A NOTE ON THE MODULUS OF U-CONVEXITY AND MODULUS OF W^{*}-CONVEXITY

ZHANFEI ZUO AND YUNAN CUI
Department of Mathematics
Harbin University of Science and Technology
Harbin, Heilongjiang 150080, P.R. China
EMail: zuozhanfei0@163.com yunan_cui@yahoo.com.cn

29 July, 2008
13 November, 2008
S.S. Dragomir

46B20.
Modulus of U-convexity; Modulus of W*-convexity; Coefficient of weak orthogonality; Uniform normal structure; Fixed point.

We present some sufficient conditions for which a Banach space X has normal structure in term of the modulus of U-convexity, modulus of W^{*}-convexity and the coefficient of weak orthogonality. Some known results are improved.

Modulus of U-Convexity and Modulus of W^{*}-Convexity

Zhanfei Zuo and Yunan Cui vol. 9, iss. 4, art. 107, 2008

Title Page
Contents

44

4

Page 1 of 14
Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

Contents

1 Introduction 3
2 Uniform Normal Structure
$\overline{\text { Modulus of } U \text {-Convexity and }}$ Modulus of W^{*}-Convexity Zhanfei Zuo and Yunan Cui vol. 9, iss. 4, art. 107, 2008

Title Page
Contents
44

Page 2 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

1. Introduction

We assume that X and X^{*} stand for a Banach space and its dual space, respectively. By S_{X} and B_{X} we denote the unit sphere and the unit ball of a Banach space X, respectively. Let C be a nonempty bounded closed convex subset of a Banach space X. A mapping $T: C \rightarrow C$ is said to be nonexpansive provided the inequality

$$
\|T x-T y\| \leq\|x-y\|
$$

holds for every $x, y \in C$. A Banach space X is said to have the fixed point property if every nonexpansive mapping $T: C \rightarrow C$ has a fixed point, where C is a nonempty bounded closed convex subset of a Banach space X.

Recall that a Banach space X is said to be uniformly non-square if there exists $\delta>0$ such that $\|x+y\| / 2 \leq 1-\delta$ or $\|x-y\| / 2 \leq 1-\delta$ whenever $x, y \in S_{X}$. A bounded convex subset K of a Banach space X is said to have normal structure if for every convex subset H of K that contains more than one point, there exists a point $x_{0} \in H$ such that

$$
\sup \left\{\left\|x_{0}-y\right\|: y \in H\right\}<\sup \{\|x-y\|: x, y \in H\}
$$

A Banach space X is said to have weak normal structure if every weakly compact convex subset of X that contains more than one point has normal structure. In reflexive spaces, both notions coincide. A Banach space X is said to have uniform normal structure if there exists $0<c<1$ such that for any closed bounded convex subset K of X that contains more than one point, there exists $x_{0} \in K$ such that

$$
\sup \left\{\left\|x_{0}-y\right\|: y \in K\right\}<c \sup \{\|x-y\|: x, y \in K\}
$$

It was proved by W.A. Kirk that every reflexive Banach space with normal structure has the fixed point property (see [9]).

Modulus of U-Convexity and Modulus of W^{*}-Convexity
Zhanfei Zuo and Yunan Cui
vol. 9, iss. 4, art. 107, 2008

Title Page
Contents

Page 3 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

The WORTH property was introduced by B. Sims in [15] as follows: a Banach space X has the WORTH property if

$$
\lim _{n \rightarrow \infty}\left|\left\|x_{n}+x\right\|-\left\|x_{n}-x\right\|\right|=0
$$

for all $x \in X$ and all weakly null sequences $\left\{x_{n}\right\}$. In [16], Sims introduced the following geometric constant

$$
\omega(X)=\sup \left\{\lambda>0: \lambda \cdot \liminf _{n \rightarrow \infty}\left\|x_{n}+x\right\| \leq \liminf _{n \rightarrow \infty}\left\|x_{n}-x\right\|\right\}
$$

where the supremum is taken over all the weakly null sequences $\left\{x_{n}\right\}$ in X and all

Modulus of U-Convexity and Modulus of W^{*}-Convexity Zhanfei Zuo and Yunan Cui vol. 9, iss. 4, art. 107, 2008

Title Page

Contents

Page 4 of 14
Go Back

Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
(3) If $W_{X}^{*}(\epsilon)>\frac{1}{2} \max \{0, \epsilon-1\}$ for some $\epsilon \in(0,2)$, then X and X^{*} has uniform normal structure.

In a recent paper [4], Gao introduced the following quadratic parameter, which is defined as

$$
E(X)=\sup \left\{\|x+y\|^{2}+\|x-y\|^{2}: x, y \in S_{X}\right\}
$$

The constant is also a significant tool in the geometric theory of Banach spaces. Furthermore, Gao obtained the values of $E(X)$ for some classical Banach spaces. In terms of the constant, he obtained some sufficient conditions for a Banach space X to have uniform normal structure, which plays an important role in fixed point theory.

In this paper, we will show that a Banach space X has uniform normal structure whenever

$$
U_{X}(1+\omega(X))>\frac{1-\omega(X)}{2} \quad \text { or } \quad W_{X}^{*}(1+\omega(X))>\frac{1-\omega(X)}{2}
$$

These results improve S. Saejung's and Gao's results. Furthermore, sufficient conditions for uniform normal structure in terms of $E(X)$ and $\omega(X)$ have been obtained which improve the results in [3].

Zhanfei Zuo and Yunan Cui vol. 9, iss. 4, art. 107, 2008

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 5 of 14	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Uniform Normal Structure

As our proof uses the ultraproduct technique, we start by making some basic definitions. Let \mathcal{U} be a filter on I. Then, $\left\{x_{i}\right\}$ is said to be convergent to x with respect to \mathcal{U}, denoted by $\lim _{\mathcal{U}} x_{i}=x$, if for each neighborhood V of $x,\left\{i \in I: x_{i} \in V\right\} \in \mathcal{U}$. A filter \mathcal{U} on I is called an ultrafilter if it is maximal with respect to the ordering of set inclusion. An ultrafilter is called trivial if it is of the form $\left\{A: A \subseteq I, i_{0} \in A\right\}$ for some $i_{0} \in I$. We will use the fact that if \mathcal{U} is an ultrafilter, then
(1) for any $A \subseteq I$, either $A \in \mathcal{U}$ or $I A \in \mathcal{U}$;
(2) if $\left\{x_{i}\right\}$ has a cluster point x, then $\lim _{\mathcal{U}} x_{i}$ exists and equals x.

Let $\left\{X_{i}\right\}$ be a family of Banach spaces and $l_{\infty}\left(I, X_{i}\right)$ denote the subspace of the product space equipped with the norm $\left\|\left(x_{i}\right)\right\|=\sup _{i \in I}\left\|x_{i}\right\|<\infty$. Let \mathcal{U} be an ultrafilter on I and $N_{\mathcal{U}}=\left\{\left(x_{i}\right) \in l_{\infty}\left(I, X_{i}\right): \lim _{\mathcal{U}}\left\|x_{i}\right\|=0\right\}$. The ultraproduct of $\left\{X_{i}\right\}_{i \in I}$ is the quotient space $l_{\infty}\left(I, X_{i}\right) / N_{\mathcal{U}}$ equipped with the quotient norm. We will use $\widetilde{\left(x_{i}\right)_{\mathcal{U}}}$ to denote the element of the ultraproduct. In the following, we will restrict our set I to be \mathbb{N} (the set of \mathcal{U} natural numbers), and let $X_{i}=X$, $i \in \mathbb{N}$, for some Banach space X. For an ultrafilter \mathcal{U} on \mathbb{N}, we use $\widetilde{X}_{\mathcal{U}}$ to denote the ultraproduct. Note that if \mathcal{U} is nontrivial, then X can be embedded into $\widetilde{X}_{\mathcal{U}}$ isometrically.
Lemma 2.1 (see [5]). Let X be a Banach space without weak normal structure, then there exists a weakly null sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subseteq S_{X}$ such that

$$
\lim _{n}\left\|x_{n}-x\right\|=1 \text { for all } x \in \operatorname{co}\left\{x_{n}\right\}_{n=1}^{\infty}
$$

Theorem 2.2. If $U_{X}(1+\omega(X))>\frac{1-\omega(X)}{2}$, then X has uniform normal structure.

Title Page

Contents

Page 6 of 14
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-5756

Proof. It suffices to prove that X has weak normal structure whenever

$$
U_{X}(1+\omega(X))>\frac{1-\omega(X)}{2}
$$

In fact, since $\frac{1}{3} \leq \omega(X) \leq 1$, we have

$$
U_{X}(\epsilon)>\frac{1-\omega(X)}{2} \geq 0
$$

for some $\epsilon \in(0,2)$. This implies that X is super-reflexive, and then $U_{X}(\epsilon)=U_{\tilde{X}}(\epsilon)$ (see [11]). Now suppose that X fails to have weak normal structure. Then, by the Lemma 2.1, there exists a weakly null sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in S_{X} such that

$$
\lim _{n}\left\|x_{n}-x\right\|=1 \text { for all } x \in \operatorname{co}\left\{x_{n}\right\}_{n=1}^{\infty}
$$

Take $\left\{f_{n}\right\} \subset S_{X^{*}}$ such that $f_{n} \in \nabla_{x_{n}}$ for all $n \in \mathbb{N}$. By the reflexivity of X^{*}, without loss of generality we may assume that $f_{n} \rightharpoondown f$ for some $f \in B_{X^{*}}$ (where \rightharpoondown denotes weak star convergence). We now choose a subsequence of $\left\{x_{n}\right\}_{n=1}^{\infty}$, denoted again by $\left\{x_{n}\right\}_{n=1}^{\infty}$, such that

$$
\lim _{n}\left\|x_{n+1}-x_{n}\right\|=1, \quad\left|\left(f_{n+1}-f\right)\left(x_{n}\right)\right|<\frac{1}{n}, \quad f_{n}\left(x_{n+1}\right)<\frac{1}{n}
$$

for all $n \in \mathbb{N}$. It follows that

$$
\lim _{n} f_{n+1}\left(x_{n}\right)=\lim _{n}\left(f_{n+1}-f\right)\left(x_{n}\right)+f\left(x_{n}\right)=0
$$

Put $\tilde{x}=\left(x_{n+1}-x_{n}\right)_{\mathcal{U}}, \tilde{y}=\left[\omega(X)\left(x_{n+1}+x_{n}\right)\right]_{\mathcal{U}}$, and $\tilde{f}=\left(-f_{n}\right)_{\mathcal{U}}$. By the definition of $\omega(X)$ and Lemma 2.1, then

$$
\|\tilde{f}\|=\tilde{f}(\tilde{x})=\|\tilde{x}\|=1
$$

Modulus of U-Convexity and Modulus of W^{*}-Convexity Zhanfei Zuo and Yunan Cui vol. 9, iss. 4, art. 107, 2008

Title Page

Contents

Page 7 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
and

$$
\|\tilde{y}\|=\left\|\left[\omega(X)\left(x_{n+1}+x_{n}\right)\right]_{\mathcal{U}}\right\| \leq\left\|x_{n+1}-x_{n}\right\|=1 .
$$

Furthermore, we have

$$
\begin{aligned}
\tilde{f}(\tilde{x}-\tilde{y}) & =\lim _{\mathcal{U}}\left(-f_{n}\right)\left((1-\omega(X)) x_{n+1}-(1+\omega(X)) x_{n}\right) \\
& =1+\omega(X), \\
\|\tilde{x}+\tilde{y}\| & =\lim _{\mathcal{U}}\left\|(1+\omega(X)) x_{n+1}-(1-\omega(X)) x_{n}\right\| \\
& \geq \lim _{\mathcal{U}}\left(f_{n+1}\right)\left((1+\omega(X)) x_{n+1}-(1-\omega(X)) x_{n}\right) \\
& =1+\omega(X) .
\end{aligned}
$$

Modulus of U-Convexity and Modulus of W^{*}-Convexity
Zhanfei Zuo and Yunan Cui vol. 9, iss. 4, art. 107, 2008

Title Page
Contents

Page 8 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

The modulus of convexity of X is the function $\delta_{X}(\epsilon):[0,2] \rightarrow[0,1]$ defined by

$$
\begin{aligned}
\delta_{X}(\epsilon) & =\inf \left\{1-\frac{\|x+y\|}{2}: x, y \in S_{X},\|x-y\|=\epsilon\right\} \\
& =\inf \left\{1-\frac{\|x+y\|}{2}:\|x\| \leq 1,\|y\| \leq 1,\|x-y\| \geq \epsilon\right\} .
\end{aligned}
$$

The function $\delta_{X}(\epsilon)$ is strictly increasing on $\left[\epsilon_{0}(X), 2\right]$. Here $\epsilon_{0}(X)=\sup \{\epsilon$: $\left.\delta_{X}(\epsilon)=0\right\}$ is the characteristic of convexity of X. Also, X is uniformly nonsquare provided $\epsilon_{0}(X)<2$. Some sufficient conditions for which a Banach space X has uniform normal structure in terms of the modulus of convexity have been widely studied in [3], [5], [13], [18]. It is easy to prove that $U_{X}(\epsilon) \geq \delta_{X}(\epsilon)$, therefore we have the following corollary which strengthens Theorem 6 of Gao [3].
Corollary 2.3. If $\delta_{X}\left((1+\omega(X))>\frac{1-\omega(X)}{2}\right.$, then X has uniform normal structure.
Remark 2. In fact, it is well known that $J(X)<\epsilon$ if and only if $\delta_{X}(\epsilon)>1-\frac{\epsilon}{2}$ (see [6]). Therefore Corollary 2.3 is equivalent to $J(X)<1+\omega(X)$ implies that X has uniform normal structure (see [7, Theorem 2]). Moreover, if X is the Bynum space $b_{2, \infty}$, then X does not have normal structure and $\delta_{X}\left((1+\omega(X))=\frac{1-\omega(X)}{2}\right.$. Hence Theorem 2.2 and Corollary 2.3 are sharp.

It is well known that $\epsilon_{0}(X)=2 \rho_{X^{*}}^{\prime}(0)$. Here, $\rho_{X}^{\prime}(0)=\lim _{t \rightarrow 0} \frac{\rho_{X}(t)}{t}$, where $\rho_{X}(t)$ is the modulus of smoothness defined as

$$
\rho_{X}(t)=\sup \left\{\frac{\|x+t y\|+\|x-t y\|}{2}-1: x, y \in S_{X}\right\} .
$$

Therefore we have the following corollary.
Corollary 2.4. If $\delta_{X}(2 \omega(X))>\frac{1-\omega(X)}{2}$, then X and X^{*} have uniform normal structure.

Modulus of U-Convexity and Modulus of W^{*}-Convexity
Zhanfei Zuo and Yunan Cui
vol. 9, iss. 4, art. 107, 2008

Title Page

Contents

Page 9 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proof. From $2 \omega(X) \leq 1+\omega(X)$ and the monotonicity of $\delta_{X}(\epsilon)$, we have that X has uniform normal structure from Corollary 2.3. It is well known that $\omega(X)=\omega\left(X^{*}\right)$ in a reflexive Banach space. So the inequality $\rho_{X^{*}}^{\prime}(0)<\omega(X)$, or, equivalently, $\epsilon_{0}(X)<2 \omega(X)$ imply X^{*} has uniform normal structure (see [10], [13]). From the definition of $\epsilon_{0}(X)$, obviously the condition $\delta_{X}(2 \omega(X))>\frac{1-\omega(X)}{2}$ implies that $\epsilon_{0}(X)<2 \omega(X)$. So X^{*} have uniform normal structure.
Theorem 2.5. If $W_{X}^{*}(1+\omega(X))>\frac{1-\omega(X)}{2}$, then X has uniform normal structure.
Proof. It suffices to prove that X has weak normal structure whenever $W_{X}^{*}(1+$ $\omega(X))>\frac{1-\omega(X)}{2}$. In fact, since $\frac{1}{3} \leq \omega(X) \leq 1$, we have $W_{X}^{*}(2 \epsilon)>\frac{1-\omega(X)}{2} \geq 0$ for some $\epsilon \in(0,2)$. This implies that X is super-reflexive, and $W_{X}^{*}(\epsilon)=W_{\widetilde{X}}^{*}(\epsilon)$ (see [12]). Repeating the arguments in the proof of Theorem 2.2, and $\tilde{x}=\left(x_{n}-x_{n+1}\right)_{\mathcal{U}}$,

Modulus of U-Convexity and Modulus of W^{*}-Convexity Zhanfei Zuo and Yunan Cui vol. 9, iss. 4, art. 107, 2008

Title Page
Contents

Page 10 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
W_{X}^{*}(1+\omega(X))=W_{\tilde{X}}^{*}(1+\omega(X)) \leq \frac{1-\omega(X)}{2}
$$

which is a contradiction. Therefore

$$
W_{X}^{*}(1+\omega(X))>\frac{1-\omega(X)}{2}
$$

implies that X has uniform normal structure.
Remark 3. Similarly, the above theorem strengthens the result of S. Saejung (3), whenever $\omega(X)>\frac{1}{2}$. Since $W_{X}^{*}(\epsilon) \geq \delta_{X}(\epsilon)$, therefore we also obtain Corollary 2.3 from Theorem 2.5.

The following theorem can be found in [14].
Theorem 2.6. Let X be a Banach space, we have

$$
E(X)=\sup \left\{\epsilon^{2}+4\left(1-\delta_{X}(\epsilon)\right)^{2}: \epsilon \in(0,2]\right\}
$$

Remark 4. Letting $\epsilon \rightarrow 2^{-}$in Theorem 2.6, we obtain the following inequality

$$
E(X) \geq 4+\left[\epsilon_{0}(X)\right]^{2}
$$

Corollary 2.7. If $E(X)<2(1+\omega(X))^{2}$, then X and X^{*} have uniform normal structure.

Proof. From Theorem 2.6, $E(X)<2(1+\omega(X))^{2}$ implies that $\delta_{X}((1+\omega(X))>$ $\frac{1-\omega(X)}{2}$, so X has uniform normal structure from Corollary 2.3. It is well known that $\epsilon_{0}(X)<2 \omega(X)$ implies that X^{*} have uniform normal structure. Therefore, from Remark 4, $E(X)<4\left(1+\omega(X)^{2}\right)$ implies that X^{*} have uniform normal structure. Obviously

$$
E(X)<2(1+\omega(X))^{2} \leq 4\left(1+\omega(X)^{2}\right)
$$

implies X^{*} have uniform normal structure.

Modulus of U-Convexity and Modulus of W^{*}-Convexity Zhanfei Zuo and Yunan Cui vol. 9, iss. 4, art. 107, 2008

Title Page
Contents

Page 11 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Remark 5. In [3], Gao obtained that if $E(X)<1+2 \omega(X)+5(\omega(X))^{2}$, then X has uniform normal structure. Comparing the result of Gao and Corollary 2.7, we have the following equality

$$
2(1+\omega(X))^{2}-1-2 \omega(X)-5(\omega(X))^{2}=(1-\omega(X))(3 \omega(X)+1)
$$

It is well known that $\frac{1}{3} \leq \omega(X) \leq 1$, so when $\omega(X)<1$, we have

$$
(1-\omega(X))(3 \omega(X)+1)>0
$$

Therefore Corollary 2.7 is strict generalization of Gao's result. Moreover this is extended to conclude uniform normal structure for X^{*}. In fact repeating the arguments in [7], we have that $E\left(b_{2, \infty}\right)=3+2 \sqrt{2}$, where $b_{2, \infty}$ is the Bynum space which does not have normal structure and $E(X)=2(1+\omega(X))^{2}$ (note that $\omega\left(b_{2, \infty}\right)=\frac{\sqrt{2}}{2}$). Therefore Corollary 2.7 is sharp.

Modulus of U-Convexity and
Modulus of W^{*}-Convexity
Zhanfei Zuo and Yunan Cui
vol. 9, iss. 4, art. 107, 2008

Title Page
Contents

$\boldsymbol{4}$	
$\mathbf{4}$	
Page 12 of 14	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] J. GAO, Normal structure and modulus of U-convexity in Banach spaces, function spaces,Differential Operators and Nonlinear Analysis, (Prague, 1995), Prometheus Books, New York, 1996, 195-199.
[2] J. GAO, The W^{*}-convexity and normal structure in Banach spaces, Appl. Math. Lett., 17 (2004), 1381-1386.
[3] J. GAO, On some geometric parameters in Banach spaces, J. Math. Anal. Appl., 1 (2007), 114-122.
[4] J. GAO, A Pythagorean approach in Banach spaces, J. Inequal. Appl., (2006), Article ID 94982.
[5] K. GOEBEL and W.A. KIRK, Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math., Cambridge Univ. Press, Cambridge, 1990.
[6] J. GAO AND K.-S. LAU, On two classes of Banach spaces with uniform normal structure, Studia Math. 99, 1 (1991), 40-56.
[7] A. JIMÉNEZ-MELADO, E. LLORENS-FUSTER AND S. SAEJUNG, The von Neumann-Jordan constant, weak orthogonality and normal structure in Banach spaces, Proc. Amer. Math. Soc., 134(2) (2006), 355-364.
[8] M. KATO, L. MALIGRANDA and Y. TAKAHASHI, On James and Jordanvon Neumann constants and the normal structure coefficient of Banach space, Studia Math., 144 (2001), 275-295.
[9] W.A. KIRK, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, 72 (1965), 1004-1006.

Modulus of U-Convexity and Modulus of W^{*}-Convexity
Zhanfei Zuo and Yunan Cui
vol. 9, iss. 4, art. 107, 2008

Title Page
Contents

Page 13 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
[10] E.M. MAZCUÑÁN-NAVARRO, Banach spaces properties sufficient for normal structure, J. Math. Anal. Appl., 337 (2008), 197-218.
[11] S. SAEJUNG, On the modulus of U-convexity, Abstract and Applied Analysis, 1 (2005), 59-66.
[12] S. SAEJUNG, On the modulus of W^{*}-convexity, J. Math. Anal. Appl., 320 (2006), 543-548.
[13] S. SAEJUNG, The characteristic of convexity of a Banach space and normal structure, J. Math. Anal. Appl., 337 (2008), 123-129.
[14] S. SAEJUNG, A note on a Pythagorean approach in Banach spaces (preprint).
[15] B. SIMS, Orthogonality and fixed points of nonexpansive maps, in: Proc. Centre Math. Anal. Austral. Nat. Univ, Austral. Nat. Univ., Canberra, 1988, 178186.
[16] B. SIMS, A class of spaces with weak normal structure, Bull. Austral. Math. Soc., 50 (1994), 523-528.
[17] B. SIMS, Ultra-techniques in Banach space theory, Queen's Papers in Pure and Appl. Math., 60 Queen's University, Kingston, 1982.
[18] Z.F. ZUO and Y.A. CUI, On some parameters and the fixed point property for multivalued nonexpansive mappings, Journal of Mathematical Sciences: Advances and Applications, 1 (2008), 183-199.

Title Page
Contents

Page 14 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

