ON AN INTEGRATION-BY-PARTS FORMULA FOR MEASURES

A. ČIVLJAK

American College of Management \& Technology Rochester Institute of Technology
1Don Frana Bulica 6, 20000 Dubrovnik, Croatia
EMail: acivljak@acmt.hr

Lj. DEDIĆ AND M. MATIĆ
Department of Mathematics
Fac. of Natural Sciences, Mathematics \& Education 1060 University of Split
Teslina 12, 21000 Split, Croatia
EMail: \{ljuban,mmatic\}@pmfst.hr

Integration-by-parts Formula
A. Čivljak, Lij. Dedić and M. Matić vol. 8, iss. 4, art. 93, 2007

Title Page
Contents

| Page 1 of 26 |
| :---: | :---: |
| Go Back |
| Full Screen |
| Close |

journal of inequalities in pure and applied mathematics
issn: 1443-5756

Contents

1 Introduction 3
2 Integration-by-parts Formula for Measures 5
3 Some Ostrowski-type Inequalities 13
4 Some Griuss-type Inequalities 2222

1. Introduction

In the paper [4], S.S. Dragomir introduced the notion of a w_{0}-Appell type sequence of functions as a sequence $w_{0}, w_{1}, \ldots, w_{n}$, for $n \geq 1$, of real absolutely continuous functions defined on $[a, b]$, such that

$$
w_{k}^{\prime}=w_{k-1}, \text { a.e. on }[a, b], \quad k=1, \ldots, n .
$$

For such a sequence the author proved a generalisation of Mitrinović-Pečarić integration-by-parts formula

$$
\begin{equation*}
\int_{a}^{b} w_{0}(t) g(t) d t=A_{n}+B_{n} \tag{1.1}
\end{equation*}
$$

where

$$
A_{n}=\sum_{k=1}^{n}(-1)^{k-1}\left[w_{k}(b) g^{(k-1)}(b)-w_{k}(a) g^{(k-1)}(a)\right]
$$

and

$$
B_{n}=(-1)^{n} \int_{a}^{b} w_{n}(t) g^{(n)}(t) d t
$$

for every $g:[a, b] \rightarrow \mathbb{R}$ such that $g^{(n-1)}$ is absolutely continuous on $[a, b]$ and $w_{n} g^{(n)} \in$ $L_{1}[a, b]$. Using identity (1.1) the author proved the following inequality

$$
\begin{equation*}
\left|\int_{a}^{b} w_{0}(t) g(t) d t-A_{n}\right| \leq\left\|w_{n}\right\|_{p}\left\|g^{(n)}\right\|_{q}, \tag{1.2}
\end{equation*}
$$

for $w_{n} \in L_{p}[a, b], g^{(n)} \in L_{p}[a, b]$, where $p, q \in[1, \infty]$ and $1 / p+1 / q=1$, giving explicitly some interesting special cases. For some similar inequalities, see also [5],

Integration-by-parts Formula
A. Čivljak, Lj. Dedić and M. Matić vol. 8, iss. 4, art. 93, 2007

Title Page
Contents

Page 3 of 26

Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
[6] and [7]. The aim of this paper is to give a generalization of the integration-byparts formula (1.1), by replacing the w_{0}-Appell type sequence of functions by a more general sequence of functions, and to generalize inequality (1.2), as well as to prove some related inequalities.

Integration-by-parts Formula
A. Čivljak, Lj. Dedić and M. Matić vol. 8, iss. 4, art. 93, 2007

Title Page
Contents

Page 4 of 26
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Integration-by-parts Formula for Measures

For $a, b \in \mathbb{R}, a<b$, let $C[a, b]$ be the Banach space of all continuous functions $f:[a, b] \rightarrow \mathbb{R}$ with the max norm, and $M[a, b]$ the Banach space of all real Borel measures on $[a, b]$ with the total variation norm. For $\mu \in M[a, b]$ define the function $\check{\mu}_{n}:[a, b] \rightarrow \mathbb{R}, n \geq 1$, by

$$
\check{\mu}_{n}(t)=\frac{1}{(n-1)!} \int_{[a, t]}(t-s)^{n-1} d \mu(s)
$$

Note that

$$
\check{\mu}_{n}(t)=\frac{1}{(n-2)!} \int_{a}^{t}(t-s)^{n-2} \check{\mu}_{1}(s) d s, \quad n \geq 2
$$

and

$$
\left|\check{\mu}_{n}(t)\right| \leq \frac{(t-a)^{n-1}}{(n-1)!}\|\mu\|, \quad t \in[a, b], n \geq 1
$$

The function $\check{\mu}_{n}$ is differentiable, $\check{\mu}_{n}^{\prime}(t)=\check{\mu}_{n-1}(t)$ and $\check{\mu}_{n}(a)=0$, for every $n \geq 2$, while for $n=1$

$$
\check{\mu}_{1}(t)=\int_{[a, t]} d \mu(s)=\mu([a, t])
$$

which means that $\check{\mu}_{1}(t)$ is equal to the distribution function of μ. A sequence of functions $P_{n}:[a, b] \rightarrow \mathbb{R}, n \geq 1$, is called a μ-harmonic sequence of functions on $[a, b]$ if

$$
P_{n}^{\prime}(t)=P_{n-1}(t), n \geq 2 ; \quad P_{1}(t)=c+\check{\mu}_{1}(t), \quad t \in[a, b],
$$

for some $c \in \mathbb{R}$. The sequence $\left(\check{\mu}_{n}, n \geq 1\right)$ is an example of a μ-harmonic sequence of functions on $[a, b]$. The notion of a μ-harmonic sequence of functions has been introduced in [2]. See also [1].

Integration-by-parts Formula
A. Čivljak, Lj. Dedić and M. Matić vol. 8, iss. 4, art. 93, 2007

Title Page
Contents

Page 5 of 26
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Remark 1. Let $w_{0}:[a, b] \rightarrow \mathbb{R}$ be an absolutely integrable function and let $\mu \in$ $M[a, b]$ be defined by

$$
d \mu(t)=w_{0}(t) d t
$$

If $\left(P_{n}, n \geq 1\right)$ is a μ-harmonic sequence of functions on $[a, b]$, then $w_{0}, P_{1}, \ldots, P_{n}$ is a w_{0}-Appell type sequence of functions on $[a, b]$.

For $\mu \in M[a, b]$ let $\mu=\mu_{+}-\mu_{-}$be the Jordan-Hahn decomposition of μ, where μ_{+}and μ_{-}are orthogonal and positive measures. Then we have $|\mu|=\mu_{+}+\mu_{-}$and

$$
\|\mu\|=|\mu|([a, b])=\left\|\mu_{+}\right\|+\left\|\mu_{-}\right\|=\mu_{+}([a, b])+\mu_{-}([a, b]) .
$$

The measure $\mu \in M[a, b]$ is said to be balanced if $\mu([a, b])=0$. This is equivalent to

$$
\left\|\mu_{+}\right\|=\left\|\mu_{-}\right\|=\frac{1}{2}\|\mu\|
$$

Measure $\mu \in M[a, b]$ is called n-balanced if $\check{\mu}_{n}(b)=0$. We see that a 1-balanced measure is the same as a balanced measure. We also write

$$
m_{k}(\mu)=\int_{[a, b]} t^{k} d \mu(t), \quad k \geq 0
$$

for the k-th moment of μ.
Lemma 2.1. For every $f \in C[a, b]$ and $\mu \in M[a, b]$ we have

$$
\int_{[a, b]} f(t) d \check{\mu}_{1}(t)=\int_{[a, b]} f(t) d \mu(t)-\mu(\{a\}) f(a)
$$

Proof. Define $I, J: C[a, b] \times M[a, b] \rightarrow \mathbb{R}$ by

$$
I(f, \mu)=\int_{[a, b]} f(t) d \check{\mu}_{1}(t)
$$

Integration-by-parts Formula

> A. Čivljak, Lj. Dedić and M. Matić vol. 8, iss. 4, art. 93, 2007

Title Page
Contents

Page 6 of 26
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
and

$$
J(f, \mu)=\int_{[a, b]} f(t) d \mu(t)-\mu(\{a\}) f(a) .
$$

Then I and J are continuous bilinear functionals, since

$$
|I(f, \mu)| \leq\|f\|\|\mu\|, \quad|J(f, \mu)| \leq 2\|f\|\|\mu\| .
$$

Let us prove that $I(f, \mu)=J(f, \mu)$ for every $f \in C[a, b]$ and every discrete measure $\mu \in M[a, b]$.

For $x \in[a, b]$ let $\mu=\delta_{x}$ be the Dirac measure at x, i.e. the measure defined by

$$
\int_{[a, b]} f(t) \mathrm{d} \delta_{x}(t)=f(x) .
$$

If $a<x \leq b$, then

$$
\check{\mu}_{1}(t)=\delta_{x}([a, t])= \begin{cases}0, & a \leq t<x \\ 1, & x \leq t \leq b\end{cases}
$$

and by a simple calculation we have

$$
\begin{aligned}
I\left(f, \delta_{x}\right) & =\int_{[a, b]} f(t) d \check{\mu}_{1}(t)=f(x)=\int_{[a, b]} f(t) \mathrm{d} \delta_{x}(t)-0 \\
& =\int_{[a, b]} f(t) \mathrm{d} \delta_{x}(t)-\delta_{x}(\{a\}) f(a)=J\left(f, \delta_{x}\right) .
\end{aligned}
$$

Similarly, if $x=a$, then

$$
\check{\mu}_{1}(t)=\delta_{a}([a, t])=1, \quad a \leq t \leq b
$$

Integration-by-parts Formula
A. Čivljak, Lj. Dedić and M. Matić vol. 8, iss. 4, art. 93, 2007

Title Page
Contents

Page 7 of 26
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
and by a similar calculation we have

$$
\begin{aligned}
I\left(f, \delta_{a}\right) & =\int_{[a, b]} f(t) d \check{\mu}_{1}(t)=0=f(a)-f(a) \\
& =\int_{[a, b]} f(t) \mathrm{d} \delta_{a}(t)-\delta_{a}(\{a\}) f(a)=J\left(f, \delta_{x}\right) .
\end{aligned}
$$

Therefore, for every $f \in C[a, b]$ and every $x \in[a, b]$ we have $I\left(f, \delta_{x}\right)=J\left(f, \delta_{x}\right)$. Every discrete measure $\mu \in M[a, b]$ has the form

$$
\mu=\sum_{k \geq 1} c_{k} \delta_{x_{k}}
$$

where $\left(c_{k}, k \geq 1\right)$ is a sequence in \mathbb{R} such that

$$
\sum_{k \geq 1}\left|c_{k}\right|<\infty
$$

and $\left\{x_{k} ; k \geq 1\right\}$ is a subset of $[a, b]$.
By using the continuity of I and J, for every $f \in C[a, b]$ and every discrete measure $\mu \in M[a, b]$ we have

$$
\begin{aligned}
I(f, \mu) & =I\left(f, \sum_{k \geq 1} c_{k} \delta_{x_{k}}\right)=\sum_{k \geq 1} c_{k} I\left(f, \delta_{x_{k}}\right) \\
& =\sum_{k \geq 1} c_{k} J\left(f, \delta_{x_{k}}\right)=J\left(f, \sum_{k \geq 1} c_{k} \delta_{x_{k}}\right) \\
& =J(f, \mu)
\end{aligned}
$$

Integration-by-parts Formula
A. Čivljak, Lj. Dedić and M. Matić vol. 8, iss. 4, art. 93, 2007

Title Page

Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 8 of 26	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Since the Banach subspace $M[a, b]_{d}$ of all discrete measures is weakly* dense in $M[a, b]$ and the functionals $I(f, \cdot)$ and $J(f, \cdot)$ are also weakly* continuous we conclude that $I(f, \mu)=J(f, \mu)$ for every $f \in C[a, b]$ and $\mu \in M[a, b]$.
Theorem 2.2. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n-1)}$ has bounded variation for some $n \geq 1$. Then for every μ-harmonic sequence $\left(P_{n}, n \geq 1\right)$ we have

$$
\begin{equation*}
\int_{[a, b]} f(t) d \mu(t)=\mu(\{a\}) f(a)+S_{n}+R_{n} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{n}=\sum_{k=1}^{n}(-1)^{k-1}\left[P_{k}(b) f^{(k-1)}(b)-P_{k}(a) f^{(k-1)}(a)\right] \tag{2.2}
\end{equation*}
$$

Title Page
Contents

Page 9 of 26
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

By Lemma 2.1 we have

$$
\begin{aligned}
R_{1} & =-\int_{[a, b]} P_{1}(t) d f(t) \\
& =-\left[P_{1}(b) f(b)-P_{n}(a) f(a)\right]+\int_{[a, b]} f(t) d P_{1}(t) \\
& =-\left[P_{1}(b) f(b)-P_{n}(a) f(a)\right]+\int_{[a, b]} f(t) d \check{\mu}_{1}(t) \\
& =-\left[P_{1}(b) f(b)-P_{n}(a) f(a)\right]+\int_{[a, b]} f(t) d \mu(t)-\mu(\{a\}) f(a) .
\end{aligned}
$$

Therefore, by iteration, we have
$R_{n}=\sum_{k=1}^{n}(-1)^{k}\left[P_{k}(b) f^{(k-1)}(b)-P_{k}(a) f^{(k-1)}(a)\right]+\int_{[a, b]} f(t) d \mu(t)-\mu(\{a\}) f(a)$,
which proves our assertion.
Remark 2. By Remark 1 we see that identity (2.1) is a generalization of the integration-by-parts formula (1.1).
Corollary 2.3. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n-1)}$ has bounded variation for some $n \geq 1$. Then for every $\mu \in M[a, b]$ we have

$$
\int_{[a, b]} f(t) d \mu(t)=\check{S}_{n}+\check{R}_{n}
$$

where

$$
\check{S}_{n}=\sum_{k=1}^{n}(-1)^{k-1} \check{\mu}_{k}(b) f^{(k-1)}(b)
$$

Integration-by-parts Formula
A. Čivljak, Lj. Dedić and M. Matić vol. 8, iss. 4, art. 93, 2007

Title Page

Contents

Page 10 of 26
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
and

$$
\check{R}_{n}=(-1)^{n} \int_{[a, b]} \check{\mu}_{n}(t) d f^{(n-1)}(t) .
$$

Proof. Apply the theorem above for the μ-harmonic sequence ($\check{\mu}_{n}, n \geq 1$) and note that $\check{\mu}_{n}(a)=0$, for $n \geq 2$.

Corollary 2.4. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n-1)}$ has bounded variation for some $n \geq 1$. Then for every $x \in[a, b]$ we have

$$
f(x)=\sum_{k=1}^{n} \frac{(x-b)^{k-1}}{(k-1)!} f^{(k-1)}(b)+R_{n}(x),
$$

where

$$
R_{n}(x)=\frac{(-1)^{n}}{(n-1)!} \int_{[x, b]}(t-x)^{n-1} d f^{(n-1)}(t)
$$

Proof. Apply Corollary 2.3 for $\mu=\delta_{x}$ and note that in this case

$$
\check{\mu}_{k}(t)=\frac{(t-x)^{k-1}}{(k-1)!}, \quad x \leq t \leq b, \quad \text { and } \quad \check{\mu}_{k}(t)=0, \quad a \leq t<x
$$

for $k \geq 1$.
Corollary 2.5. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n-1)}$ has bounded variation for some $n \geq 1$. Further, let $\left(c_{m}, m \geq 1\right)$ be a sequence in \mathbb{R} such that

$$
\sum_{m \geq 1}\left|c_{m}\right|<\infty
$$

Integration-by-parts Formula

A. Čivljak, Lj. Dedić and M. Matić vol. 8, iss. 4, art. 93, 2007

Title Page

Contents

Page 11 of 26
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
and let $\left\{x_{m} ; m \geq 1\right\} \subset[a, b]$. Then

$$
\sum_{m \geq 1} c_{m} f\left(x_{m}\right)=\sum_{m \geq 1} \sum_{k=1}^{n} c_{m} \frac{\left(x_{m}-b\right)^{k-1}}{(k-1)!} f^{(k-1)}(b)+\sum_{m \geq 1} c_{m} R_{n}\left(x_{m}\right)
$$

where $R_{n}\left(x_{m}\right)$ is from Corollary 2.4.
Proof. Apply Corollary 2.3 for the discrete measure $\mu=\sum_{m \geq 1} c_{m} \delta_{x_{m}}$.
Integration-by-parts Formula
A. Čivljak, Lj. Dedić and M. Matić vol. 8, iss. 4, art. 93, 2007

Title Page
Contents

Page 12 of 26
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

3. Some Ostrowski-type Inequalities

In this section we shall use the same notations as above.
Theorem 3.1. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n-1)}$ is L-Lipschitzian for some $n \geq 1$. Then for every μ-harmonic sequence $\left(P_{n}, n \geq 1\right)$ we have

$$
\begin{equation*}
\left|\int_{[a, b]} f(t) d \mu(t)-\mu(\{a\}) f(a)-S_{n}\right| \leq L \int_{a}^{b}\left|P_{n}(t)\right| d t, \tag{3.1}
\end{equation*}
$$

where S_{n} is defined by (2.2).
Proof. By Theorem 2.2 we have

$$
\left|R_{n}\right|=\left|\int_{[a, b]} P_{n}(t) d f^{(n-1)}(t)\right| \leq L \int_{a}^{b}\left|P_{n}(t)\right| d t
$$

which proves our assertion.
Corollary 3.2. If f is L-Lipschitzian, then for every $c \in \mathbb{R}$ and $\mu \in M[a, b]$ we have

$$
\left|\int_{[a, b]} f(t) d \mu(t)-\mu([a, b]) f(b)-c[f(b)-f(a)]\right| \leq L \int_{a}^{b}\left|c+\check{\mu}_{1}(t)\right| d t
$$

Proof. Put $n=1$ in the theorem above and note that $P_{1}(t)=c+\check{\mu}_{1}(t)$, for some $c \in \mathbb{R}$.

Title Page
Contents
Integration-by-parts Formula
A. Čivljak, Lj. Dedić and M. Matić vol. 8, iss. 4, art. 93, 2007

,

Page 13 of 26
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proof. Apply Corollary 3.2 and note that in this case

$$
\begin{aligned}
\int_{a}^{b}\left|c+\check{\mu}_{1}(t)\right| d t & =\int_{a}^{b}\left[c+\check{\mu}_{1}(t)\right] d t \\
& =c(b-a)+\check{\mu}_{2}(b) \\
& \leq c(b-a)+(b-a)\|\mu\| \\
& =(b-a)(c+\|\mu\|) .
\end{aligned}
$$

Corollary 3.4. Let f be L-Lipschitzian, $\left(c_{m}, m \geq 1\right)$ a sequence in $[0, \infty)$ such that

$$
\sum_{m \geq 1} c_{m}<\infty,
$$

and let $\left\{x_{m} ; m \geq 1\right\} \subset[a, b]$. Then for every $c \geq 0$ we have

$$
\begin{aligned}
\left|\sum_{m \geq 1} c_{m}\left[f(b)-f\left(x_{m}\right)\right]+c[f(b)-f(a)]\right| & \leq L\left[c(b-a)+\sum_{m \geq 1} c_{m}\left(b-x_{m}\right)\right] \\
& \leq L(b-a)\left[c+\sum_{m \geq 1} c_{m}\right]
\end{aligned}
$$

Title Page
Contents
Integration-by-parts Formula
A. Čivljak, Lj. Dedić and M. Matić vol. 8, iss. 4, art. 93, 2007

Page 14 of 26
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
for every $x \in[a, b]$.
Proof. Apply Corollary 3.2 for $c=-\check{\mu}_{1}(x)$. Then

$$
c+\check{\mu}_{1}(b)=\mu((x, b]), \quad \check{\mu}_{1}(x)=\mu([a, x])
$$

and

$$
\begin{aligned}
\int_{a}^{b}\left|-\check{\mu}_{1}(x)+\check{\mu}_{1}(t)\right| d t & =\int_{a}^{x}\left(\check{\mu}_{1}(x)-\check{\mu}_{1}(t)\right) d t+\int_{x}^{b}\left(\check{\mu}_{1}(t)-\check{\mu}_{1}(x)\right) d t \\
& =(2 x-a-b) \check{\mu}_{1}(x)-2 \check{\mu}_{2}(x)+\check{\mu}_{2}(b) .
\end{aligned}
$$

Corollary 3.6. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n-1)}$ is L-Lipschitzian for some $n \geq 1$. Then for every $\mu \in M[a, b]$ we have

$$
\left|\int_{[a, b]} f(t) d \mu(t)-\check{S}_{n}\right| \leq L \int_{a}^{b}\left|\check{\mu}_{n}(t)\right| d t \leq \frac{(b-a)^{n}}{n!} L\|\mu\|
$$

where \check{S}_{n} is from Corollary 2.3.
Proof. Apply the theorem above for the μ-harmonic sequence ($\check{\mu}_{n}, n \geq 1$).
Corollary 3.7. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n-1)}$ is L-Lipschitzian for some $n \geq 1$. Then for every $x \in[a, b]$ we have

$$
\left|f(x)-\sum_{k=1}^{n} \frac{(x-b)^{k-1}}{(k-1)!} f^{(k-1)}(b)\right| \leq \frac{(b-x)^{n}}{n!} L
$$

Page 15 of 26
Go Back
Title Page
Contents

Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proof. Apply Corollary 3.6 for $\mu=\delta_{x}$ and note that in this case

$$
\check{\mu}_{k}(t)=\frac{(t-x)^{k-1}}{(k-1)!}, \quad x \leq t \leq b, \quad \text { and } \quad \check{\mu}_{k}(t)=0, \quad a \leq t<x
$$

for $k \geq 1$.
Corollary 3.8. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n-1)}$ is L-Lipschitzian, for some $n \geq 1$. Further, let $\left(c_{m}, m \geq 1\right)$ be a sequence in \mathbb{R} such that

$$
\sum_{m \geq 1}\left|c_{m}\right|<\infty
$$

and let $\left\{x_{m} ; m \geq 1\right\} \subset[a, b]$. Then

$$
\begin{aligned}
& \left|\sum_{m \geq 1} c_{m} f\left(x_{m}\right)-\sum_{m \geq 1} \sum_{k=1}^{n} c_{m} \frac{\left(x_{m}-b\right)^{k-1}}{(k-1)!} f^{(k-1)}(b)\right| \\
& \leq \frac{L}{n!} \sum_{m \geq 1}\left|c_{m}\right|\left(b-x_{m}\right)^{n} \\
& \leq \frac{L}{n!}(b-a)^{n} \sum_{m \geq 1}\left|c_{m}\right|
\end{aligned}
$$

Integration-by-parts Formula
A. Čivljak, Lj. Dedić and M. Matić vol. 8, iss. 4, art. 93, 2007

Title Page
Contents

Page 16 of 26
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
where $\bigvee_{a}^{b}\left(f^{(n-1)}\right)$ is the total variation of $f^{(n-1)}$ on $[a, b]$.
Proof. By Theorem 2.2 we have

$$
\left|R_{n}\right|=\left|\int_{[a, b]} P_{n}(t) d f^{(n-1)}(t)\right| \leq \max _{t \in[a, b]}\left|P_{n}(t)\right| \bigvee_{a}^{b}\left(f^{(n-1)}\right),
$$

which proves our assertion.
Corollary 3.10. If f is a function of bounded variation, then for every $c \in \mathbb{R}$ and $\mu \in M[a, b]$ we have

$$
\left|\int_{[a, b]} f(t) d \mu(t)-\mu([a, b]) f(b)-c[f(b)-f(a)]\right| \leq \max _{t \in[a, b]}\left|c+\check{\mu}_{1}(t)\right| \bigvee_{a}^{b}(f)
$$

Proof. Put $n=1$ in the theorem above.
Corollary 3.11. If f is a function of bounded variation, then for every $c \geq 0$ and $\mu \geq 0$ we have

$$
\left|\int_{[a, b]} f(t) d \mu(t)-\mu([a, b]) f(b)-c[f(b)-f(a)]\right| \leq[c+\|\mu\|] \bigvee_{a}^{b}(f) .
$$

Integration-by-parts Formula
A. Čivljak, Lj. Dedić and M. Matić vol. 8, iss. 4, art. 93, 2007

Title Page
Contents

Page 17 of 26
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Corollary 3.12. Let f be a function of bounded variation, $\left(c_{m}, m \geq 1\right)$ a sequence in $[0, \infty)$ such that

$$
\sum_{m \geq 1} c_{m}<\infty
$$

and let $\left\{x_{m} ; m \geq 1\right\} \subset[a, b]$. Then for every $c \geq 0$ we have

$$
\left|\sum_{m \geq 1} c_{m}\left[f(b)-f\left(x_{m}\right)\right]+c[f(b)-f(a)]\right| \leq\left[c+\sum_{m \geq 1} c_{m}\right] \bigvee_{a}^{b}(f)
$$

Proof. Apply Corollary 3.11 for the discrete measure $\mu=\sum_{m \geq 1} c_{m} \delta_{x_{m}}$.
Corollary 3.13. If f is a function of bounded variation and $\mu \geq 0$, then we have
Integration-by-parts Formula
A. Čivljak, Lj. Dedić and M. Matić vol. 8, iss. 4, art. 93, 2007

$$
\begin{aligned}
& \left|\int_{[a, b]} f(t) d \mu(t)-\mu([a, x]) f(a)-\mu((x, b]) f(b)\right| \\
& \quad \leq \frac{1}{2}\left[\check{\mu}_{1}(b)-\check{\mu}_{1}(a)+\left|\check{\mu}_{1}(a)+\check{\mu}_{1}(b)-2 \check{\mu}_{1}(x)\right|\right] \bigvee_{a}^{b}(f) .
\end{aligned}
$$

Proof. Apply Corollary 3.11 for $c=-\check{\mu}_{1}(x)$. Then

$$
\begin{aligned}
\max _{t \in[a, b]}\left|c+\check{\mu}_{1}(t)\right| & =\max _{t \in[a, b]}\left|\check{\mu}_{1}(t)-\check{\mu}_{1}(x)\right| \\
& =\max \left\{\check{\mu}_{1}(x)-\check{\mu}_{1}(a), \check{\mu}_{1}(b)-\check{\mu}_{1}(x)\right\} \\
& =\frac{1}{2}\left[\check{\mu}_{1}(b)-\check{\mu}_{1}(a)+\left|\check{\mu}_{1}(a)+\check{\mu}_{1}(b)-2 \check{\mu}_{1}(x)\right|\right] .
\end{aligned}
$$

Title Page
Contents

Page 18 of 26
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Corollary 3.14. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n-1)}$ has bounded variation for some $n \geq 1$. Then for every $\mu \in M[a, b]$ we have

$$
\begin{aligned}
\left|\int_{[a, b]} f(t) d \mu(t)-\check{S}_{n}\right| & \leq \max _{t \in[a, b]}\left|\check{\mu}_{n}(t)\right| \bigvee_{a}^{b}\left(f^{(n-1)}\right) \\
& \leq \frac{(b-a)^{n-1}}{(n-1)!}\|\mu\| \bigvee_{a}^{b}\left(f^{(n-1)}\right)
\end{aligned}
$$

where \check{S}_{n} is from Corollary 2.3.
Proof. Apply the theorem above for the μ-harmonic sequence $\left(\check{\mu}_{n}, n \geq 1\right)$.
Corollary 3.15. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n-1)}$ has bounded variation for some $n \geq 1$. Then for every $x \in[a, b]$ we have

$$
\left|f(x)-\sum_{k=1}^{n} \frac{(x-b)^{k-1}}{(k-1)!} f^{(k-1)}(b)\right| \leq \frac{(b-x)^{n-1}}{(n-1)!} \bigvee_{a}^{b}\left(f^{(n-1)}\right)
$$

Title Page
Contents

Page 19 of 26
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
and let $\left\{x_{m} ; m \geq 1\right\} \subset[a, b]$. Then

$$
\begin{aligned}
& \left|\sum_{m \geq 1} c_{m} f\left(x_{m}\right)-\sum_{m \geq 1} \sum_{k=1}^{n} c_{m} \frac{\left(x_{m}-b\right)^{k-1}}{(k-1)!} f^{(k-1)}(b)\right| \\
& \leq \frac{1}{(n-1)!} \bigvee_{a}^{b}\left(f^{(n-1)}\right) \sum_{m \geq 1}\left|c_{m}\right|\left(b-x_{m}\right)^{n-1} \\
& \leq \frac{(b-a)^{n-1}}{(n-1)!} \bigvee_{a}^{b}\left(f^{(n-1)}\right) \sum_{m \geq 1}\left|c_{m}\right|
\end{aligned}
$$

Proof. Apply Corollary 3.14 for the discrete measure $\mu=\sum_{m \geq 1} c_{m} \delta_{x_{m}}$.
Theorem 3.17. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n)} \in L_{p}[a, b]$ for some $n \geq 1$. Then for every μ-harmonic sequence $\left(P_{n}, n \geq 1\right)$ we have

$$
\left|\int_{[a, b]} f(t) d \mu(t)-\mu(\{a\}) f(a)-S_{n}\right| \leq\left\|P_{n}\right\|_{q}\left\|f^{(n)}\right\|_{p}
$$

where $p, q \in[1, \infty]$ and $1 / p+1 / q=1$.
Proof. By Theorem 2.2 and the Hölder inequality we have

$$
\begin{aligned}
\left|R_{n}\right| & =\left|\int_{[a, b]} P_{n}(t) d f^{(n-1)}(t)\right|=\left|\int_{[a, b]} P_{n}(t) f^{(n)}(t) d t\right| \\
& \leq\left(\int_{a}^{b}\left|P_{n}(t)\right|^{q} d t\right)^{\frac{1}{q}}\left(\int_{a}^{b}\left|f^{(n)}(t)\right|^{p} d t\right)^{\frac{1}{p}} \\
& =\left\|P_{n}\right\|_{q}\left\|f^{(n)}\right\|_{p}
\end{aligned}
$$

Title Page
Contents

Page 20 of 26
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Remark 3. We see that the inequality of the theorem above is a generalization of inequality (1.2).
Corollary 3.18. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n)} \in L_{p}[a, b]$ for some $n \geq 1$, and $\mu \in M[a, b]$. Then

$$
\begin{aligned}
\left|\int_{[a, b]} f(t) d \mu(t)-\check{S}_{n}\right| & \leq\left\|\check{\mu}_{n}\right\|_{q}\left\|f^{(n)}\right\|_{p} \\
& \leq \frac{(b-a)^{n-1+1 / q}}{(n-1)![(n-1) q+1]^{1 / q}}\|\mu\|\left\|f^{(n)}\right\|_{p}
\end{aligned}
$$

where $p, q \in[1, \infty]$ and $1 / p+1 / q=1$.
Proof. Apply the theorem above for the μ-harmonic sequence ($\check{\mu}_{n}, n \geq 1$).
Corollary 3.19. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n)} \in L_{p}[a, b]$, for some $n \geq 1$. Further, let $\left(c_{m}, m \geq 1\right)$ be a sequence in \mathbb{R} such that

$$
\sum_{m \geq 1}\left|c_{m}\right|<\infty
$$

and let $\left\{x_{m} ; m_{1} \geq 1\right\} \subset[a, b]$. Then

$$
\begin{aligned}
& \left|\sum_{m \geq 1} c_{m} f\left(x_{m}\right)-\sum_{m \geq 1} \sum_{k=1}^{n} c_{m} \frac{\left(x_{m}-b\right)^{k-1}}{(k-1)!} f^{(k-1)}(b)\right| \\
& \leq \frac{\left\|f^{(n)}\right\|_{p}}{(n-1)![(n-1) q+1]^{1 / q}} \sum_{m \geq 1}\left|c_{m}\right|\left(b-x_{m}\right)^{n-1+1 / q} \\
& \leq \frac{(b-a)^{n-1+1 / q}\left\|f^{(n)}\right\|_{p}}{(n-1)![(n-1) q+1]^{1 / q}} \sum_{m \geq 1}\left|c_{m}\right|
\end{aligned}
$$

where $p, q \in[1, \infty]$ and $1 / p+1 / q=1$.
Proof. Apply the theorem above for the discrete measure $\mu=\sum_{m \geq 1} c_{m} \delta_{x_{m}}$.

Integration-by-parts Formula
A. Čivljak, Lj. Dedić and M. Matić vol. 8, iss. 4, art. 93, 2007

Title Page
Contents

Page 21 of 26
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

4. Some Grüss-type Inequalities

Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n)} \in L_{\infty}[a, b]$, for some $n \geq 1$. Then

$$
m_{n} \leq f^{(n)}(t) \leq M_{n}, \quad t \in[a, b], \text { a.e. }
$$

for some real constants m_{n} and M_{n}.
Theorem 4.1. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n)} \in L_{\infty}[a, b]$, for some $n \geq 1$. Further, let $\left(P_{k}, k \geq 1\right)$ be a μ-harmonic sequence such that

$$
P_{n+1}(a)=P_{n+1}(b),
$$

for that particular n. Then

$$
\left|\int_{[a, b]} f(t) d \mu(t)-\mu(\{a\}) f(a)-S_{n}\right| \leq \frac{M_{n}-m_{n}}{2} \int_{a}^{b}\left|P_{n}(t)\right| d t .
$$

Proof. Apply Theorem 2.2 for the special case when $f^{(n-1)}$ is absolutely continuous and its derivative $f^{(n)}$, existing a.e., is bounded a.e. Define the measure ν_{n} by

$$
d \nu_{n}(t)=-P_{n}(t) d t
$$

Then

$$
\nu_{n}([a, b])=-\int_{a}^{b} P_{n}(t) d t=P_{n+1}(a)-P_{n+1}(b)=0
$$

which means that ν_{n} is balanced. Further,

$$
\left\|\nu_{n}\right\|=\int_{a}^{b}\left|P_{n}(t)\right| d t
$$

Integration-by-parts Formula
A. Čivljak, Lj. Dedić and M. Matić vol. 8, iss. 4, art. 93, 2007

Title Page
Contents

Page 22 of 26
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
and by [1, Theorem 2]

$$
\begin{aligned}
\left|R_{n}\right| & =\left|\int_{a}^{b} P_{n}(t) f^{(n)}(t) d t\right| \\
& \leq \frac{M_{n}-m_{n}}{2}\left\|\nu_{n}\right\| \\
& =\frac{M_{n}-m_{n}}{2} \int_{a}^{b}\left|P_{n}(t)\right| d t
\end{aligned}
$$

which proves our assertion.
Corollary 4.2. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n)} \in L_{\infty}[a, b]$, for some $n \geq 1$. Then for every $(n+1)$-balanced measure $\mu \in M[a, b]$ we have

$$
\begin{aligned}
\left|\int_{[a, b]} f(t) d \mu(t)-\check{S}_{n}\right| & \leq \frac{M_{n}-m_{n}}{2} \int_{a}^{b}\left|\check{\mu}_{n}(t)\right| d t \\
& \leq \frac{M_{n}-m_{n}}{2} \frac{(b-a)^{n}}{n!}\|\mu\|
\end{aligned}
$$

Integration-by-parts Formula
A. Čivljak, Lj. Dedić and M. Matić vol. 8, iss. 4, art. 93, 2007

Title Page

Contents

Page 23 of 26
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
and let $\left\{x_{m} ; m \geq 1\right\} \subset[a, b]$ satisfy the condition

$$
\sum_{m \geq 1} c_{m}\left(b-x_{m}\right)^{n}=0
$$

Then

$$
\begin{aligned}
& \left|\sum_{m \geq 1} c_{m} f\left(x_{m}\right)-\sum_{m \geq 1} \sum_{k=1}^{n} c_{m} \frac{\left(x_{m}-b\right)^{k-1}}{(k-1)!} f^{(k-1)}(b)\right| \\
& \leq \frac{M_{n}-m_{n}}{2 n!} \sum_{m \geq 1}\left|c_{m}\right|\left(b-x_{m}\right)^{n} \\
& \leq \frac{M_{n}-m_{n}}{2 n!}(b-a)^{n} \sum_{m \geq 1}\left|c_{m}\right| .
\end{aligned}
$$

Proof. Apply Corollary 4.2 for the discrete measure $\mu=\sum_{m \geq 1} c_{m} \delta_{x_{m}}$.
Corollary 4.4. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n)} \in L_{\infty}[a, b]$ for some $n \geq 1$. Then for every $\mu \in M[a, b]$, such that all k-moments of μ are zero for $k=0, \ldots, n$, we have

$$
\begin{aligned}
\left|\int_{[a, b]} f(t) d \mu(t)\right| & \leq \frac{M_{n}-m_{n}}{2} \int_{a}^{b}\left|\check{\mu}_{n}(t)\right| d t \\
& \leq \frac{M_{n}-m_{n}}{2} \frac{(b-a)^{n}}{n!}\|\mu\| .
\end{aligned}
$$

Proof. By [1, Theorem 5], the condition $m_{k}(\mu)=0, k=0, \ldots, n$ is equivalent to $\check{\mu}_{k}(b)=0, k=1, \ldots, n+1$. Apply Corollary 4.2 and note that in this case $\check{S}_{n}=0$.

Integration-by-parts Formula

A. Čivljak, Lj. Dedić and M. Matić vol. 8, iss. 4, art. 93, 2007

Title Page

Contents

Page 24 of 26
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Corollary 4.5. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n)} \in L_{\infty}[a, b]$ for some $n \geq 1$. Further, let $\left(c_{m}, m \geq 1\right)$ be a sequence in \mathbb{R} such that

$$
\sum_{m \geq 1}\left|c_{m}\right|<\infty
$$

and let $\left\{x_{m} ; m \geq 1\right\} \subset[a, b]$. If

$$
\sum_{m \geq 1} c_{m}=\sum_{m \geq 1} c_{m} x_{m}=\cdots=\sum_{m \geq 1} c_{m} x_{m}^{n}=0
$$

then

$$
\begin{aligned}
\left|\sum_{m \geq 1} c_{m} f\left(x_{m}\right)\right| & \leq \frac{M_{n}-m_{n}}{2 n!} \sum_{m \geq 1}\left|c_{m}\right|\left(b-x_{m}\right)^{n} \\
& \leq \frac{M_{n}-m_{n}}{2 n!}(b-a)^{n} \sum_{m \geq 1}\left|c_{m}\right|
\end{aligned}
$$

Proof. Apply Corollary 4.4 for the discrete measure $\mu=\sum_{m \geq 1} c_{m} \delta_{x_{m}}$.

Integration-by-parts Formula
A. Čivljak, Lj. Dedić and M. Matić vol. 8, iss. 4, art. 93, 2007

Title Page
Contents

Page 25 of 26
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] A. ČIVLJAK, LJ. DEDIĆ AND M. MATIĆ, Euler-Grüss type inequalities involving measures, submitted.
[2] A.ČIVLJAK, LJ. DEDIĆ AND M. MATIĆ, Euler harmonic identities for measures, Nonlinear Functional Anal. \& Applics., 12(1) (2007).
[3] Lj. DEDIĆ, M. MATIĆ, J. PEČARIĆ AND A. AGLIĆ ALJINOVIĆ, On weighted Euler harmonic identities with applications, Math. Inequal. \& Appl., 8(2), (2005), 237-257.
[4] S.S. DRAGOMIR, The generalised integration by parts formula for Appell sequences and related results, RGMIA Res. Rep. Coll., 5(E) (2002), Art. 18. [ONLINE: http://rgmia.vu.edu.au/v5 (E) .html].
[5] P. CERONE, Generalised Taylor's formula with estimates of the remainder, RGMIA Res. Rep. Coll., 5(2) (2002), Art. 8. [ONLINE: http: / /rgmia.vu. edu.au/v5n2.html].
[6] P. CERONE, Perturbated generalised Taylor's formula with sharp bounds, RGMIA Res. Rep. Coll., 5(2) (2002), Art. 6. [ONLINE: http: / /rgmia.vu. edu.au/v5n2.html].
[7] S.S. DRAGOMIR and A. SOFO, A perturbed version of the generalised Taylor's formula and applications, RGMIA Res. Rep. Coll., 5(2) (2002), Art. 16. [ONLINE: http://rgmia.vu.edu.au/v5n2.html].

Integration-by-parts Formula
A. Čivljak, Lj. Dedić and M. Matić vol. 8, iss. 4, art. 93, 2007

Title Page
Contents

$\mathbf{4}$	\gg
$\mathbf{4}$	$>$

Page 26 of 26
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

