ON THE BEHAVIOR OF r-DERIVATIVE NEAR THE ORIGIN OF SINE SERIES WITH CONVEX COEFFICIENTS

Xh. Z. KRASNIQI AND N. L. BRAHA
Department of Mathematics and Computer Sciences, Avenue "Mother Theresa " 5, Prishtinë, 10000, Kosova-UNMIK
EMail: xheki00@hotmail.com and nbraha@yahoo.co

Received:	04 August, 2006
Accepted:	21 December, 2006
Communicated by:	H. Bor
2000 AMS Sub. Class.:	42 A15, 42A32.
Key words:	Sine series, Convex coefficients. Abstract:
In this paper we will give the behavior of the r-derivative near origin of sine series with convex coefficients.	

A

Sine Series With Convex

 CoefficientsXh. Z. Krasniqi and N. L. Braha vol. 8, iss. 1, art. 22, 2007

Title Page
Contents

44

Page 1 of 11
Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

Contents

1 Introduction and Preliminaries 3
2 Results

Sine Series With Convex Coefficients

Xh. Z. Krasniqi and N. L. Braha vol. 8, iss. 1 , art. 22, 2007

Title Page
Contents

$\boldsymbol{4}$	
$\mathbf{4}$	
Page 2 of 11	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-5756

1. Introduction and Preliminaries

Let us denote by

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} \sin n x \tag{1.1}
\end{equation*}
$$

the sine series of the function $f(x)$ with coefficients a_{n} such that $a_{n} \downarrow 0$ or $a_{n} \rightarrow 0$ and $\Delta^{2} a_{n}=\Delta a_{n}-\Delta a_{n+1} \geq 0, \Delta a_{n}=a_{n}-a_{n+1}$. It is a known fact that under these conditions, series (1.1) converges uniformly in the interval $\delta \leq x \leq 2 \pi-\delta$, $\forall \delta>0$ (see [2, p. 95]). In the following we will denote by $g(x)$ the sum of the series (1.1), i.e

$$
\begin{equation*}
g(x)=\sum_{n=1}^{\infty} a_{n} \sin n x . \tag{1.2}
\end{equation*}
$$

Many authors have investigated the behaviors of the series (1.1), near the origin with convex coefficients. Young in [9] gave the estimation for $|g(x)|$ near the origin from the upper side. Later Salem (see [4], [5]) proved the following estimation for the behavior of the function $g(x)$ near the origin

$$
g(x) \sim m a_{m},
$$

Sine Series With Convex

 CoefficientsXh. Z. Krasniqi and N. L. Braha vol. 8, iss. 1, art. 22, 2007

Title Page
Contents

Page 3 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-5756
holds for $a_{n} \downarrow 0$. In this context Telyakovskii (see [7]) has proved the behavior near the origin of the sine series with convex coefficients. He has compared his own results with those of Shogunbenkov (see [6]) and Aljancic et al. (see [1]).

In the sequel we will mention some results which are useful for further work. Dirichlet's kernels are denoted by

$$
\begin{gathered}
D_{n}(t)=\frac{1}{2}+\sum_{k=1}^{n} \cos k t=\frac{\sin \left(n+\frac{1}{2}\right) t}{2 \sin \frac{t}{2}} \\
\widetilde{D}_{n}(t)=\sum_{k=1}^{n} \sin k t=\frac{\cos \frac{t}{2}-\cos \left(n+\frac{1}{2}\right) t}{2 \sin \frac{t}{2}}
\end{gathered}
$$

and

$$
\bar{D}_{n}(t)=-\frac{1}{2} \cot \frac{t}{2}+\widetilde{D}_{n}(t)=-\frac{\cos \left(n+\frac{1}{2}\right) t}{2 \sin \frac{t}{2}}
$$

Let $E_{n}(t)=\frac{1}{2}+\sum_{k=1}^{n} e^{i k t}$ and $E_{-n}(t)=\frac{1}{2}+\sum_{k=1}^{n} e^{-i k t}$, then the following holds:

Lemma 1.1 ([8]). Let r be a non-negative integer. Then for all $0<x \leq \pi$ and all $n \geq 1$ the following estimates hold

1. $\left|E_{-n}{ }^{(r)}(x)\right| \leq \frac{4 \pi n^{r}}{|x|}$;
2. $\left|\widetilde{D}_{n}^{(r)}(x)\right| \leq \frac{4 \pi n^{r}}{|x|}$;
3. $\left|\bar{D}_{n}{ }^{(r)}(x)\right| \leq \frac{4 \pi n^{r}}{|x|}+O\left(\frac{1}{|x|^{r+1}}\right)$.

Sine Series With Convex Coefficients

Xh. Z. Krasniqi and N. L. Braha vol. 8, iss. 1, art. 22, 2007

Title Page
Contents

$\boldsymbol{4}$	
$\boldsymbol{4}$	
Page 4 of 11	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-5756

2. Results

Theorem 2.1. Let a_{n} be a sequence of scalars such that:

1. $a_{n} \downarrow 0$;
2. $\sum_{n=1}^{\infty} n^{r} \Delta a_{n}<\infty$, for $r=0,1,2, \ldots$,
then for $\frac{\pi}{m+1}<x \leq \frac{\pi}{m}, m=1,2, \ldots$ the following estimate is valid
$g^{(r)}(x)=\sum_{n=1}^{m} n^{r} a_{n}\left(n x+\frac{r \pi}{2}\right)+O\left\{\sum_{n=1}^{m} a_{n}\left[n^{r}\left(\frac{n}{m}+\frac{r}{2}\right)^{3}+n^{3} m^{r-3}\right]\right\}+o(m)$.
Proof. Applying Abel's transform we obtain

$$
\begin{equation*}
g(x)=\sum_{n=1}^{\infty} \Delta a_{n} \widetilde{D}_{n}(x), \tag{2.1}
\end{equation*}
$$

where $\widetilde{D}_{n}(x)=\sum_{k=1}^{n} \sin k x$ is Dirichlet's conjugate kernel. Let us denote by $g^{(r)}(x)$ the r-th derivatives for the function g. Let

$$
\begin{equation*}
\sum_{n=1}^{\infty} \Delta a_{n} \widetilde{D}_{n}^{(r)}(x), \tag{2.2}
\end{equation*}
$$

be the r-th derivatives of the series in the relation (2.1).
From the given conditions in the theorem and Lemma 1.1(2), series (2.2) converges uniformly in $(0, \pi]$, so the following relation holds

$$
\begin{equation*}
g^{(r)}(x)=\sum_{n=1}^{\infty} \Delta a_{n} \widetilde{D}_{n}^{(r)}(x) . \tag{2.3}
\end{equation*}
$$

Go Back
Full Screen

Sine Series With Convex

 CoefficientsXh. Z. Krasniqi and N. L. Braha vol. 8, iss. 1, art. 22, 2007

Title Page
Contents
4

Page 5 of 11

Close
journal of inequalities in pure and applied mathematics
issn: 1443-5756

From the last relation we have

$$
\begin{equation*}
g^{(r)}(x)=\sum_{n=1}^{m} \Delta a_{n} \widetilde{D}_{n}^{(r)}(x)+\sum_{n=m+1}^{\infty} \Delta a_{n} \widetilde{D}_{n}^{(r)}(x)=I_{1}(x)+I_{2}(x) . \tag{2.4}
\end{equation*}
$$

In the following we will estimate sums $I_{1}(x)$ and $I_{2}(x)$. Let us start with estimation of the second sum. From the second condition in Lemma 1.1, the second condition of the theorem and fact that $\frac{\pi}{m+1}<x \leq \frac{\pi}{m}$, we have

$$
\begin{equation*}
I_{2}(x) \leq 4 \pi \cdot \sum_{n=m+1}^{\infty} \Delta a_{n} \frac{n^{r}}{x} \leq 8 m \sum_{n=m+1}^{\infty} n^{r} \Delta a_{n}=o(m) . \tag{2.5}
\end{equation*}
$$

For the first sum we have the following estimation

$$
I_{1}(x)=\sum_{n=1}^{m} \Delta a_{n} \widetilde{D}_{n}^{(r)}(x)=\sum_{n=1}^{m} a_{n}\left[\widetilde{D}_{n}^{(r)}(x)-\widetilde{D}_{n-1}^{(r)}(x)\right]-a_{m+1} \widetilde{D}_{m}^{(r)}(x)
$$

where $\widetilde{D}_{0}^{(r)}(x)=0$. Knowing that

$$
\widetilde{D}_{n}^{(r)}(x)-\widetilde{D}_{n-1}^{(r)}(x)=n^{r} \sin \left(n x+\frac{r \pi}{2}\right)
$$

$$
I_{1}(x)=\sum_{n=1}^{m} n^{r} \sin \left(n x+\frac{r \pi}{2}\right)+O\left(m^{r+1} a_{m}\right)
$$

In the last relation we can use the known fact that $\sin x=x+O\left(x^{3}\right)$ for $x \rightarrow 0$. The following relation then holds

$$
I_{1}(x)=\sum_{n=1}^{m} n^{r} a_{n}\left(n x+\frac{r \pi}{2}\right)+O\left[\sum_{n=1}^{m} n^{r} a_{n}\left(n x+\frac{r \pi}{2}\right)^{3}\right]+8 m^{r+1} a_{m}
$$

Page 6 of 11
Go Back

Sine Series With Convex

 CoefficientsXh. Z. Krasniqi and N. L. Braha vol. 8, iss. 1, art. 22, 2007

Title Page
Contents

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Taking into consideration the fact that a_{n} is a monotone sequence we obtain

$$
m a_{m} \leq \frac{4}{m^{3}} \sum_{n=1}^{m} n^{3} a_{n}
$$

from which it follows that

$$
m^{r+1} a_{m} \leq 4 m^{r-3} \sum_{n=1}^{m} n^{3} a_{n}
$$

From the above relations we have the following estimation for $I_{1}(x)$,
(2.6) $I_{1}(x)=\sum_{n=1}^{m} n^{r} a_{n}\left(n x+\frac{r \pi}{2}\right)+O\left\{\sum_{n=1}^{m} a_{n}\left[n^{r}\left(n x+\frac{r \pi}{2}\right)^{3}+n^{3} m^{r-3}\right]\right\}$.

Now proof of Theorem 2.1 follows from (2.4), (2.5) and (2.6).
Remark 1. The above result is a generalization of that given in [7].
Corollary 2.2. Let a_{n} be sequence of scalars such that $a_{n} \downarrow 0$. Then for $\frac{\pi}{m+1}<x \leq$ $\frac{\pi}{m}, m=1,2, \ldots$, the following relation holds

$$
g(x)=\sum_{n=1}^{m} n a_{n} x+O\left(\frac{1}{m^{3}} \sum_{n=1}^{m} n^{3} a_{n}\right) .
$$

Theorem 2.3. Let $\left(a_{n}\right)$ be a sequence of scalars such that the following conditions hold:

1. $a_{n} \rightarrow 0$ and $\Delta a_{n} \geq 0$
2. $\sum_{n=1}^{\infty} n^{r+1} \Delta^{2} a_{n}<\infty$, for $r=0,1,2, \ldots$.

Sine Series With Convex Coefficients

Xh. Z. Krasniqi and N. L. Braha vol. 8, iss. 1, art. 22, 2007

Title Page
Contents

$\mathbf{4}$	
$\mathbf{P a g e} 7$ of 11	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-5756

Then for $\frac{\pi}{m+1}<x \leq \frac{\pi}{m}, m=1,2, \ldots$ the following estimate is valid

$$
g^{(r)}(x) \leq M(r)\left\{m^{r+2}\left[a_{m}+\Delta a_{m}\right]+\sum_{n=1}^{m-1} n^{r+1}\left(\frac{n}{m}+\frac{r}{2}\right) \Delta a_{n}+o(m)\right\}
$$

where $M(r)$ is a constant which depends only on r.
Proof. Applying Abel's transform we obtain

$$
\sum_{n=1}^{\infty} n^{r} \Delta a_{n}=\sum_{n=1}^{\infty} \Delta^{2} a_{n} \sum_{i=1}^{n} i^{r} \leq \sum_{n=1}^{\infty} n^{r+1} \Delta^{2} a_{n}<\infty
$$

From the convergence of the series $\sum_{n=1}^{\infty} n^{r} \Delta a_{n}$ and Condition 2 in Lemma 1.1 we obtain that

$$
\sum_{n=1}^{\infty} \Delta a_{n} \widetilde{D}_{n}^{(r)}(x)
$$

converges uniformly in $(0, \pi]$, so the following relation is valid

$$
g^{(r)}(x)=\sum_{n=1}^{\infty} \Delta a_{n} \widetilde{D}_{n}^{(r)}(x)
$$

From the other side we have that

$$
\widetilde{D}_{n}^{(r)}(x)=\frac{1}{2}\left(\cot \frac{x}{2}\right)^{(r)}+\bar{D}_{n}^{(r)}(x),
$$

Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-5756

$$
\begin{align*}
g^{(r)}(x) & =\frac{a_{m}}{2}\left(\cot \frac{x}{2}\right)^{(r)}+\sum_{n=1}^{m-1} \Delta a_{n} \widetilde{D}_{n}^{(r)}(x)+\sum_{n=m}^{\infty} \Delta a_{n} \bar{D}_{n}^{(r)}(x) \\
& =\frac{a_{m}}{2}\left(\cot \frac{x}{2}\right)^{(r)}+J_{1}(x)+J_{2}(x) \tag{2.7}
\end{align*}
$$

For $\frac{\pi}{m+1}<x \leq \frac{\pi}{m}$, we will have the following estimation

$$
\begin{equation*}
\left(\cot \frac{x}{2}\right)^{(r)} \leq \frac{M}{x^{r+1}} \leq M(r) m^{r+2} \tag{2.8}
\end{equation*}
$$

On the other hand it is known that

$$
\widetilde{D}_{n}^{(r)}(x)=\sum_{i=1}^{n} i^{r} \sin \left(i x+\frac{r \pi}{2}\right) \leq n^{r+1}\left(n x+\frac{r \pi}{2}\right) \leq \pi n^{r+1}\left(\frac{n}{m}+\frac{r}{2}\right)
$$

From last two relations we have the following estimation for $J_{1}(x)$,

$$
\begin{equation*}
J_{1}(x) \leq \pi \sum_{n=1}^{m-1} n^{r+1}\left(\frac{n}{m}+\frac{r}{2}\right) \Delta a_{n} \tag{2.9}
\end{equation*}
$$

In the following we will estimate the second sum $J_{2}(x)$. Applying the Abel transform we have

$$
\begin{aligned}
J_{2}(x) & =\sum_{n=m}^{\infty} \Delta^{2} a_{n} \sum_{i=0}^{n} \bar{D}_{i}^{(r)}(x)-\Delta a_{m} \sum_{i=0}^{m-1} \bar{D}_{i}^{(r)}(x) \\
& =\sum_{n=m}^{\infty} \Delta^{2} a_{n}\left\{\sum_{i=0}^{n} \bar{D}_{i}^{(r)}(x)-\sum_{i=0}^{m-1} \bar{D}_{i}^{(r)}(x)\right\},
\end{aligned}
$$

Sine Series With Convex Coefficients

Xh. Z. Krasniqi and N. L. Braha vol. 8, iss. 1, art. 22, 2007

Title Page
Contents
4

Page 9 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

In a similar way we can prove that

$$
\sum_{i=0}^{m-1}\left|\bar{D}_{i}^{(r)}(x)\right| \leq M(r) m^{r+2}
$$

Now the estimation of $J_{2}(x)$ can be expressed in the following way

$$
\begin{align*}
\left|J_{2}(x)\right| & \leq M(r)\left\{m \sum_{n=m}^{\infty} n^{r+1} \Delta^{2} a_{n}+m^{r+2} \Delta a_{m}\right\} \tag{2.10}\\
& =M(r)\left\{m^{r+2} \Delta a_{m}+o(m)\right\}
\end{align*}
$$

The proof of the theorem follows from relations (2.7), (2.8), (2.9) and (2.10).
Remark 2. The above theorem is a generalization of the result obtained in [7], from the upper side for the case $m \geq 11$.

Corollary 2.4. Let $a_{n} \rightarrow 0$ be a convex sequence of scalars. If

$$
\frac{\pi}{m+1}<x \leq \frac{\pi}{m}, m \geq 11
$$

then the following estimation holds

$$
\frac{a_{m}}{2} \cot \frac{x}{2}+\frac{1}{2 m} \sum_{n=1}^{m-1} n^{2} \Delta a_{n} \leq g(x) \leq \frac{a_{m}}{2} \cot \frac{x}{2}+\frac{6}{m} \sum_{n=1}^{m-1} n^{2} \Delta a_{n}
$$

Remark 3. Telyakovskii compared his own results with those given by Hartman, Winter (see [3]), then with results given by Salem (see [4], [5]). Taking into consideration Corollary 2.2 and Corollary 2.4 for the case $r=0$, we can compare our results with the results mentioned above.

Sine Series With Convex

 CoefficientsXh. Z. Krasniqi and N. L. Braha vol. 8, iss. 1, art. 22, 2007

Title Page
Contents

Page 10 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] S. ALJANCIC, R. BOJANIC and M. TOMIC, Sur le comportement asymtotique au voisinage de zero des series trigonometrique de sinus a coefficients monotones, Publ. Inst. Math. Acad. Serie Sci., 10 (1956), 101-120.
[2] N.K. BARY, Trigonometric Series, Moscow, 1961 (in Russian).
[3] Ph. HARTMAN AND A. WINTER, On sine series with monotone coefficients, J. London Math. Soc., 28 (1953), 102-104.
[4] R. SALEM, Determination de l'order de grandeur a l'origine de certaines series trigonometrique, C.R. Acad. Paris, 186 (1928), 1804-1806.
[5] R. SALEM, Essais sur les series Trigonometriques, Paris, 1940.
[6] Sh.Sh. SHOGUNBENKOV, Certain estimates for sine series with convex coefficients (in Russian), Primenenie Funktzional'nogo analiza v teorii priblizhenii, Tver' 1993, 67-72.
[7] S.A. TELYAKOVSKI, On the behaivor near the origin of sine series with convex coefficients, Pub. De L'inst. Math. Nouvelle serie, 58(72) (1995), 43-50.
[8] Z. TOMOVSKI, Some results on L^{1}-approximation of the r-th derivateve of Fourier series, J. Inequal. Pure and Appl. Math., 3(1) (2002), Art. 10. [ONLINE: http://jipam.vu.edu.au/article.php?sid=162].
[9] W.H. YOUNG, On the mode of oscillation of Fourier series and of its allied series, Proc. London Math. Soc., 12 (1913), 433-452.
J
m

Sine Series With Convex Coefficients

Xh. Z. Krasniqi and N. L. Braha vol. 8, iss. 1, art. 22, 2007

Title Page
Contents

Page 11 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

