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1. Introduction

In the paper [4], S.S. Dragomir introduced the notion of aw0-Appell type sequence
of functions as a sequencew0, w1, . . ., wn, for n ≥ 1, of real absolutely continuous
functions defined on[a, b], such that

w′
k = wk−1, a.e. on[a, b], k = 1, . . . , n.

For such a sequence the author proved a generalisation of Mitrinović-Pěcaríc integration-
by-parts formula

(1.1)
∫ b

a

w0(t)g(t)dt = An + Bn,

where

An =
n∑

k=1

(−1)k−1
[
wk(b)g

(k−1)(b)− wk(a)g(k−1)(a)
]

and

Bn = (−1)n

∫ b

a

wn(t)g(n)(t)dt,

for everyg : [a, b]→R such thatg(n−1) is absolutely continuous on[a, b] andwng
(n) ∈

L1[a, b]. Using identity (1.1) the author proved the following inequality

(1.2)

∣∣∣∣∫ b

a

w0(t)g(t)dt− An

∣∣∣∣ ≤ ‖wn‖p ‖g
(n)‖q,

for wn ∈ Lp[a, b], g(n) ∈ Lp[a, b], wherep, q ∈ [1,∞] and1/p + 1/q = 1, giving
explicitly some interesting special cases. For some similar inequalities, see also [5],
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[6] and [7]. The aim of this paper is to give a generalization of the integration-by-
parts formula (1.1), by replacing thew0-Appell type sequence of functions by a more
general sequence of functions, and to generalize inequality (1.2), as well as to prove
some related inequalities.
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2. Integration-by-parts Formula for Measures

For a, b ∈ R, a < b, let C[a, b] be the Banach space of all continuous functions
f : [a, b]→R with the max norm, andM [a, b] the Banach space of all real Borel
measures on[a, b] with the total variation norm. Forµ ∈ M [a, b] define the function
µ̌n : [a, b]→R, n ≥ 1, by

µ̌n(t) =
1

(n− 1)!

∫
[a,t]

(t− s)n−1dµ(s).

Note that

µ̌n(t) =
1

(n− 2)!

∫ t

a

(t− s)n−2µ̌1(s)ds, n ≥ 2

and

|µ̌n(t)| ≤ (t− a)n−1

(n− 1)!
‖µ‖ , t ∈ [a, b], n ≥ 1.

The functionµ̌n is differentiable,̌µ′n(t) = µ̌n−1(t) andµ̌n(a) = 0, for everyn ≥ 2,
while for n = 1

µ̌1(t) =

∫
[a,t]

dµ(s) = µ([a, t]),

which means thaťµ1(t) is equal to the distribution function ofµ. A sequence of
functionsPn : [a, b] → R, n ≥ 1, is called aµ-harmonic sequence of functions on
[a, b] if

P ′
n(t) = Pn−1(t), n ≥ 2; P1(t) = c + µ̌1(t), t ∈ [a, b],

for somec ∈ R. The sequence(µ̌n, n ≥ 1) is an example of aµ-harmonic sequence
of functions on[a, b]. The notion of aµ-harmonic sequence of functions has been
introduced in [2]. See also [1].
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Remark1. Let w0 : [a, b] → R be an absolutely integrable function and letµ ∈
M [a, b] be defined by

dµ(t) = w0(t)dt.

If (Pn, n ≥ 1) is aµ-harmonic sequence of functions on[a, b], thenw0, P1, . . . , Pn

is aw0-Appell type sequence of functions on[a, b].

Forµ ∈ M [a, b] let µ = µ+−µ− be the Jordan-Hahn decomposition ofµ, where
µ+ andµ− are orthogonal and positive measures. Then we have|µ| = µ+ + µ− and

‖µ‖ = |µ| ([a, b]) = ‖µ+‖+ ‖µ−‖ = µ+([a, b]) + µ−([a, b]).

The measureµ ∈ M [a, b] is said to be balanced ifµ([a, b]) = 0. This is equivalent to

‖µ+‖ = ‖µ−‖ =
1

2
‖µ‖ .

Measureµ ∈ M [a, b] is calledn-balanced ifµ̌n (b) = 0. We see that a1-balanced
measure is the same as a balanced measure. We also write

mk(µ) =

∫
[a,b]

tkdµ(t), k ≥ 0

for thek-th moment ofµ.

Lemma 2.1. For everyf ∈ C[a, b] andµ ∈ M [a, b] we have∫
[a,b]

f(t)dµ̌1(t) =

∫
[a,b]

f(t)dµ(t)− µ({a})f(a).

Proof. DefineI, J : C[a, b]×M [a, b] → R by

I(f, µ) =

∫
[a,b]

f(t)dµ̌1(t)
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and

J(f, µ) =

∫
[a,b]

f(t)dµ(t)− µ({a})f(a).

ThenI andJ are continuous bilinear functionals, since

|I(f, µ)| ≤ ‖f‖ ‖µ‖ , |J(f, µ)| ≤ 2 ‖f‖ ‖µ‖ .

Let us prove thatI(f, µ) = J(f, µ) for every f ∈ C[a, b] and every discrete
measureµ ∈ M [a, b].

Forx ∈ [a, b] let µ = δx be the Dirac measure atx, i.e. the measure defined by∫
[a,b]

f(t)dδx(t) = f(x).

If a < x ≤ b, then

µ̌1(t) = δx([a, t]) =

{
0, a ≤ t < x

1, x ≤ t ≤ b

and by a simple calculation we have

I(f, δx) =

∫
[a,b]

f(t)dµ̌1(t) = f(x) =
∫

[a,b]

f(t)dδx(t)− 0

=
∫

[a,b]

f(t)dδx(t)− δx({a})f(a) = J(f, δx).

Similarly, if x = a, then

µ̌1(t) = δa([a, t]) = 1, a ≤ t ≤ b
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and by a similar calculation we have

I(f, δa) =

∫
[a,b]

f(t)dµ̌1(t) = 0 = f(a)− f(a)

=
∫

[a,b]

f(t)dδa(t)− δa({a})f(a) = J(f, δx).

Therefore, for everyf ∈ C[a, b] and everyx ∈ [a, b] we haveI(f, δx) = J(f, δx).
Every discrete measureµ ∈ M [a, b] has the form

µ =
∑
k≥1

ckδxk
,

where(ck, k ≥ 1) is a sequence inR such that∑
k≥1

|ck| < ∞,

and{xk; k ≥ 1} is a subset of[a, b].
By using the continuity ofI and J, for every f ∈ C[a, b] and every discrete

measureµ ∈ M [a, b] we have

I(f, µ) = I

(
f,
∑
k≥1

ckδxk

)
=
∑
k≥1

ckI(f, δxk
)

=
∑
k≥1

ckJ(f, δxk
) = J

(
f,
∑
k≥1

ckδxk

)
= J(f, µ).
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Since the Banach subspaceM [a, b]d of all discrete measures is weakly∗ dense
in M [a, b] and the functionalsI(f, ·) andJ(f, ·) are also weakly∗ continuous we
conclude thatI(f, µ) = J(f, µ) for everyf ∈ C[a, b] andµ ∈ M [a, b].

Theorem 2.2.Letf : [a, b] → R be such thatf (n−1) has bounded variation for some
n ≥ 1. Then for everyµ-harmonic sequence(Pn, n ≥ 1) we have

(2.1)
∫

[a,b]

f(t)dµ(t) = µ({a})f(a) + Sn + Rn,

where

(2.2) Sn =
n∑

k=1

(−1)k−1
[
Pk(b)f

(k−1)(b)− Pk(a)f (k−1)(a)
]

and

(2.3) Rn = (−1)n

∫
[a,b]

Pn(t)df (n−1)(t).

Proof. By partial integration, forn ≥ 2, we have

Rn = (−1)n

∫
[a,b]

Pn(t)df (n−1)(t)

= (−1)n
[
Pn(b)f (n−1)(b)− Pn(a)f (n−1)(a)

]
− (−1)n

∫
[a,b]

Pn−1(t)f
(n−1)(t)dt

= (−1)n
[
Pn(b)f (n−1)(b)− Pn(a)f (n−1)(a)

]
+ Rn−1.
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By Lemma2.1we have

R1 = −
∫

[a,b]

P1(t)df(t)

= − [P1(b)f(b)− Pn(a)f(a)] +

∫
[a,b]

f(t)dP1(t)

= − [P1(b)f(b)− Pn(a)f(a)] +

∫
[a,b]

f(t)dµ̌1(t)

= − [P1(b)f(b)− Pn(a)f(a)] +

∫
[a,b]

f(t)dµ(t)− µ({a})f(a).

Therefore, by iteration, we have

Rn =
n∑

k=1

(−1)k
[
Pk(b)f

(k−1)(b)− Pk(a)f (k−1)(a)
]
+

∫
[a,b]

f(t)dµ(t)−µ({a})f(a),

which proves our assertion.

Remark2. By Remark1we see that identity (2.1) is a generalization of the integration-
by-parts formula (1.1).

Corollary 2.3. Let f : [a, b] → R be such thatf (n−1) has bounded variation for
somen ≥ 1. Then for everyµ ∈ M [a, b] we have∫

[a,b]

f(t)dµ(t) = Šn + Řn,

where

Šn =
n∑

k=1

(−1)k−1µ̌k(b)f
(k−1)(b)
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and

Řn = (−1)n

∫
[a,b]

µ̌n(t)df (n−1)(t).

Proof. Apply the theorem above for theµ-harmonic sequence(µ̌n, n ≥ 1) and note
thatµ̌n(a) = 0, for n ≥ 2.

Corollary 2.4. Let f : [a, b] → R be such thatf (n−1) has bounded variation for
somen ≥ 1. Then for everyx ∈ [a, b] we have

f(x) =
n∑

k=1

(x− b)k−1

(k − 1)!
f (k−1)(b) + Rn(x),

where

Rn(x) =
(−1)n

(n− 1)!

∫
[x,b]

(t− x)n−1df (n−1)(t).

Proof. Apply Corollary2.3for µ = δx and note that in this case

µ̌k(t) =
(t− x)k−1

(k − 1)!
, x ≤ t ≤ b, and µ̌k(t) = 0, a ≤ t < x,

for k ≥ 1.

Corollary 2.5. Let f : [a, b] → R be such thatf (n−1) has bounded variation for
somen ≥ 1. Further, let(cm, m ≥ 1) be a sequence inR such that∑

m≥1

|cm| < ∞
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and let{xm; m ≥ 1} ⊂ [a, b]. Then∑
m≥1

cmf(xm) =
∑
m≥1

n∑
k=1

cm
(xm − b)k−1

(k − 1)!
f (k−1)(b) +

∑
m≥1

cmRn(xm),

whereRn(xm) is from Corollary2.4.

Proof. Apply Corollary2.3for the discrete measureµ =
∑

m≥1 cmδxm.
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3. Some Ostrowski-type Inequalities

In this section we shall use the same notations as above.

Theorem 3.1. Let f : [a, b] → R be such thatf (n−1) is L-Lipschitzian for some
n ≥ 1. Then for everyµ-harmonic sequence(Pn, n ≥ 1) we have

(3.1)

∣∣∣∣∫
[a,b]

f(t)dµ(t)− µ({a})f(a)− Sn

∣∣∣∣ ≤ L

∫ b

a

|Pn(t)| dt,

whereSn is defined by (2.2).

Proof. By Theorem2.2we have

|Rn| =
∣∣∣∣∫

[a,b]

Pn(t)df (n−1)(t)

∣∣∣∣ ≤ L

∫ b

a

|Pn(t)| dt,

which proves our assertion.

Corollary 3.2. If f is L-Lipschitzian, then for everyc ∈ R andµ ∈ M [a, b] we have∣∣∣∣∫
[a,b]

f(t)dµ(t)− µ([a, b])f(b)− c [f(b)− f(a)]

∣∣∣∣ ≤ L

∫ b

a

|c + µ̌1(t)| dt.

Proof. Putn = 1 in the theorem above and note thatP1(t) = c + µ̌1(t), for some
c ∈ R.

Corollary 3.3. If f is L-Lipschitzian, then for everyc ≥ 0 andµ ≥ 0 we have∣∣∣∣∫
[a,b]

f(t)dµ(t)− µ([a, b])f(b)− c [f(b)− f(a)]

∣∣∣∣
≤ L [c(b− a) + µ̌2(b)]

≤ L(b− a)(c + ‖µ‖).
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Proof. Apply Corollary3.2and note that in this case∫ b

a

|c + µ̌1(t)| dt =

∫ b

a

[c + µ̌1(t)] dt

= c(b− a) + µ̌2(b)

≤ c(b− a) + (b− a) ‖µ‖
= (b− a)(c + ‖µ‖).

Corollary 3.4. Letf beL-Lipschitzian,(cm, m ≥ 1) a sequence in[0,∞) such that∑
m≥1

cm < ∞,

and let{xm; m ≥ 1} ⊂ [a, b]. Then for everyc ≥ 0 we have∣∣∣∣∣∑
m≥1

cm [f(b)− f(xm)] + c [f(b)− f(a)]

∣∣∣∣∣ ≤ L

[
c(b− a) +

∑
m≥1

cm(b− xm)

]

≤ L(b− a)

[
c +

∑
m≥1

cm

]
.

Proof. Apply Corollary3.3for the discrete measureµ =
∑

m≥1 cmδxm .

Corollary 3.5. If f is L-Lipschitzian andµ ≥ 0, then∣∣∣∣∫
[a,b]

f(t)dµ(t)− µ([a, x])f(a)− µ((x, b])f(b)

∣∣∣∣
≤ L [(2x− a− b)µ̌1(x)− 2µ̌2(x) + µ̌2(b)] ,
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for everyx ∈ [a, b].

Proof. Apply Corollary3.2for c = −µ̌1(x). Then

c + µ̌1(b) = µ((x, b]), µ̌1(x) = µ([a, x])

and∫ b

a

|−µ̌1(x) + µ̌1(t)| dt =

∫ x

a

(µ̌1(x)− µ̌1(t)) dt +

∫ b

x

(µ̌1(t)− µ̌1(x)) dt

= (2x− a− b)µ̌1(x)− 2µ̌2(x) + µ̌2(b).

Corollary 3.6. Let f : [a, b] → R be such thatf (n−1) is L-Lipschitzian for some
n ≥ 1. Then for everyµ ∈ M [a, b] we have∣∣∣∣∫

[a,b]

f(t)dµ(t)− Šn

∣∣∣∣ ≤ L

∫ b

a

|µ̌n(t)| dt ≤ (b− a)n

n!
L ‖µ‖ ,

whereŠn is from Corollary2.3.

Proof. Apply the theorem above for theµ-harmonic sequence(µ̌n, n ≥ 1).

Corollary 3.7. Let f : [a, b] → R be such thatf (n−1) is L-Lipschitzian for some
n ≥ 1. Then for everyx ∈ [a, b] we have∣∣∣∣∣f(x)−

n∑
k=1

(x− b)k−1

(k − 1)!
f (k−1)(b)

∣∣∣∣∣ ≤ (b− x)n

n!
L.
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Proof. Apply Corollary3.6for µ = δx and note that in this case

µ̌k(t) =
(t− x)k−1

(k − 1)!
, x ≤ t ≤ b, and µ̌k(t) = 0, a ≤ t < x,

for k ≥ 1.

Corollary 3.8. Let f : [a, b] → R be such thatf (n−1) is L-Lipschitzian, for some
n ≥ 1. Further, let(cm, m ≥ 1) be a sequence inR such that∑

m≥1

|cm| < ∞

and let{xm; m ≥ 1} ⊂ [a, b]. Then∣∣∣∣∣∑
m≥1

cmf(xm)−
∑
m≥1

n∑
k=1

cm
(xm − b)k−1

(k − 1)!
f (k−1)(b)

∣∣∣∣∣
≤ L

n!

∑
m≥1

|cm| (b− xm)n

≤ L

n!
(b− a)n

∑
m≥1

|cm| .

Proof. Apply Corollary3.6for the discrete measureµ =
∑

m≥1 cmδxm.

Theorem 3.9.Letf : [a, b] → R be such thatf (n−1) has bounded variation for some
n ≥ 1. Then for everyµ-harmonic sequence(Pn, n ≥ 1) we have∣∣∣∣∫

[a,b]

f(t)dµ(t)− µ({a})f(a)− Sn

∣∣∣∣ ≤ max
t∈[a,b]

|Pn(t)|
b∨
a

(f (n−1)),
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where
∨b

a(f
(n−1)) is the total variation off (n−1) on [a, b].

Proof. By Theorem2.2we have

|Rn| =
∣∣∣∣∫

[a,b]

Pn(t)df (n−1)(t)

∣∣∣∣ ≤ max
t∈[a,b]

|Pn(t)|
b∨
a

(f (n−1)),

which proves our assertion.

Corollary 3.10. If f is a function of bounded variation, then for everyc ∈ R and
µ ∈ M [a, b] we have∣∣∣∣∫

[a,b]

f(t)dµ(t)− µ([a, b])f(b)− c [f(b)− f(a)]

∣∣∣∣ ≤ max
t∈[a,b]

|c + µ̌1(t)|
b∨
a

(f).

Proof. Putn = 1 in the theorem above.

Corollary 3.11. If f is a function of bounded variation, then for everyc ≥ 0 and
µ ≥ 0 we have∣∣∣∣∫

[a,b]

f(t)dµ(t)− µ([a, b])f(b)− c [f(b)− f(a)]

∣∣∣∣ ≤ [c + ‖µ‖]
b∨
a

(f).

Proof. In this case we have

max
t∈[a,b]

|c + µ̌1(t)| = c + µ̌1(b) = c + ‖µ‖ .
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Corollary 3.12. Let f be a function of bounded variation,(cm, m ≥ 1) a sequence
in [0,∞) such that ∑

m≥1

cm < ∞

and let{xm; m ≥ 1} ⊂ [a, b]. Then for everyc ≥ 0 we have∣∣∣∣∣∑
m≥1

cm [f(b)− f(xm)] + c [f(b)− f(a)]

∣∣∣∣∣ ≤
[
c +

∑
m≥1

cm

]
b∨
a

(f).

Proof. Apply Corollary3.11for the discrete measureµ =
∑

m≥1 cmδxm .

Corollary 3.13. If f is a function of bounded variation andµ ≥ 0, then we have∣∣∣∣∫
[a,b]

f(t)dµ(t)− µ([a, x])f(a)− µ((x, b])f(b)

∣∣∣∣
≤ 1

2
[µ̌1(b)− µ̌1(a) + |µ̌1(a) + µ̌1(b)− 2µ̌1(x)|]

b∨
a

(f).

Proof. Apply Corollary3.11for c = −µ̌1(x). Then

max
t∈[a,b]

|c + µ̌1(t)| = max
t∈[a,b]

|µ̌1(t)− µ̌1(x)|

= max{µ̌1(x)− µ̌1(a), µ̌1(b)− µ̌1(x)}

=
1

2
[µ̌1(b)− µ̌1(a) + |µ̌1(a) + µ̌1(b)− 2µ̌1(x)|] .
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Corollary 3.14. Let f : [a, b] → R be such thatf (n−1) has bounded variation for
somen ≥ 1. Then for everyµ ∈ M [a, b] we have∣∣∣∣∫

[a,b]

f(t)dµ(t)− Šn

∣∣∣∣ ≤ max
t∈[a,b]

|µ̌n(t)|
b∨
a

(f (n−1))

≤ (b− a)n−1

(n− 1)!
‖µ‖

b∨
a

(f (n−1)),

whereŠn is from Corollary2.3.

Proof. Apply the theorem above for theµ-harmonic sequence(µ̌n, n ≥ 1).

Corollary 3.15. Let f : [a, b] → R be such thatf (n−1) has bounded variation for
somen ≥ 1. Then for everyx ∈ [a, b] we have∣∣∣∣∣f(x)−

n∑
k=1

(x− b)k−1

(k − 1)!
f (k−1)(b)

∣∣∣∣∣ ≤ (b− x)n−1

(n− 1)!

b∨
a

(f (n−1)).

Proof. Apply Corollary3.14for µ = δx and note that in this case

max
t∈[a,b]

|µ̌n(t)| = (b− x)n−1

(n− 1)!
.

Corollary 3.16. Let f : [a, b] → R be such thatf (n−1) has bounded variation for
somen ≥ 1. Further, let(cm, m ≥ 1) be a sequence inR such that∑

m≥1

|cm| < ∞
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and let{xm; m ≥ 1} ⊂ [a, b]. Then∣∣∣∣∣∑
m≥1

cmf(xm)−
∑
m≥1

n∑
k=1

cm
(xm − b)k−1

(k − 1)!
f (k−1)(b)

∣∣∣∣∣
≤ 1

(n− 1)!

b∨
a

(f (n−1))
∑
m≥1

|cm| (b− xm)n−1

≤ (b− a)n−1

(n− 1)!

b∨
a

(f (n−1))
∑
m≥1

|cm|

Proof. Apply Corollary3.14for the discrete measureµ =
∑

m≥1 cmδxm .

Theorem 3.17.Letf : [a, b] → R be such thatf (n) ∈ Lp[a, b] for somen ≥ 1. Then
for everyµ-harmonic sequence(Pn, n ≥ 1) we have∣∣∣∣∫

[a,b]

f(t)dµ(t)− µ({a})f(a)− Sn

∣∣∣∣ ≤ ‖Pn‖q ‖f
(n)‖p,

wherep, q ∈ [1,∞] and1/p + 1/q = 1.

Proof. By Theorem2.2and the Hölder inequality we have

|Rn| =
∣∣∣∣∫

[a,b]

Pn(t)df (n−1)(t)

∣∣∣∣ =

∣∣∣∣∫
[a,b]

Pn(t)f (n)(t)dt

∣∣∣∣
≤
(∫ b

a

|Pn(t)|q dt

) 1
q
(∫ b

a

∣∣f (n)(t)
∣∣p dt

) 1
p

= ‖Pn‖q ‖f
(n)‖p.

http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au


Integration-by-parts Formula
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Remark3. We see that the inequality of the theorem above is a generalization of
inequality (1.2).

Corollary 3.18. Letf : [a, b] → R be such thatf (n) ∈ Lp[a, b] for somen ≥ 1, and
µ ∈ M [a, b]. Then∣∣∣∣∫

[a,b]

f(t)dµ(t)− Šn

∣∣∣∣ ≤ ‖µ̌n‖q ‖f
(n)‖p

≤ (b− a)n−1+1/q

(n− 1)! [(n− 1)q + 1]1/q
‖µ‖ ‖f (n)‖p,

wherep, q ∈ [1,∞] and1/p + 1/q = 1.

Proof. Apply the theorem above for theµ-harmonic sequence(µ̌n, n ≥ 1).

Corollary 3.19. Let f : [a, b] → R be such thatf (n) ∈ Lp[a, b], for somen ≥ 1.
Further, let(cm, m ≥ 1) be a sequence inR such that∑

m≥1

|cm| < ∞

and let{xm; m ≥ 1} ⊂ [a, b]. Then∣∣∣∣∣∑
m≥1

cmf(xm)−
∑
m≥1

n∑
k=1

cm
(xm − b)k−1

(k − 1)!
f (k−1)(b)

∣∣∣∣∣
≤ ‖f (n)‖p

(n− 1)! [(n− 1)q + 1]1/q

∑
m≥1

|cm| (b− xm)n−1+1/q

≤ (b− a)n−1+1/q‖f (n)‖p

(n− 1)! [(n− 1)q + 1]1/q

∑
m≥1

|cm| ,

wherep, q ∈ [1,∞] and1/p + 1/q = 1.

Proof. Apply the theorem above for the discrete measureµ =
∑

m≥1 cmδxm .
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4. Some Grüss-type Inequalities

Let f : [a, b] → R be such thatf (n) ∈ L∞[a, b], for somen ≥ 1. Then

mn ≤ f (n)(t) ≤ Mn, t ∈ [a, b], a.e.

for some real constantsmn andMn.

Theorem 4.1. Let f : [a, b] → R be such thatf (n) ∈ L∞[a, b], for somen ≥ 1.
Further, let(Pk, k ≥ 1) be aµ-harmonic sequence such that

Pn+1 (a) = Pn+1 (b) ,

for that particularn. Then∣∣∣∣∫
[a,b]

f(t)dµ(t)− µ({a})f(a)− Sn

∣∣∣∣ ≤ Mn −mn

2

∫ b

a

|Pn(t)| dt.

Proof. Apply Theorem2.2for the special case whenf (n−1) is absolutely continuous
and its derivativef (n), existinga.e., is boundeda.e. Define the measureνn by

dνn(t) = −Pn (t) dt.

Then

νn([a, b]) = −
∫ b

a

Pn (t) dt = Pn+1 (a)− Pn+1 (b) = 0,

which means thatνn is balanced. Further,

‖νn‖ =

∫ b

a

|Pn (t)| dt
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and by [1, Theorem 2]

|Rn| =
∣∣∣∣∫ b

a

Pn (t) f (n)(t)dt

∣∣∣∣
≤ Mn −mn

2
‖νn‖

=
Mn −mn

2

∫ b

a

|Pn(t)| dt,

which proves our assertion.

Corollary 4.2. Let f : [a, b] → R be such thatf (n) ∈ L∞[a, b], for somen ≥ 1.
Then for every(n + 1)-balanced measureµ ∈ M [a, b] we have∣∣∣∣∫

[a,b]

f(t)dµ(t)− Šn

∣∣∣∣ ≤ Mn −mn

2

∫ b

a

|µ̌n(t)| dt

≤ Mn −mn

2

(b− a)n

n!
‖µ‖ ,

whereŠn is from Corollary2.3.

Proof. Apply Theorem4.1 for theµ-harmonic sequence(µ̌k, k ≥ 1) and note that
the conditionPn+1 (a) = Pn+1 (b) reduces tǒµn+1 (b) = 0, which means thatµ is
(n + 1)-balanced.

Corollary 4.3. Let f : [a, b] → R be such thatf (n) ∈ L∞[a, b] for somen ≥ 1.
Further, let(cm, m ≥ 1) be a sequence inR such that∑

m≥1

|cm| < ∞
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A. Čivljak, Lj. Dedić and M. Matić

vol. 8, iss. 4, art. 93, 2007

Title Page

Contents

JJ II

J I

Page 24 of 26

Go Back

Full Screen

Close

and let{xm; m ≥ 1} ⊂ [a, b] satisfy the condition∑
m≥1

cm(b− xm)n = 0.

Then ∣∣∣∣∣∑
m≥1

cmf(xm)−
∑
m≥1

n∑
k=1

cm
(xm − b)k−1

(k − 1)!
f (k−1)(b)

∣∣∣∣∣
≤ Mn −mn

2n!

∑
m≥1

|cm| (b− xm)n

≤ Mn −mn

2n!
(b− a)n

∑
m≥1

|cm| .

Proof. Apply Corollary4.2for the discrete measureµ =
∑

m≥1 cmδxm .

Corollary 4.4. Letf : [a, b] → R be such thatf (n) ∈ L∞[a, b] for somen ≥ 1. Then
for everyµ ∈ M [a, b], such that allk-moments ofµ are zero fork = 0, . . . , n, we
have ∣∣∣∣∫

[a,b]

f(t)dµ(t)

∣∣∣∣ ≤ Mn −mn

2

∫ b

a

|µ̌n(t)| dt

≤ Mn −mn

2

(b− a)n

n!
‖µ‖ .

Proof. By [1, Theorem 5], the conditionmk(µ) = 0, k = 0, . . . , n is equivalent
to µ̌k(b) = 0, k = 1, . . . , n + 1. Apply Corollary 4.2 and note that in this case
Šn = 0.
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Corollary 4.5. Let f : [a, b] → R be such thatf (n) ∈ L∞[a, b] for somen ≥ 1.
Further, let(cm, m ≥ 1) be a sequence inR such that∑

m≥1

|cm| < ∞

and let{xm; m ≥ 1} ⊂ [a, b]. If∑
m≥1

cm =
∑
m≥1

cmxm = · · · =
∑
m≥1

cmxn
m = 0,

then ∣∣∣∣∣∑
m≥1

cmf(xm)

∣∣∣∣∣ ≤ Mn −mn

2n!

∑
m≥1

|cm| (b− xm)n

≤ Mn −mn

2n!
(b− a)n

∑
m≥1

|cm| .

Proof. Apply Corollary4.4for the discrete measureµ =
∑

m≥1 cmδxm .
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