ON THE BEHAVIOR OF r-DERIVATIVE NEAR THE ORIGIN OF SINE SERIES WITH CONVEX COEFFICIENTS

XH. Z. KRASNIQI AND N. L. BRAHA
Department of Mathematics and Computer Sciences,
Avenue "Mother Theresa " 5, Prishtinë, 10000, Kosova-UNMIK
xheki00@hotmail.com
nbraha@yahoo.com

Received 04 August, 2006; accepted 21 December, 2006
Communicated by H. Bor

Abstract. In this paper we will give the behavior of the r-derivative near origin of sine series with convex coefficients.

Key words and phrases: Sine series, Convex coefficients.
2000 Mathematics Subject Classification 42A15, 42A32.

1. Introduction and Preliminaries

Let us denote by

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} \sin n x \tag{1.1}
\end{equation*}
$$

the sine series of the function $f(x)$ with coefficients a_{n} such that $a_{n} \downarrow 0$ or $a_{n} \rightarrow 0$ and $\Delta^{2} a_{n}=\Delta a_{n}-\Delta a_{n+1} \geq 0, \Delta a_{n}=a_{n}-a_{n+1}$. It is a known fact that under these conditions, series (1.1) converges uniformly in the interval $\delta \leq x \leq 2 \pi-\delta, \forall \delta>0$ (see [2, p. 95]). In the following we will denote by $g(x)$ the sum of the series (1.1), i.e

$$
\begin{equation*}
g(x)=\sum_{n=1}^{\infty} a_{n} \sin n x . \tag{1.2}
\end{equation*}
$$

Many authors have investigated the behaviors of the series (1.1), near the origin with convex coefficients. Young in [9] gave the estimation for $|g(x)|$ near the origin from the upper side. Later Salem (see [4], [5]) proved the following estimation for the behavior of the function $g(x)$ near the origin

$$
g(x) \sim m a_{m},
$$

for

$$
\frac{\pi}{m+1}<x \leq \frac{\pi}{m}, \quad m=1,2, \ldots
$$

Hartman and Winter (see [3]), proved that

$$
\lim _{x \rightarrow 0} \frac{g(x)}{x}=\sum_{n=1}^{\infty} n a_{n}
$$

holds for $a_{n} \downarrow 0$. In this context Telyakovskii (see [7]) has proved the behavior near the origin of the sine series with convex coefficients. He has compared his own results with those of Shogunbenkov (see [6]) and Aljancic et al. (see [1]).

In the sequel we will mention some results which are useful for further work. Dirichlet's kernels are denoted by

$$
\begin{gathered}
D_{n}(t)=\frac{1}{2}+\sum_{k=1}^{n} \cos k t=\frac{\sin \left(n+\frac{1}{2}\right) t}{2 \sin \frac{t}{2}} \\
\widetilde{D}_{n}(t)=\sum_{k=1}^{n} \sin k t=\frac{\cos \frac{t}{2}-\cos \left(n+\frac{1}{2}\right) t}{2 \sin \frac{t}{2}},
\end{gathered}
$$

and

$$
\bar{D}_{n}(t)=-\frac{1}{2} \cot \frac{t}{2}+\widetilde{D}_{n}(t)=-\frac{\cos \left(n+\frac{1}{2}\right) t}{2 \sin \frac{t}{2}} .
$$

Let $E_{n}(t)=\frac{1}{2}+\sum_{k=1}^{n} e^{i k t}$ and $E_{-n}(t)=\frac{1}{2}+\sum_{k=1}^{n} e^{-i k t}$, then the following holds:
Lemma 1.1 ([8]). Let r be a non-negative integer. Then for all $0<x \leq \pi$ and all $n \geq 1$ the following estimates hold
(1) $\left|E_{-n}{ }^{(r)}(x)\right| \leq \frac{4 \pi n^{r}}{|x|}$;
(2) $\left|\widetilde{D}_{n}^{(r)}(x)\right| \leq \frac{4 \pi n^{r}}{|x|}$;
(3) $\left|\bar{D}_{n}^{(r)}(x)\right| \leq \frac{4 \pi n^{r}}{|x|}+O\left(\frac{1}{|x|^{r+1}}\right)$.

2. Results

Theorem 2.1. Let a_{n} be a sequence of scalars such that:
(1) $a_{n} \downarrow 0$;
(2) $\sum_{n=1}^{\infty} n^{r} \Delta a_{n}<\infty$, for $r=0,1,2, \ldots$,
then for $\frac{\pi}{m+1}<x \leq \frac{\pi}{m}$, $m=1,2, \ldots$ the following estimate is valid

$$
g^{(r)}(x)=\sum_{n=1}^{m} n^{r} a_{n}\left(n x+\frac{r \pi}{2}\right)+O\left\{\sum_{n=1}^{m} a_{n}\left[n^{r}\left(\frac{n}{m}+\frac{r}{2}\right)^{3}+n^{3} m^{r-3}\right]\right\}+o(m) .
$$

Proof. Applying Abel's transform we obtain

$$
\begin{equation*}
g(x)=\sum_{n=1}^{\infty} \Delta a_{n} \widetilde{D}_{n}(x), \tag{2.1}
\end{equation*}
$$

where $\widetilde{D}_{n}(x)=\sum_{k=1}^{n} \sin k x$ is Dirichlet's conjugate kernel. Let us denote by $g^{(r)}(x)$ the $r-$ th derivatives for the function g. Let

$$
\begin{equation*}
\sum_{n=1}^{\infty} \Delta a_{n} \widetilde{D}_{n}^{(r)}(x), \tag{2.2}
\end{equation*}
$$

be the r-th derivatives of the series in the relation (2.1).

From the given conditions in the theorem and Lemma 1.1 (2), series (2.2) converges uniformly in $(0, \pi]$, so the following relation holds

$$
\begin{equation*}
g^{(r)}(x)=\sum_{n=1}^{\infty} \Delta a_{n} \widetilde{D}_{n}^{(r)}(x) . \tag{2.3}
\end{equation*}
$$

From the last relation we have

$$
\begin{equation*}
g^{(r)}(x)=\sum_{n=1}^{m} \Delta a_{n} \widetilde{D}_{n}^{(r)}(x)+\sum_{n=m+1}^{\infty} \Delta a_{n} \widetilde{D}_{n}^{(r)}(x)=I_{1}(x)+I_{2}(x) . \tag{2.4}
\end{equation*}
$$

In the following we will estimate sums $I_{1}(x)$ and $I_{2}(x)$. Let us start with estimation of the second sum. From the second condition in Lemma 1.1, the second condition of the theorem and fact that $\frac{\pi}{m+1}<x \leq \frac{\pi}{m}$, we have

$$
\begin{equation*}
I_{2}(x) \leq 4 \pi \cdot \sum_{n=m+1}^{\infty} \Delta a_{n} \frac{n^{r}}{x} \leq 8 m \sum_{n=m+1}^{\infty} n^{r} \Delta a_{n}=o(m) . \tag{2.5}
\end{equation*}
$$

For the first sum we have the following estimation

$$
I_{1}(x)=\sum_{n=1}^{m} \Delta a_{n} \widetilde{D}_{n}^{(r)}(x)=\sum_{n=1}^{m} a_{n}\left[\widetilde{D}_{n}^{(r)}(x)-\widetilde{D}_{n-1}^{(r)}(x)\right]-a_{m+1} \widetilde{D}_{m}^{(r)}(x),
$$

where $\widetilde{D}_{0}^{(r)}(x)=0$. Knowing that

$$
\widetilde{D}_{n}^{(r)}(x)-\widetilde{D}_{n-1}^{(r)}(x)=n^{r} \sin \left(n x+\frac{r \pi}{2}\right),
$$

taking into consideration Lemma 1.1 and the conditions in Theorem 2.1, we have

$$
I_{1}(x)=\sum_{n=1}^{m} n^{r} \sin \left(n x+\frac{r \pi}{2}\right)+O\left(m^{r+1} a_{m}\right) .
$$

In the last relation we can use the known fact that $\sin x=x+O\left(x^{3}\right)$ for $x \rightarrow 0$. The following relation then holds

$$
I_{1}(x)=\sum_{n=1}^{m} n^{r} a_{n}\left(n x+\frac{r \pi}{2}\right)+O\left[\sum_{n=1}^{m} n^{r} a_{n}\left(n x+\frac{r \pi}{2}\right)^{3}\right]+8 m^{r+1} a_{m} .
$$

Taking into consideration the fact that a_{n} is a monotone sequence we obtain

$$
m a_{m} \leq \frac{4}{m^{3}} \sum_{n=1}^{m} n^{3} a_{n}
$$

from which it follows that

$$
m^{r+1} a_{m} \leq 4 m^{r-3} \sum_{n=1}^{m} n^{3} a_{n} .
$$

From the above relations we have the following estimation for $I_{1}(x)$,

$$
\begin{equation*}
I_{1}(x)=\sum_{n=1}^{m} n^{r} a_{n}\left(n x+\frac{r \pi}{2}\right)+O\left\{\sum_{n=1}^{m} a_{n}\left[n^{r}\left(n x+\frac{r \pi}{2}\right)^{3}+n^{3} m^{r-3}\right]\right\} . \tag{2.6}
\end{equation*}
$$

Now proof of Theorem 2.1) follows from (2.4), (2.5) and (2.6).
Remark 2.2. The above result is a generalization of that given in [7].

Corollary 2.3. Let a_{n} be sequence of scalars such that $a_{n} \downarrow 0$. Then for $\frac{\pi}{m+1}<x \leq \frac{\pi}{m}$, $m=1,2, \ldots$, the following relation holds

$$
g(x)=\sum_{n=1}^{m} n a_{n} x+O\left(\frac{1}{m^{3}} \sum_{n=1}^{m} n^{3} a_{n}\right) .
$$

Theorem 2.4. Let $\left(a_{n}\right)$ be a sequence of scalars such that the following conditions hold:
(1) $a_{n} \rightarrow 0$ and $\Delta a_{n} \geq 0$
(2) $\sum_{n=1}^{\infty} n^{r+1} \Delta^{2} a_{n}<\infty$, for $r=0,1,2, \ldots$.

Then for $\frac{\pi}{m+1}<x \leq \frac{\pi}{m}, m=1,2, \ldots$ the following estimate is valid

$$
g^{(r)}(x) \leq M(r)\left\{m^{r+2}\left[a_{m}+\Delta a_{m}\right]+\sum_{n=1}^{m-1} n^{r+1}\left(\frac{n}{m}+\frac{r}{2}\right) \Delta a_{n}+o(m)\right\}
$$

where $M(r)$ is a constant which depends only on r.
Proof. Applying Abel's transform we obtain

$$
\sum_{n=1}^{\infty} n^{r} \Delta a_{n}=\sum_{n=1}^{\infty} \Delta^{2} a_{n} \sum_{i=1}^{n} i^{r} \leq \sum_{n=1}^{\infty} n^{r+1} \Delta^{2} a_{n}<\infty
$$

From the convergence of the series $\sum_{n=1}^{\infty} n^{r} \Delta a_{n}$ and Condition 2 in Lemma 1.1 we obtain that

$$
\sum_{n=1}^{\infty} \Delta a_{n} \widetilde{D}_{n}^{(r)}(x)
$$

converges uniformly in $(0, \pi]$, so the following relation is valid

$$
g^{(r)}(x)=\sum_{n=1}^{\infty} \Delta a_{n} \widetilde{D}_{n}^{(r)}(x) .
$$

From the other side we have that

$$
\widetilde{D}_{n}^{(r)}(x)=\frac{1}{2}\left(\cot \frac{x}{2}\right)^{(r)}+\bar{D}_{n}^{(r)}(x),
$$

respectively,

$$
\begin{align*}
g^{(r)}(x) & =\frac{a_{m}}{2}\left(\cot \frac{x}{2}\right)^{(r)}+\sum_{n=1}^{m-1} \Delta a_{n} \widetilde{D}_{n}^{(r)}(x)+\sum_{n=m}^{\infty} \Delta a_{n} \bar{D}_{n}^{(r)}(x) \\
& =\frac{a_{m}}{2}\left(\cot \frac{x}{2}\right)^{(r)}+J_{1}(x)+J_{2}(x) . \tag{2.7}
\end{align*}
$$

For $\frac{\pi}{m+1}<x \leq \frac{\pi}{m}$, we will have the following estimation

$$
\begin{equation*}
\left(\cot \frac{x}{2}\right)^{(r)} \leq \frac{M}{x^{r+1}} \leq M(r) m^{r+2} \tag{2.8}
\end{equation*}
$$

On the other hand it is known that

$$
\widetilde{D}_{n}^{(r)}(x)=\sum_{i=1}^{n} i^{r} \sin \left(i x+\frac{r \pi}{2}\right) \leq n^{r+1}\left(n x+\frac{r \pi}{2}\right) \leq \pi n^{r+1}\left(\frac{n}{m}+\frac{r}{2}\right)
$$

From last two relations we have the following estimation for $J_{1}(x)$,

$$
\begin{equation*}
J_{1}(x) \leq \pi \sum_{n=1}^{m-1} n^{r+1}\left(\frac{n}{m}+\frac{r}{2}\right) \Delta a_{n} \tag{2.9}
\end{equation*}
$$

In the following we will estimate the second sum $J_{2}(x)$. Applying the Abel transform we have

$$
\begin{aligned}
J_{2}(x) & =\sum_{n=m}^{\infty} \Delta^{2} a_{n} \sum_{i=0}^{n} \bar{D}_{i}^{(r)}(x)-\Delta a_{m} \sum_{i=0}^{m-1} \bar{D}_{i}^{(r)}(x) \\
& =\sum_{n=m}^{\infty} \Delta^{2} a_{n}\left\{\sum_{i=0}^{n} \bar{D}_{i}^{(r)}(x)-\sum_{i=0}^{m-1} \bar{D}_{i}^{(r)}(x)\right\}
\end{aligned}
$$

because $\sum_{n=m}^{\infty} \Delta^{2} a_{n}=\Delta a_{m}$.
Taking into consideration Lemma 1.1, we have the following estimation

$$
\sum_{i=0}^{n}\left|\bar{D}_{i}^{(r)}(x)\right| \leq 4 \pi \sum_{i=0}^{n} \frac{i^{r}}{x}+M \sum_{i=0}^{n} \frac{1}{x^{r+1}} \leq M(r) m n^{r+1} .
$$

In a similar way we can prove that

$$
\sum_{i=0}^{m-1}\left|\bar{D}_{i}^{(r)}(x)\right| \leq M(r) m^{r+2}
$$

Now the estimation of $J_{2}(x)$ can be expressed in the following way

$$
\begin{align*}
\left|J_{2}(x)\right| & \leq M(r)\left\{m \sum_{n=m}^{\infty} n^{r+1} \Delta^{2} a_{n}+m^{r+2} \Delta a_{m}\right\} \tag{2.10}\\
& =M(r)\left\{m^{r+2} \Delta a_{m}+o(m)\right\}
\end{align*}
$$

The proof of the theorem follows from relations (2.7), (2.8), (2.9) and (2.10).
Remark 2.5. The above theorem is a generalization of the result obtained in [7], from the upper side for the case $m \geq 11$.

Corollary 2.6. Let $a_{n} \rightarrow 0$ be a convex sequence of scalars. If

$$
\frac{\pi}{m+1}<x \leq \frac{\pi}{m}, m \geq 11
$$

then the following estimation holds

$$
\frac{a_{m}}{2} \cot \frac{x}{2}+\frac{1}{2 m} \sum_{n=1}^{m-1} n^{2} \Delta a_{n} \leq g(x) \leq \frac{a_{m}}{2} \cot \frac{x}{2}+\frac{6}{m} \sum_{n=1}^{m-1} n^{2} \Delta a_{n} .
$$

Remark 2.7. Telyakovskii compared his own results with those given by Hartman, Winter (see [3]), then with results given by Salem (see [4], [5]). Taking into consideration Corollary 2.3]and Corollary 2.6 for the case $r=0$, we can compare our results with the results mentioned above.

References

[1] S. ALJANCIC, R. BOJANIC and M. TOMIC, Sur le comportement asymtotique au voisinage de zero des series trigonometrique de sinus a coefficients monotones, Publ. Inst. Math. Acad. Serie Sci., 10 (1956), 101-120.
[2] N.K. BARY, Trigonometric Series, Moscow, 1961 (in Russian).
[3] Ph. HARTMAN and A. WINTER, On sine series with monotone coefficients, J. London Math. Soc., 28 (1953), 102-104.
[4] R. SALEM, Determination de l'order de grandeur a l'origine de certaines series trigonometrique, C.R. Acad. Paris, 186 (1928), 1804-1806.
[5] R. SALEM, Essais sur les series Trigonometriques, Paris, 1940.
[6] Sh.Sh. SHOGUNBENKOV, Certain estimates for sine series with convex coefficients (in Russian), Primenenie Funktzional'nogo analiza v teorii priblizhenii, Tver' 1993, 67-72.
[7] S.A. TELYAKOVSKI, On the behaivor near the origin of sine series with convex coefficients, Pub. De L'inst. Math. Nouvelle serie, 58(72) (1995), 43-50.
[8] Z. TOMOVSKI, Some results on L^{1}-approximation of the r-th derivateve of Fourier series, J. Inequal. Pure and Appl. Math., 3(1) (2002), Art. 10. [ONLINE: http://jipam.vu.edu.au/ article.php?sid=162].
[9] W.H. YOUNG, On the mode of oscillation of Fourier series and of its allied series, Proc. London Math. Soc., 12 (1913), 433-452.

