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1. Introduction and Main Results

The Berry-Esseen inequality is one of the most important inequalities in the theory
of probability. This inequality was independently discovered by two mathemati-
cians, Andrew C. Berry {]) and Carl-Gustav Esseens|] in 1941 and 1945 re-
spectively. LetX,, X, ..., X,, be independent random varibles with zero mean and
>or, EX? =1. DefineW,, = X; + Xy + --- + X,,. ThenVar W,, = 1. Let F}, be

the distribution function ofV,, and® the standard normal distribution function, i.e.,

Fu(z) = P(W, <a) and ®(z) = V%Tr / e dt.

The central limit theorem shows th&t converges pointwise t& asn — oo and
the bounds of this convergence are,

(1.1) sup [P(W, < x) — ®(x)| < Co > B|X,f*
zeR i1
and
(1.2) P(W, < 2) — B(z)] < —21 imxﬁ
' "= 14 |x)? — ‘

for uniform and non-uniform versions respectively, where kgffansC, are posi-
tive constants and stated under the assumption#hdt|® < oo fori =1,2,... n.

In the case of identicaX;’s, Siganov (LL1]) and Chen (]) improved the constant
down to 0.7655 and 0.7164, respectively. For non-uniform bounds, Nag@pw§s
the first to obtain 1.2) and Michel (p]) calculated the constant to be 30.84.

Without assuming identically distributed.s, Beek (fL5]) sharpened the constant
down to 0.7975 in 1972 for the uniform version. The best bound was found by
Siganov ([L1]) in 1986.
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Theorem 1.1 (Siganov,1986)Let X, X,,..., X, be independent random vari-
ables such thattX; = 0 and E|X;|> < oo for i = 1,2,...,n. Assume that
St EX?=1 Then

O(x)| <0.7915> " E|X?,

i=1

sup [P(W,, < x) —

zeR
wherelV,, = X; + Xo + - + X,,.

For the non-uniform version, BikelisY]) generalized{.2) to this case and Paditz
([9]) calculatedC; to be 114.7 in 1977. He also improved his result down to 31.935
in 1989.

Theorem 1.2 (Paditz ([L0]),1989). Under the assumptions of Theorém, we have
31.935
® Xi)?
1< L 5 By

In 2001, Chen and Shao3{) gave new versions ofl(l) and (L.2) without as-
suming the existence of third moments. Their results are

(1.3) sup|P(W, <z)— &(x)

zeR

|P(Wn§x)_

<41) {BIXPI(1X] > 1)) + E[XPI(1X| < 1)}
=1
and

(1.4) [P(W, < z) — O(x)|

" (EXZI(1X] > 1+ |z))
< C : — +
SO e

EIX;PI(X;] <1+ |z])
(1+ |=[)3 ’
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where(C is a positive constant and A) is an indicator random variable such that

I(4) =

1 if A istrue,
0 otherwise.

In 2005, Neammanee§]) combined the concentration inequality ir8)[ with a
coupling approach to calculate the constantlirl), giving,

(15 [P(Wn <z)— O(x)|

C(EXAI(IX > 14 2)  EIXPI(X] <1+ ]2
S@Z{ (l |x : 1D, EXL( |Z : |4|)}’
(1+1%D (T+1%D

i=1

whereC} is 21.44 for large values af such thatz| > 14.

Thongtha and Neammaned 4]) improved the concentration inequality used in
([8]) and gave a better constant, i.e., 9.7 figr > 14. The method which was used
in ([8]) is Stein’s method which was first introduced by Steib) in 1972. In this
work, we provide a better constant by using Paditz-Siganov theorems. The results
are as follows.

Theorem 1.3.We have
|P(W,, < z) — ®(x)]
n 2 > 13 )
<cy {EX, I(| X > 14 |z]) | E|IXPI(1X] <1+ Iw|>}7
=1

(1 4 [z])? (1 + [a])?
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where

To compare Theorer.3 with the result of Thongtha and Neammane®&]] in

(1.5), we give Corollaryl.4.
Corollary 1.4. We have

P(W, < 2)—d(x)| < cZ{

where

We note from Corollaryl.4 that our result is better than a bound from Thongtha

and Neammanee in1fl]).

(49.89
59.45
73.52
76.17
45.80

39.39

\

EXZI(|1X;] > 1+|%))

0<|z| <1.3,
1.3 < || < 2,
2< |z <3,

3 < |z| < 7.98,
7.98 < |z| < 14,
|z| > 14.

E|X;PI(|X;] <14 1%])

(9.54
19.74
18.38
14.63
5.13

| 3.55

(1 +[5)?

if

if

0<|z| <1.3,
1.3 < || <2,
2< |z] <3,

3 < |z| < 7.98,
7.98 < |z| < 14,
|z| > 14.
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2. Proof of the Main Results

In this section, we will prove Theorermh 3 by using the Paditz-Siganov theorems.

Corollary 1.4 can be obtained easily from Theorén3. To prove these results, let

YZ,$:XZI(|X1| < 1—|—CL’), SQTZZY;,LIH

=Y EXJI(IX;| >1+x), o= EIXPI(|X)] <1+u),

i=1 i=1
%:% and 6x:(1ixx>2+(1fx) for z > 0.

Proposition 2.1. For eachn € N, we have

1YL ElYie — EYi P < B, + {2,

2.1—-2a, < VarS, <1,and

3. If o, <0.11, then0 < \/7<1+1452041
Proof. 1. By the fact that
(2.1) |EX;I(|X;] <142)|=|EX;I(|X;| > 1+2),

BEIX;? <> EX?=1 and E?X; < EX},
=1

we have

Y ElYi. - EYi.' =) EIXI(|Xi| <1+2) - EX;I(X;| < 1+2)°

i=1 i=1
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<Y [BIXGPI(X| < L+ 2) + 3EXPI(1X] < 14 2)|[EXI(|X| < 1+ )]
=1

+3EIX (| X <1+2) |[EB°XI (|Xi| < 14 2) |+ |EX (|Xi| <14 2)|°]

<Y EIXPI(X] < 1+2)+3)  |[EXI(IX)] <1+ )]

i=1 =1

+3) EIX|EX(1X)| <1+ 2) [|[EX] (X <1+1)]

i=1

+ Y CEIXPI(X] < 1+2) |[EXT (X <14 2)]

=1

< B +3) |[EXI(Xi| > 1+ 2)[+3) EIXPIEXI(X| > 1+ )]

=1 i=1

+Y EXT (X > 1+ )]

i=1

<ﬁm+3ZE|X\I X > 1+2) +3ZE\X][ 1X;| > 1+ )

i=1 =1

+Y EIX(X| =1+ )

=1
=B, + 7Y E|IXi|I(|X;] > 1+ )
1=1

E|XiPI(Xi] > 1+ ) Ta,
< = )
5”+7Z (1+x) & (1+x)
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2. By (2.1), we note that

n

Var S, = zn:\/al“ Yi. = Z(Eyﬁg - E%Y,)
i—1

=1

=Y EXI(IXi| <1+z) =Y E°X;I(X;| <1+x)

=1 =1
=1-> EXVI(|Xi| > 142) =) E’X;I(|X;| >1+x)
i=1 i=1
(2.2) =1—a,— Y E*X;I(|Xi| > 1+u).
=1

From this and the fact that, > 0, we haveVar S, < 1.
By (2.2), we have

VarS, = 1—a, — » E°X;I(|X;| > 1+x)

=1

>1—a,— Y EXJI(X;| >1+z)=1-2a,.
=1
Hence,l — 2, < Var 5, < 1.
3. For0 < t < 0.11, by using Taylor’s formula, we have

1 t
——— =1+ ——— for somece (0,0.11
V1—2t (1—2¢)3 ( |
t
<1+ 7 < 1+ 1.452t.
(1 —-2(0.11))2
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From this fact and 2., we have
0< 1 <
VVar S, — 1 —2a,

<1+ 1.452a,

for a, <0.11.

Proposition 2.2. For eachz > 0, letY;, = YIV_T%I andS, =>" | Vi,

1.If o, <0.099and1.3 <z < 2,then

P (S _a- ESx) B (a: - ESw>‘ _ 545130, | 41195,
"= /Var S, v/ Var S,

2.1f (1+2)%, < i, then

‘P (S_ < x—ESx) _(I)((x—ESx>‘ < Cia, N Cs3,
Y= /Var S, VVarS, )| = (1 +2)2 " (1+x)3
where C; =57.186 Cy =73.515 for 2 <z <3,
Ch,=33.318 Cy=76.17 for 3 <z <7098,
C,=3976 (Cy=458 for 798 <z < 14, and

Cy =1.226 (5, =239.382 for = > 14.

Proof. 1. By Proposition 2.1(1) of ([4]) and Propositior?.1(2), we have
Oy

1+

(2.3) |ES,| < <0.043 and 1> VarS, > 0.802
xr

which imply

z—FES, 24 0.043
24 0< < = 2.2813.
(2.4) — VVarS, = 1/0.802

S Uty 4oy
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By Proposition2.1(1) and ¢.3),

3

- EY;,
ElY;.|? E
; Vil Z \/VarS
1
———— ) E|Yi,— EY,|?
(VarS )2 Z | |
< 1 (ﬁx Tay, )
(Var S,)2 1+
(2.5) = 1.39230, + 4.2375a,.

Note thatS, = Yoy Ym is the sum of independent random variables whose
E}_/w =0 and VarS, = 1.
By (2.5 and Theoren. .1,

|P (S, < 2) = ®(2)| <0.7915) " BV,
=1
< 0.7915(1.39233, + 4.2375q,)
< 1.1023, + 3.354a,

for all z € R. From this fact, £.3) and ¢.4), we have

_ r—FES, z—FES,
PSS, <——= ) - —=
‘ ( — /Var Sx) (\/Vaer)

3
< (1+ (%)) (1.1025, + 3.354a,,)
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_ (3.2813)3(1.1026, + 3.354a,)

(1+ (5%))
38.9330, + 118.495a,
- (0.957 + z)3
41.1956,  125.379q,
S Ut2P  (Axop
< 41.1950, n 54.513a,
= W+a)p | (T+a)
where we use the fact that
14z
0.957 + x

in the fourth inequality.

2.Case2 <z < 3.

We can prove the result of this case by using the same argument as 1.
Case3 <z < 7.98.

To bound‘P (S} < 3%) - (\’j\‘%)‘ in 1., we used Theorem 1.

But in this case, we will use Theoreim?.
We note that

(2.6) 0<a,<00125, 1> VarS, > 0.975,

and, by Proposition 2.1(1) of 1ff]), |E'S,.| < 0.00313.
Then, for3 < x < 7.98,

<1.019 forall 1.3 <x<?2

1 2.29 U
- < ; and > E[Y[* < 1.0398,+1.819;.
z—FES, z—FES, -
1 + (x/Vaer> (1 + \/Vaer> =1
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From these facts2(6) and Theoreni.2, we have

r— FES, xr— FES,

P(S, < —2) -0 ——==
‘ ( - \/VarS;E) (\/Var51>‘
(31.935) 37 | B|Y;.|? _ (31.935)(2.29) S B

S z—FES. 3 B z—FES. 3
1 (22 ) (1+ 252 )
< 73.131(1.03945, + 1.818av,) < (1.0008)3(75.9833, + 132.952c,)
- (0.99687 + x)3 - (1+2)3
76.175,  133.27q, < 76.176,  33.318a,
~ (1+2x)3 (1+x)32 — (1+2)? (1+x)2’
where we use the fact that
1+x
——— for all < )
099687 12 = 0008 3< <798

in the fourth inequality.

Casex > 7.98.

We can prove the result of this case by using the same argument as ti3e<case
7.98. =

We are now ready to prove Theorens.

Proof of Theoreni..3. It suffices to consider only > 0 as we can simply apply the
results to—1W,, whenz < 0.

Casel 0 <z < 1.3

Note that forz > 0,

EXZI(|X;| > D+E|XPI(X:| < 1) < EXZI( X > 142)+E| Xi*1(| X < 1+2)
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and for0 < x < 1.3, (1 + z)® < 12.167.
From these facts and.(9), we have

[P(Wy < ) — ()]

<41y {EXEI(\XA > 1)+ E|X,PI(X)| < 1)}
=1

<41y {EXEI(\XZ-] >142)+ E|XPI(X] <1+ x)}

=1
4.1(12.167) ) 5
22 000) EX2I(1X;| > 1 EIX,PI(X;| <1 }
ey 2 \EXHX 2 L a) + ELXPI(X] < 1+
L (EX2I(|X;] >1 E|XPI(|X;] <1
<1983 Xl > 142)  EXPI(X| <1+2)]
£ (1+2)2 (1+ )3

Before proving another case, we need the equation

4.931a, - z—FES, r—FES,
2.7) [P(W, < 2)—0(a)] < m*'lj (sz < ﬁ) " (ﬁ)]

for a, <0.11 andz > 1.3.
By (2.9) of ([14)]), it suffices to show that fot, < 0.11 andz > 1.3,

(2.8) |P(S. < 1)~ <>|_3319%+\P(s‘ g“”""ES) @(‘—Es)\

(1+ )2 v/ Var S v/ Var S,
By Proposition?.1(1) and Propositior.1(2), we have
xr — ESx Qg
s - ESx > 2R
Narg, =7 SRy
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which implies

"V/Var S, 1+2

]
g
IN
=
|
=
E

and
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From these facts, Propositiani(1l) , Propositior?.1(3) anda, < 0.11, we have

T ES

1 z
v/ Var S, T v'Var S,

Vamed(r—i)”

1 ES,
N <0.89e§> vVar S,

14520, Q (14 1.452a,)

x‘—l—

1 x
= o (0.896%) ‘\/Vaf S

< +
T V/271(0.89)(0.193)(1 + 2)3 (14 2) /27(0.89)(0.933)(1 + z)
3.373a,7 05580, _ 3.931ay

Srep hepE S 0hap
From this fact, £.8) and ¢.9), we have 2.7)
Case213<x<?2.
By the fact that P(IV,, < x) — ®(x)| < 0.55 ([3, pp. 246]), we can assurqﬁ%2 <
0.011, i.e. a, < 0.099.
From this fact, £.7) and Propositior2.2(1), we have

4931, _ r—FES, z—FES,
PW,<z)—®)|< 24 |p(S, <) @ [ =22
= W‘(Hx)”' ( Varsx) ( Varsx)'
4.931c, 41.1956,  54.513a,

~ (1+x)? + (1+z)3 * (1+x)?
59.444a,  41.1958,
= < 59.4446,,.
(+22  (+ap =
Case 3. 2 < ¢ < 14.
Subcase 3.1(1 4 z)%a, > 1.
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Using the same argument of subcase 1.1 in Theorem 1.24) dnd the facts that

1
(2.10) e

1 22
=1+-<15andez >0.9223 for 2 <z < 14,
xr

we can show that

|P(W,, < z) — ®(x)| < 37.4080,.
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Schase 32(1 + x)zam < % Paditz-Siganov Theorems
Note that forr > 2, we have
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we have _
(10.3326: if 13<z<2

0.2500: if 2 < <3,

5, < { 0.1926: if 3 <z <798,
0.1120= if 7.98 <z <14,

[ 0.0900: if x> 14.

Then Corollaryl.4follows from this fact and Theorem 3.
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