin{equation*}
\left|\int_{a}^{b} w_{0}(t) g(t) d t-A_{n}\right| \leq\left\|w_{n}\right\|_{p}\left\|g^{(n)}\right\|_{q} \tag{1.2}
\end{equation*}
$$

for $w_{n} \in L_{p}[a, b], g^{(n)} \in L_{p}[a, b]$, where $p, q \in[1, \infty]$ and $1 / p+1 / q=1$, giving explicitly some interesting special cases. For some similar inequalities, see also [5], [6] and [7]. The aim of this paper is to give a generalization of the integration-by-parts formula (1.1), by replacing the w_{0}-Appell type sequence of functions by a more general sequence of functions, and to generalize inequality (1.2), as well as to prove some related inequalities.

2. Integration-by-parts Formula for Measures

For $a, b \in \mathbb{R}, a<b$, let $C[a, b]$ be the Banach space of all continuous functions $f:[a, b] \rightarrow \mathbb{R}$ with the max norm, and $M[a, b]$ the Banach space of all real Borel measures on $[a, b]$ with the total variation norm. For $\mu \in M[a, b]$ define the function $\check{\mu}_{n}:[a, b] \rightarrow \mathbb{R}, n \geq 1$, by

$$
\check{\mu}_{n}(t)=\frac{1}{(n-1)!} \int_{[a, t]}(t-s)^{n-1} d \mu(s) .
$$

Note that

$$
\check{\mu}_{n}(t)=\frac{1}{(n-2)!} \int_{a}^{t}(t-s)^{n-2} \breve{\mu}_{1}(s) d s, \quad n \geq 2
$$

and

$$
\left|\check{\mu}_{n}(t)\right| \leq \frac{(t-a)^{n-1}}{(n-1)!}\|\mu\|, \quad t \in[a, b], n \geq 1
$$

The function $\check{\mu}_{n}$ is differentiable, $\check{\mu}_{n}^{\prime}(t)=\check{\mu}_{n-1}(t)$ and $\check{\mu}_{n}(a)=0$, for every $n \geq 2$, while for $n=1$

$$
\check{\mu}_{1}(t)=\int_{[a, t]} d \mu(s)=\mu([a, t]),
$$

which means that $\check{\mu}_{1}(t)$ is equal to the distribution function of μ. A sequence of functions $P_{n}:[a, b] \rightarrow \mathbb{R}, n \geq 1$, is called a μ-harmonic sequence of functions on $[a, b]$ if

$$
P_{n}^{\prime}(t)=P_{n-1}(t), n \geq 2 ; \quad P_{1}(t)=c+\check{\mu}_{1}(t), \quad t \in[a, b],
$$

for some $c \in \mathbb{R}$. The sequence ($\check{\mu}_{n}, n \geq 1$) is an example of a μ-harmonic sequence of functions on $[a, b]$. The notion of a μ-harmonic sequence of functions has been introduced in [2]. See also [1].

Remark 2.1. Let $w_{0}:[a, b] \rightarrow \mathbb{R}$ be an absolutely integrable function and let $\mu \in M[a, b]$ be defined by

$$
d \mu(t)=w_{0}(t) d t
$$

If $\left(P_{n}, n \geq 1\right)$ is a μ-harmonic sequence of functions on $[a, b]$, then $w_{0}, P_{1}, \ldots, P_{n}$ is a $w_{0^{-}}$ Appell type sequence of functions on $[a, b]$.

For $\mu \in M[a, b]$ let $\mu=\mu_{+}-\mu_{-}$be the Jordan-Hahn decomposition of μ, where μ_{+}and μ_{-} are orthogonal and positive measures. Then we have $|\mu|=\mu_{+}+\mu_{-}$and

$$
\|\mu\|=|\mu|([a, b])=\left\|\mu_{+}\right\|+\left\|\mu_{-}\right\|=\mu_{+}([a, b])+\mu_{-}([a, b]) .
$$

The measure $\mu \in M[a, b]$ is said to be balanced if $\mu([a, b])=0$. This is equivalent to

$$
\left\|\mu_{+}\right\|=\left\|\mu_{-}\right\|=\frac{1}{2}\|\mu\| .
$$

Measure $\mu \in M[a, b]$ is called n-balanced if $\check{\mu}_{n}(b)=0$. We see that a 1-balanced measure is the same as a balanced measure. We also write

$$
m_{k}(\mu)=\int_{[a, b]} t^{k} d \mu(t), \quad k \geq 0
$$

for the k-th moment of μ.
Lemma 2.2. For every $f \in C[a, b]$ and $\mu \in M[a, b]$ we have

$$
\int_{[a, b]} f(t) d \check{\mu}_{1}(t)=\int_{[a, b]} f(t) d \mu(t)-\mu(\{a\}) f(a) .
$$

Proof. Define $I, J: C[a, b] \times M[a, b] \rightarrow \mathbb{R}$ by

$$
I(f, \mu)=\int_{[a, b]} f(t) d \check{\mu}_{1}(t)
$$

and

$$
J(f, \mu)=\int_{[a, b]} f(t) d \mu(t)-\mu(\{a\}) f(a) .
$$

Then I and J are continuous bilinear functionals, since

$$
|I(f, \mu)| \leq\|f\|\|\mu\|, \quad|J(f, \mu)| \leq 2\|f\|\|\mu\| .
$$

Let us prove that $I(f, \mu)=J(f, \mu)$ for every $f \in C[a, b]$ and every discrete measure $\mu \in$ $M[a, b]$.

For $x \in[a, b]$ let $\mu=\delta_{x}$ be the Dirac measure at x, i.e. the measure defined by

$$
\int_{[a, b]} f(t) \mathrm{d} \delta_{x}(t)=f(x) .
$$

If $a<x \leq b$, then

$$
\check{\mu}_{1}(t)=\delta_{x}([a, t])= \begin{cases}0, & a \leq t<x \\ 1, & x \leq t \leq b\end{cases}
$$

and by a simple calculation we have

$$
\begin{aligned}
I\left(f, \delta_{x}\right) & =\int_{[a, b]} f(t) d \check{\mu}_{1}(t)=f(x)=\int_{[a, b]} f(t) \mathrm{d} \delta_{x}(t)-0 \\
& =\int_{[a, b]} f(t) \mathrm{d} \delta_{x}(t)-\delta_{x}(\{a\}) f(a)=J\left(f, \delta_{x}\right)
\end{aligned}
$$

Similarly, if $x=a$, then

$$
\check{\mu}_{1}(t)=\delta_{a}([a, t])=1, \quad a \leq t \leq b
$$

and by a similar calculation we have

$$
\begin{aligned}
I\left(f, \delta_{a}\right) & =\int_{[a, b]} f(t) d \check{\mu}_{1}(t)=0=f(a)-f(a) \\
& =\int_{[a, b]} f(t) \mathrm{d} \delta_{a}(t)-\delta_{a}(\{a\}) f(a)=J\left(f, \delta_{x}\right) .
\end{aligned}
$$

Therefore, for every $f \in C[a, b]$ and every $x \in[a, b]$ we have $I\left(f, \delta_{x}\right)=J\left(f, \delta_{x}\right)$. Every discrete measure $\mu \in M[a, b]$ has the form

$$
\mu=\sum_{k \geq 1} c_{k} \delta_{x_{k}}
$$

where $\left(c_{k}, k \geq 1\right)$ is a sequence in \mathbb{R} such that

$$
\sum_{k \geq 1}\left|c_{k}\right|<\infty
$$

and $\left\{x_{k} ; k \geq 1\right\}$ is a subset of $[a, b]$.
By using the continuity of I and J, for every $f \in C[a, b]$ and every discrete measure $\mu \in$ $M[a, b]$ we have

$$
\begin{aligned}
I(f, \mu) & =I\left(f, \sum_{k \geq 1} c_{k} \delta_{x_{k}}\right)=\sum_{k \geq 1} c_{k} I\left(f, \delta_{x_{k}}\right) \\
& =\sum_{k \geq 1} c_{k} J\left(f, \delta_{x_{k}}\right)=J\left(f, \sum_{k \geq 1} c_{k} \delta_{x_{k}}\right) \\
& =J(f, \mu) .
\end{aligned}
$$

Since the Banach subspace $M[a, b]_{d}$ of all discrete measures is weakly* dense in $M[a, b]$ and the functionals $I(f, \cdot)$ and $J(f, \cdot)$ are also weakly* continuous we conclude that $I(f, \mu)=$ $J(f, \mu)$ for every $f \in C[a, b]$ and $\mu \in M[a, b]$.
Theorem 2.3. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n-1)}$ has bounded variation for some $n \geq 1$. Then for every μ-harmonic sequence $\left(P_{n}, n \geq 1\right)$ we have

$$
\begin{equation*}
\int_{[a, b]} f(t) d \mu(t)=\mu(\{a\}) f(a)+S_{n}+R_{n} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{n}=\sum_{k=1}^{n}(-1)^{k-1}\left[P_{k}(b) f^{(k-1)}(b)-P_{k}(a) f^{(k-1)}(a)\right] \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{n}=(-1)^{n} \int_{[a, b]} P_{n}(t) d f^{(n-1)}(t) \tag{2.3}
\end{equation*}
$$

Proof. By partial integration, for $n \geq 2$, we have

$$
\begin{aligned}
& R_{n}=(-1)^{n} \int_{[a, b]} P_{n}(t) d f^{(n-1)}(t) \\
&=(-1)^{n} {\left[P_{n}(b) f^{(n-1)}(b)-P_{n}(a) f^{(n-1)}(a)\right] } \\
& \quad-(-1)^{n} \int_{[a, b]} P_{n-1}(t) f^{(n-1)}(t) d t \\
&=(-1)^{n} {\left[P_{n}(b) f^{(n-1)}(b)-P_{n}(a) f^{(n-1)}(a)\right]+R_{n-1} . }
\end{aligned}
$$

By Lemma 2.2 we have

$$
\begin{aligned}
R_{1} & =-\int_{[a, b]} P_{1}(t) d f(t) \\
& =-\left[P_{1}(b) f(b)-P_{n}(a) f(a)\right]+\int_{[a, b]} f(t) d P_{1}(t) \\
& =-\left[P_{1}(b) f(b)-P_{n}(a) f(a)\right]+\int_{[a, b]} f(t) d \check{\mu}_{1}(t) \\
& =-\left[P_{1}(b) f(b)-P_{n}(a) f(a)\right]+\int_{[a, b]} f(t) d \mu(t)-\mu(\{a\}) f(a) .
\end{aligned}
$$

Therefore, by iteration, we have

$$
R_{n}=\sum_{k=1}^{n}(-1)^{k}\left[P_{k}(b) f^{(k-1)}(b)-P_{k}(a) f^{(k-1)}(a)\right]+\int_{[a, b]} f(t) d \mu(t)-\mu(\{a\}) f(a),
$$

which proves our assertion.
Remark 2.4. By Remark 2.1 we see that identity 2.1 is a generalization of the integration-byparts formula (1.1).

Corollary 2.5. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n-1)}$ has bounded variation for some $n \geq 1$. Then for every $\mu \in M[a, b]$ we have

$$
\int_{[a, b]} f(t) d \mu(t)=\check{S}_{n}+\check{R}_{n}
$$

where

$$
\check{S}_{n}=\sum_{k=1}^{n}(-1)^{k-1} \check{\mu}_{k}(b) f^{(k-1)}(b)
$$

and

$$
\check{R}_{n}=(-1)^{n} \int_{[a, b]} \check{\mu}_{n}(t) d f^{(n-1)}(t) .
$$

Proof. Apply the theorem above for the μ-harmonic sequence $\left(\check{\mu}_{n}, n \geq 1\right)$ and note that $\check{\mu}_{n}(a)=$ 0 , for $n \geq 2$.

Corollary 2.6. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n-1)}$ has bounded variation for some $n \geq 1$. Then for every $x \in[a, b]$ we have

$$
f(x)=\sum_{k=1}^{n} \frac{(x-b)^{k-1}}{(k-1)!} f^{(k-1)}(b)+R_{n}(x),
$$

where

$$
R_{n}(x)=\frac{(-1)^{n}}{(n-1)!} \int_{[x, b]}(t-x)^{n-1} d f^{(n-1)}(t)
$$

Proof. Apply Corollary 2.5 for $\mu=\delta_{x}$ and note that in this case

$$
\check{\mu}_{k}(t)=\frac{(t-x)^{k-1}}{(k-1)!}, \quad x \leq t \leq b, \quad \text { and } \quad \check{\mu}_{k}(t)=0, \quad a \leq t<x
$$

for $k \geq 1$.
Corollary 2.7. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n-1)}$ has bounded variation for some $n \geq 1$. Further, let $\left(c_{m}, m \geq 1\right)$ be a sequence in \mathbb{R} such that

$$
\sum_{m \geq 1}\left|c_{m}\right|<\infty
$$

and let $\left\{x_{m} ; m \geq 1\right\} \subset[a, b]$. Then

$$
\sum_{m \geq 1} c_{m} f\left(x_{m}\right)=\sum_{m \geq 1} \sum_{k=1}^{n} c_{m} \frac{\left(x_{m}-b\right)^{k-1}}{(k-1)!} f^{(k-1)}(b)+\sum_{m \geq 1} c_{m} R_{n}\left(x_{m}\right),
$$

where $R_{n}\left(x_{m}\right)$ is from Corollary 2.6
Proof. Apply Corollary 2.5 for the discrete measure $\mu=\sum_{m \geq 1} c_{m} \delta_{x_{m}}$.

3. Some Ostrowski-type Inequalities

In this section we shall use the same notations as above.
Theorem 3.1. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n-1)}$ is L-Lipschitzian for some $n \geq 1$. Then for every μ-harmonic sequence $\left(P_{n}, n \geq 1\right)$ we have

$$
\begin{equation*}
\left|\int_{[a, b]} f(t) d \mu(t)-\mu(\{a\}) f(a)-S_{n}\right| \leq L \int_{a}^{b}\left|P_{n}(t)\right| d t \tag{3.1}
\end{equation*}
$$

where S_{n} is defined by (2.2).
Proof. By Theorem 2.3 we have

$$
\left|R_{n}\right|=\left|\int_{[a, b]} P_{n}(t) d f^{(n-1)}(t)\right| \leq L \int_{a}^{b}\left|P_{n}(t)\right| d t
$$

which proves our assertion.
Corollary 3.2. If f is L-Lipschitzian, then for every $c \in \mathbb{R}$ and $\mu \in M[a, b]$ we have

$$
\left|\int_{[a, b]} f(t) d \mu(t)-\mu([a, b]) f(b)-c[f(b)-f(a)]\right| \leq L \int_{a}^{b}\left|c+\check{\mu}_{1}(t)\right| d t
$$

Proof. Put $n=1$ in the theorem above and note that $P_{1}(t)=c+\check{\mu}_{1}(t)$, for some $c \in \mathbb{R}$.
Corollary 3.3. If f is L-Lipschitzian, then for every $c \geq 0$ and $\mu \geq 0$ we have

$$
\begin{aligned}
& \left|\int_{[a, b]} f(t) d \mu(t)-\mu([a, b]) f(b)-c[f(b)-f(a)]\right| \\
& \leq L\left[c(b-a)+\check{\mu}_{2}(b)\right] \\
& \leq L(b-a)(c+\|\mu\|)
\end{aligned}
$$

Proof. Apply Corollary 3.2 and note that in this case

$$
\begin{aligned}
\int_{a}^{b}\left|c+\check{\mu}_{1}(t)\right| d t & =\int_{a}^{b}\left[c+\check{\mu}_{1}(t)\right] d t \\
& =c(b-a)+\check{\mu}_{2}(b) \\
& \leq c(b-a)+(b-a)\|\mu\| \\
& =(b-a)(c+\|\mu\|) .
\end{aligned}
$$

Corollary 3.4. Let f be L-Lipschitzian, $\left(c_{m}, m \geq 1\right)$ a sequence in $[0, \infty)$ such that

$$
\sum_{m \geq 1} c_{m}<\infty
$$

and let $\left\{x_{m} ; m \geq 1\right\} \subset[a, b]$. Then for every $c \geq 0$ we have

$$
\begin{aligned}
\left|\sum_{m \geq 1} c_{m}\left[f(b)-f\left(x_{m}\right)\right]+c[f(b)-f(a)]\right| & \leq L\left[c(b-a)+\sum_{m \geq 1} c_{m}\left(b-x_{m}\right)\right] \\
& \leq L(b-a)\left[c+\sum_{m \geq 1} c_{m}\right]
\end{aligned}
$$

Proof. Apply Corollary 3.3 for the discrete measure $\mu=\sum_{m \geq 1} c_{m} \delta_{x_{m}}$.
Corollary 3.5. If f is L-Lipschitzian and $\mu \geq 0$, then

$$
\begin{aligned}
\left|\int_{[a, b]} f(t) d \mu(t)-\mu([a, x]) f(a)-\mu((x, b]) f(b)\right| & \\
& \leq L\left[(2 x-a-b) \check{\mu}_{1}(x)-2 \check{\mu}_{2}(x)+\check{\mu}_{2}(b)\right]
\end{aligned}
$$

for every $x \in[a, b]$.
Proof. Apply Corollary 3.2 for $c=-\check{\mu}_{1}(x)$. Then

$$
c+\check{\mu}_{1}(b)=\mu((x, b]), \quad \check{\mu}_{1}(x)=\mu([a, x])
$$

and

$$
\begin{aligned}
\int_{a}^{b}\left|-\check{\mu}_{1}(x)+\check{\mu}_{1}(t)\right| d t & =\int_{a}^{x}\left(\check{\mu}_{1}(x)-\check{\mu}_{1}(t)\right) d t+\int_{x}^{b}\left(\check{\mu}_{1}(t)-\check{\mu}_{1}(x)\right) d t \\
& =(2 x-a-b) \check{\mu}_{1}(x)-2 \check{\mu}_{2}(x)+\check{\mu}_{2}(b) .
\end{aligned}
$$

Corollary 3.6. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n-1)}$ is L-Lipschitzian for some $n \geq 1$. Then for every $\mu \in M[a, b]$ we have

$$
\left|\int_{[a, b]} f(t) d \mu(t)-\check{S}_{n}\right| \leq L \int_{a}^{b}\left|\check{\mu}_{n}(t)\right| d t \leq \frac{(b-a)^{n}}{n!} L\|\mu\|,
$$

where \check{S}_{n} is from Corollary 2.5
Proof. Apply the theorem above for the μ-harmonic sequence $\left(\check{\mu}_{n}, n \geq 1\right)$.

Corollary 3.7. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n-1)}$ is L-Lipschitzian for some $n \geq 1$. Then for every $x \in[a, b]$ we have

$$
\left|f(x)-\sum_{k=1}^{n} \frac{(x-b)^{k-1}}{(k-1)!} f^{(k-1)}(b)\right| \leq \frac{(b-x)^{n}}{n!} L
$$

Proof. Apply Corollary 3.6 for $\mu=\delta_{x}$ and note that in this case

$$
\check{\mu}_{k}(t)=\frac{(t-x)^{k-1}}{(k-1)!}, \quad x \leq t \leq b, \quad \text { and } \quad \check{\mu}_{k}(t)=0, \quad a \leq t<x
$$

for $k \geq 1$.
Corollary 3.8. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n-1)}$ is L-Lipschitzian, for some $n \geq 1$. Further, let $\left(c_{m}, m \geq 1\right)$ be a sequence in \mathbb{R} such that

$$
\sum_{m \geq 1}\left|c_{m}\right|<\infty
$$

and let $\left\{x_{m} ; m \geq 1\right\} \subset[a, b]$. Then

$$
\begin{aligned}
& \left|\sum_{m \geq 1} c_{m} f\left(x_{m}\right)-\sum_{m \geq 1} \sum_{k=1}^{n} c_{m} \frac{\left(x_{m}-b\right)^{k-1}}{(k-1)!} f^{(k-1)}(b)\right| \\
& \leq \frac{L}{n!} \sum_{m \geq 1}\left|c_{m}\right|\left(b-x_{m}\right)^{n} \\
& \leq \frac{L}{n!}(b-a)^{n} \sum_{m \geq 1}\left|c_{m}\right|
\end{aligned}
$$

Proof. Apply Corollary 3.6 for the discrete measure $\mu=\sum_{m \geq 1} c_{m} \delta_{x_{m}}$.
Theorem 3.9. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n-1)}$ has bounded variation for some $n \geq 1$. Then for every μ-harmonic sequence $\left(P_{n}, n \geq 1\right)$ we have

$$
\left|\int_{[a, b]} f(t) d \mu(t)-\mu(\{a\}) f(a)-S_{n}\right| \leq \max _{t \in[a, b]}\left|P_{n}(t)\right| \bigvee_{a}^{b}\left(f^{(n-1)}\right),
$$

where $\bigvee_{a}^{b}\left(f^{(n-1)}\right)$ is the total variation of $f^{(n-1)}$ on $[a, b]$.
Proof. By Theorem 2.3 we have

$$
\left|R_{n}\right|=\left|\int_{[a, b]} P_{n}(t) d f^{(n-1)}(t)\right| \leq \max _{t \in[a, b]}\left|P_{n}(t)\right| \bigvee_{a}^{b}\left(f^{(n-1)}\right)
$$

which proves our assertion.
Corollary 3.10. If f is a function of bounded variation, then for every $c \in \mathbb{R}$ and $\mu \in M[a, b]$ we have

$$
\left|\int_{[a, b]} f(t) d \mu(t)-\mu([a, b]) f(b)-c[f(b)-f(a)]\right| \leq \max _{t \in[a, b]}\left|c+\check{\mu}_{1}(t)\right| \bigvee_{a}^{b}(f)
$$

Proof. Put $n=1$ in the theorem above.

Corollary 3.11. If f is a function of bounded variation, then for every $c \geq 0$ and $\mu \geq 0$ we have

$$
\left|\int_{[a, b]} f(t) d \mu(t)-\mu([a, b]) f(b)-c[f(b)-f(a)]\right| \leq[c+\|\mu\|] \bigvee_{a}^{b}(f)
$$

Proof. In this case we have

$$
\max _{t \in[a, b]}\left|c+\check{\mu}_{1}(t)\right|=c+\check{\mu}_{1}(b)=c+\|\mu\|
$$

Corollary 3.12. Let f be a function of bounded variation, $\left(c_{m}, m \geq 1\right)$ a sequence in $[0, \infty)$ such that

$$
\sum_{m \geq 1} c_{m}<\infty
$$

and let $\left\{x_{m} ; m \geq 1\right\} \subset[a, b]$. Then for every $c \geq 0$ we have

$$
\left|\sum_{m \geq 1} c_{m}\left[f(b)-f\left(x_{m}\right)\right]+c[f(b)-f(a)]\right| \leq\left[c+\sum_{m \geq 1} c_{m}\right] \bigvee_{a}^{b}(f)
$$

Proof. Apply Corollary 3.11 for the discrete measure $\mu=\sum_{m \geq 1} c_{m} \delta_{x_{m}}$.
Corollary 3.13. If f is a function of bounded variation and $\mu \geq 0$, then we have

$$
\begin{aligned}
\mid \int_{[a, b]} f(t) d \mu(t)-\mu([a, x]) f(a)- & \mu((x, b]) f(b) \mid \\
& \leq \frac{1}{2}\left[\check{\mu}_{1}(b)-\check{\mu}_{1}(a)+\left|\check{\mu}_{1}(a)+\check{\mu}_{1}(b)-2 \check{\mu}_{1}(x)\right|\right] \bigvee_{a}^{b}(f)
\end{aligned}
$$

Proof. Apply Corollary 3.11 for $c=-\check{\mu}_{1}(x)$. Then

$$
\begin{aligned}
\max _{t \in[a, b]}\left|c+\check{\mu}_{1}(t)\right| & =\max _{t \in[a, b]}\left|\check{\mu}_{1}(t)-\check{\mu}_{1}(x)\right| \\
& =\max \left\{\check{\mu}_{1}(x)-\check{\mu}_{1}(a), \check{\mu}_{1}(b)-\check{\mu}_{1}(x)\right\} \\
& =\frac{1}{2}\left[\check{\mu}_{1}(b)-\check{\mu}_{1}(a)+\left|\check{\mu}_{1}(a)+\check{\mu}_{1}(b)-2 \check{\mu}_{1}(x)\right|\right]
\end{aligned}
$$

Corollary 3.14. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n-1)}$ has bounded variation for some $n \geq 1$. Then for every $\mu \in M[a, b]$ we have

$$
\begin{aligned}
\left|\int_{[a, b]} f(t) d \mu(t)-\check{S}_{n}\right| & \leq \max _{t \in[a, b]}\left|\check{\mu}_{n}(t)\right| \bigvee_{a}^{b}\left(f^{(n-1)}\right) \\
& \leq \frac{(b-a)^{n-1}}{(n-1)!}\|\mu\| \bigvee_{a}^{b}\left(f^{(n-1)}\right),
\end{aligned}
$$

where \check{S}_{n} is from Corollary 2.5
Proof. Apply the theorem above for the μ-harmonic sequence $\left(\check{\mu}_{n}, n \geq 1\right)$.

Corollary 3.15. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n-1)}$ has bounded variation for some $n \geq 1$. Then for every $x \in[a, b]$ we have

$$
\left|f(x)-\sum_{k=1}^{n} \frac{(x-b)^{k-1}}{(k-1)!} f^{(k-1)}(b)\right| \leq \frac{(b-x)^{n-1}}{(n-1)!} \bigvee_{a}^{b}\left(f^{(n-1)}\right)
$$

Proof. Apply Corollary 3.14 for $\mu=\delta_{x}$ and note that in this case

$$
\max _{t \in[a, b]}\left|\check{\mu}_{n}(t)\right|=\frac{(b-x)^{n-1}}{(n-1)!} .
$$

Corollary 3.16. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n-1)}$ has bounded variation for some $n \geq 1$. Further, let $\left(c_{m}, m \geq 1\right)$ be a sequence in \mathbb{R} such that

$$
\sum_{m \geq 1}\left|c_{m}\right|<\infty
$$

and let $\left\{x_{m} ; m \geq 1\right\} \subset[a, b]$. Then

$$
\begin{aligned}
& \left|\sum_{m \geq 1} c_{m} f\left(x_{m}\right)-\sum_{m \geq 1} \sum_{k=1}^{n} c_{m} \frac{\left(x_{m}-b\right)^{k-1}}{(k-1)!} f^{(k-1)}(b)\right| \\
& \leq \frac{1}{(n-1)!} \bigvee_{a}^{b}\left(f^{(n-1)}\right) \sum_{m \geq 1}\left|c_{m}\right|\left(b-x_{m}\right)^{n-1} \\
& \leq \frac{(b-a)^{n-1}}{(n-1)!} \bigvee_{a}^{b}\left(f^{(n-1)}\right) \sum_{m \geq 1}\left|c_{m}\right|
\end{aligned}
$$

Proof. Apply Corollary 3.14 for the discrete measure $\mu=\sum_{m \geq 1} c_{m} \delta_{x_{m}}$.
Theorem 3.17. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n)} \in L_{p}[a, b]$ for some $n \geq 1$. Then for every μ-harmonic sequence $\left(P_{n}, n \geq 1\right)$ we have

$$
\left|\int_{[a, b]} f(t) d \mu(t)-\mu(\{a\}) f(a)-S_{n}\right| \leq\left\|P_{n}\right\|_{q}\left\|f^{(n)}\right\|_{p},
$$

where $p, q \in[1, \infty]$ and $1 / p+1 / q=1$.
Proof. By Theorem 2.3 and the Hölder inequality we have

$$
\begin{aligned}
\left|R_{n}\right| & =\left|\int_{[a, b]} P_{n}(t) d f^{(n-1)}(t)\right| \\
& =\left|\int_{[a, b]} P_{n}(t) f^{(n)}(t) d t\right| \\
& \leq\left(\int_{a}^{b}\left|P_{n}(t)\right|^{q} d t\right)^{\frac{1}{q}}\left(\int_{a}^{b}\left|f^{(n)}(t)\right|^{p} d t\right)^{\frac{1}{p}} \\
& =\left\|P_{n}\right\|_{q}\left\|f^{(n)}\right\|_{p} .
\end{aligned}
$$

Remark 3.18. We see that the inequality of the theorem above is a generalization of inequality (1.2).

Corollary 3.19. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n)} \in L_{p}[a, b]$ for some $n \geq 1$, and $\mu \in$ $M[a, b]$. Then

$$
\begin{aligned}
\left|\int_{[a, b]} f(t) d \mu(t)-\check{S}_{n}\right| & \leq\left\|\check{\mu}_{n}\right\|_{q}\left\|f^{(n)}\right\|_{p} \\
& \leq \frac{(b-a)^{n-1+1 / q}}{(n-1)![(n-1) q+1]^{1 / q}}\|\mu\|\left\|f^{(n)}\right\|_{p}
\end{aligned}
$$

where $p, q \in[1, \infty]$ and $1 / p+1 / q=1$.
Proof. Apply the theorem above for the μ-harmonic sequence $\left(\check{\mu}_{n}, n \geq 1\right)$.
Corollary 3.20. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n)} \in L_{p}[a, b]$, for some $n \geq 1$. Further, let $\left(c_{m}, m \geq 1\right)$ be a sequence in \mathbb{R} such that

$$
\sum_{m \geq 1}\left|c_{m}\right|<\infty
$$

and let $\left\{x_{m} ; m \geq 1\right\} \subset[a, b]$. Then

$$
\begin{aligned}
& \left|\sum_{m \geq 1} c_{m} f\left(x_{m}\right)-\sum_{m \geq 1} \sum_{k=1}^{n} c_{m} \frac{\left(x_{m}-b\right)^{k-1}}{(k-1)!} f^{(k-1)}(b)\right| \\
& \leq \frac{\left\|f^{(n)}\right\|_{p}}{(n-1)![(n-1) q+1]^{1 / q}} \sum_{m \geq 1}\left|c_{m}\right|\left(b-x_{m}\right)^{n-1+1 / q} \\
& \leq \frac{(b-a)^{n-1+1 / q}\left\|f^{(n)}\right\|_{p}}{(n-1)![(n-1) q+1]^{1 / q}} \sum_{m \geq 1}\left|c_{m}\right|
\end{aligned}
$$

where $p, q \in[1, \infty]$ and $1 / p+1 / q=1$.
Proof. Apply the theorem above for the discrete measure $\mu=\sum_{m \geq 1} c_{m} \delta_{x_{m}}$.

4. Some Grüss-type Inequalities

Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n)} \in L_{\infty}[a, b]$, for some $n \geq 1$. Then

$$
m_{n} \leq f^{(n)}(t) \leq M_{n}, \quad t \in[a, b], \text { a.e. }
$$

for some real constants m_{n} and M_{n}.
Theorem 4.1. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n)} \in L_{\infty}[a, b]$, for some $n \geq 1$. Further, let $\left(P_{k}, k \geq 1\right)$ be a μ-harmonic sequence such that

$$
P_{n+1}(a)=P_{n+1}(b),
$$

for that particular n. Then

$$
\left|\int_{[a, b]} f(t) d \mu(t)-\mu(\{a\}) f(a)-S_{n}\right| \leq \frac{M_{n}-m_{n}}{2} \int_{a}^{b}\left|P_{n}(t)\right| d t
$$

Proof. Apply Theorem 2.3 for the special case when $f^{(n-1)}$ is absolutely continuous and its derivative $f^{(n)}$, existing a.e., is bounded a.e. Define the measure ν_{n} by

$$
d \nu_{n}(t)=-P_{n}(t) d t
$$

Then

$$
\nu_{n}([a, b])=-\int_{a}^{b} P_{n}(t) d t=P_{n+1}(a)-P_{n+1}(b)=0
$$

which means that ν_{n} is balanced. Further,

$$
\left\|\nu_{n}\right\|=\int_{a}^{b}\left|P_{n}(t)\right| d t
$$

and by [1, Theorem 2]

$$
\begin{aligned}
\left|R_{n}\right| & =\left|\int_{a}^{b} P_{n}(t) f^{(n)}(t) d t\right| \\
& \leq \frac{M_{n}-m_{n}}{2}\left\|\nu_{n}\right\| \\
& =\frac{M_{n}-m_{n}}{2} \int_{a}^{b}\left|P_{n}(t)\right| d t,
\end{aligned}
$$

which proves our assertion.
Corollary 4.2. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n)} \in L_{\infty}[a, b]$, for some $n \geq 1$. Then for every $(n+1)$-balanced measure $\mu \in M[a, b]$ we have

$$
\begin{aligned}
\left|\int_{[a, b]} f(t) d \mu(t)-\check{S}_{n}\right| & \leq \frac{M_{n}-m_{n}}{2} \int_{a}^{b}\left|\check{\mu}_{n}(t)\right| d t \\
& \leq \frac{M_{n}-m_{n}}{2} \frac{(b-a)^{n}}{n!}\|\mu\|,
\end{aligned}
$$

where \check{S}_{n} is from Corollary 2.5
Proof. Apply Theorem 4.1 for the μ-harmonic sequence ($\check{\mu}_{k}, k \geq 1$) and note that the condition $P_{n+1}(a)=P_{n+1}(b)$ reduces to $\check{\mu}_{n+1}(b)=0$, which means that μ is $(n+1)$-balanced.

Corollary 4.3. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n)} \in L_{\infty}[a, b]$ for some $n \geq 1$. Further, let $\left(c_{m}, m \geq 1\right)$ be a sequence in \mathbb{R} such that

$$
\sum_{m \geq 1}\left|c_{m}\right|<\infty
$$

and let $\left\{x_{m} ; m \geq 1\right\} \subset[a, b]$ satisfy the condition

$$
\sum_{m \geq 1} c_{m}\left(b-x_{m}\right)^{n}=0 .
$$

Then

$$
\begin{aligned}
& \left|\sum_{m \geq 1} c_{m} f\left(x_{m}\right)-\sum_{m \geq 1} \sum_{k=1}^{n} c_{m} \frac{\left(x_{m}-b\right)^{k-1}}{(k-1)!} f^{(k-1)}(b)\right| \\
& \leq \frac{M_{n}-m_{n}}{2 n!} \sum_{m \geq 1}\left|c_{m}\right|\left(b-x_{m}\right)^{n} \\
& \leq \frac{M_{n}-m_{n}}{2 n!}(b-a)^{n} \sum_{m \geq 1}\left|c_{m}\right| .
\end{aligned}
$$

Proof. Apply Corollary 4.2 for the discrete measure $\mu=\sum_{m \geq 1} c_{m} \delta_{x_{m}}$.

Corollary 4.4. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n)} \in L_{\infty}[a, b]$ for some $n \geq 1$. Then for every $\mu \in M[a, b]$, such that all k-moments of μ are zero for $k=0, \ldots, n$, we have

$$
\begin{aligned}
\left|\int_{[a, b]} f(t) d \mu(t)\right| & \leq \frac{M_{n}-m_{n}}{2} \int_{a}^{b}\left|\check{\mu}_{n}(t)\right| d t \\
& \leq \frac{M_{n}-m_{n}}{2} \frac{(b-a)^{n}}{n!}\|\mu\|
\end{aligned}
$$

Proof. By [1, Theorem 5], the condition $m_{k}(\mu)=0, k=0, \ldots, n$ is equivalent to $\check{\mu}_{k}(b)=0$, $k=1, \ldots, n+1$. Apply Corollary 4.2 and note that in this case $\check{S}_{n}=0$.
Corollary 4.5. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n)} \in L_{\infty}[a, b]$ for some $n \geq 1$. Further, let $\left(c_{m}, m \geq 1\right)$ be a sequence in \mathbb{R} such that

$$
\sum_{m \geq 1}\left|c_{m}\right|<\infty
$$

and let $\left\{x_{m} ; m \geq 1\right\} \subset[a, b]$. If

$$
\sum_{m \geq 1} c_{m}=\sum_{m \geq 1} c_{m} x_{m}=\cdots=\sum_{m \geq 1} c_{m} x_{m}^{n}=0
$$

then

$$
\begin{aligned}
\left|\sum_{m \geq 1} c_{m} f\left(x_{m}\right)\right| & \leq \frac{M_{n}-m_{n}}{2 n!} \sum_{m \geq 1}\left|c_{m}\right|\left(b-x_{m}\right)^{n} \\
& \leq \frac{M_{n}-m_{n}}{2 n!}(b-a)^{n} \sum_{m \geq 1}\left|c_{m}\right|
\end{aligned}
$$

Proof. Apply Corollary 4.4 for the discrete measure $\mu=\sum_{m \geq 1} c_{m} \delta_{x_{m}}$.

References

[1] A. ČIVLJAK, LJ. DEDIĆ AND M. MATIĆ, Euler-Grüss type inequalities involving measures, submitted.
[2] A.ČIVLJAK, LJ. DEDIĆ AND M. MATIĆ, Euler harmonic identities for measures, Nonlinear Functional Anal. \& Applics., 12(1) (2007).
[3] Lj. DEDIĆ, M. MATIĆ, J. PEČARIĆ and A. AGLIĆ ALJINOVIĆ, On weighted Euler harmonic identities with applications, Math. Inequal. \& Appl., 8(2), (2005), 237-257.
[4] S.S. DRAGOMIR, The generalised integration by parts formula for Appell sequences and related results, RGMIA Res. Rep. Coll., 5(E) (2002), Art. 18. [ONLINE: http://rgmia.vu.edu.au/ v5 (E).html].
[5] P. CERONE, Generalised Taylor's formula with estimates of the remainder, RGMIA Res. Rep. Coll., 5(2) (2002), Art. 8. [ONLINE: http://rgmia.vu.edu.au/v5n2.html].
[6] P. CERONE, Perturbated generalised Taylor's formula with sharp bounds, RGMIA Res. Rep. Coll., 5(2) (2002), Art. 6. [ONLINE: http://rgmia.vu.edu.au/v5n2.html].
[7] S.S. DRAGOMIR AND A. SOFO, A perturbed version of the generalised Taylor's formula and applications, RGMIA Res. Rep. Coll., 5(2) (2002), Art. 16. [ONLINE: http://rgmia.vu.edu. au/v5n2.html.

