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Abstract: Maximum entropy principles in nonextensive statistical physics are revisited as
an application of the Tsallis relative entropy defined for non-negative matrices
in the framework of matrix analysis. In addition, some matrix trace inequalities
related to the Tsallis relative entropy are studied.
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1. Introduction

In 1988, Tsallis introduced the one-parameter extended entropy for the analysis of
a physical model in statistical physics [10]. In our previous papers, we studied the
properties of the Tsallis relative entropy [5, 4] and the Tsallis relative operator en-
tropy [17, 6]. The problems on the maximum entropy principle in Tsallis statistics
have been studied for classical systems and quantum systems [9, 11, 2, 1]. Such
problems were solved by the use of the Lagrange multipliers formalism. We give
a new approach to such problems, that is, we solve them by applying the non-
negativity of the Tsallis relative entropy without using the Lagrange multipliers for-
malism. In addition, we show further results on the Tsallis relative entropy.

In the present paper, the set ofn × n complex matrices is denoted byMn(C).
That is, we deal withn × n matrices because of Lemma2.2 in Section2. However
some results derived in the present paper also hold for the infinite dimensional case.
In the sequel, the set of all density matrices (quantum states) is represented by

Dn(C) ≡ {X ∈ Mn(C) : X ≥ 0, Tr[X] = 1} .

X ∈ Mn(C) is called by a non-negative matrix and denoted byX ≥ 0, if we have
〈Xx, x〉 ≥ 0 for all x ∈ Cn. That is, for a Hermitian matrixX, X ≥ 0 means that
all eigenvalues ofX are non-negative. In addition,X ≥ Y is defined byX−Y ≥ 0.
For−I ≤ X ≤ I andλ ∈ (−1, 0) ∪ (0, 1), we denote the generalized exponential
function byexpλ (X) ≡ (I + λX)1/λ. As the inverse function ofexpλ(·), for X ≥ 0
andλ ∈ (−1, 0)∪ (0, 1), we denote the generalized logarithmic function bylnλ X ≡
Xλ−I

λ
. Then the Tsallis relative entropy and the Tsallis entropy for non-negative

matricesX andY are defined by

Dλ(X|Y ) ≡ Tr
[
X1−λ (lnλ X − lnλ Y )

]
, Sλ(X) ≡ −Dλ(X|I).

These entropies are generalizations of the von Neumann entropy [16] and of the
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Umegaki relative entropy [14] in the sense that

lim
λ→0

Sλ(X) = S0(X) ≡ −Tr[X log X]

and
lim
λ→0

Dλ(X|Y ) = D0(X|Y ) ≡ Tr[X(log X − log Y )].
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2. Maximum Entropy Principle in Nonextensive Statistical Physics

In this section, we study the maximization problem of the Tsallis entropy with a
constraint on theλ-expectation value. In quantum systems, the expectation value of
an observable (a Hermitian matrix)H in a quantum state (a density matrix)X ∈
Dn(C) is written asTr[XH]. Here, we consider theλ-expectation valueTr[X1−λH]
as a generalization of the usual expectation value. Firstly, we impose the following
constraint on the maximization problem of the Tsallis entropy:

C̃λ ≡
{
X ∈ Dn(C) : Tr[X1−λH] = 0

}
,

for a givenn×n Hermitian matrixH. We denote a usual matrix norm by‖·‖, namely
for A ∈ Mn(C) andx ∈ Cn,

‖A‖ ≡ max
‖x‖=1

‖Ax‖ .

Then we have the following theorem.

Theorem 2.1. Let Y = Z−1
λ expλ (−H/‖H‖), whereZλ ≡ Tr[expλ (−H/‖H‖)],

for an n × n Hermitian matrixH and λ ∈ (−1, 0) ∪ (0, 1). If X ∈ C̃λ, then
Sλ(X) ≤ −cλ lnλ Z−1

λ , wherecλ ≡ Tr[X1−λ].

Proof. SinceZλ ≥ 0 and we havelnλ(x
−1Y ) = lnλ Y + (lnλ x−1)Y λ for a non-

negative matrixY and scalarx, we calculate

Tr[X1−λ lnλ Y ] = Tr[X1−λ lnλ

{
Z−1

λ expλ (−H/ ‖H‖)
}
]

= Tr[X1−λ
{
−H/ ‖H‖+ lnλ Z−1

λ (I − λH/ ‖H‖)
}
]

= Tr[X1−λ
{
lnλ Z−1

λ I − Z−λ
λ H/ ‖H‖

}
] = cλ lnλ Z−1

λ ,
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since lnλ Z−1
λ =

Z−λ
λ −1

λ
by the definition of the generalized logarithmic function

lnλ(·). By the non-negativity of the Tsallis relative entropy:

(2.1) Tr[X1−λ lnλ Y ] ≤ Tr[X1−λ lnλ X],

we have

Sλ(X) = −Tr[X1−λ lnλ X] ≤ −Tr[X1−λ lnλ Y ] = −cλ lnλ Z−1
λ .

Next, we consider the slightly changed constraint:

Cλ ≡
{
X ∈ Dn(C) : Tr[X1−λH] ≤ Tr[Y 1−λH] and Tr[X1−λ] ≤ Tr[Y 1−λ]

}
for a givenn × n Hermitian matrixH, as the maximization problem for the Tsallis
entropy. To this end, we prepare the following lemma.

Lemma 2.2.For a givenn×n Hermitian matrixH, if n is a sufficiently large integer,
then we haveZλ ≥ 1.

Proof.

(i) For a fixed0 < λ < 1 and a sufficiently largen, we have

(2.2) (1/n)λ ≤ 1− λ.

From the inequalities−‖H‖ I ≤ H ≤ ‖H‖ I, we have

(2.3) (1− λ)
1
λ I ≤ expλ (−H/ ‖H‖) ≤ (1 + λ)

1
λ I.

By inequality (2.2), we have

1

n
I ≤ (1− λ)

1
λ I ≤ expλ (−H/ ‖H‖) ,

which impliesZλ ≥ 1.
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(ii) For a fixed−1 < λ < 0 and a sufficiently largen, we have

(2.4) (1/n)λ ≥ 1− λ.

Analogously to (i), we have inequalities (2.3) for −1 < λ < 0. By inequality
(2.4), we have

1

n
I ≤ (1− λ)

1
λ I ≤ expλ (−H/ ‖H‖) ,

which impliesZλ ≥ 1.

Then we have the following theorem by the use of Lemma2.2.

Theorem 2.3. Let Y = Z−1
λ expλ (−H/‖H‖), whereZλ ≡ Tr[expλ (−H/‖H‖)],

for λ ∈ (−1, 0) ∪ (0, 1) and ann × n Hermitian matrixH. If X ∈ Cλ and n is
sufficiently large, thenSλ(X) ≤ Sλ(Y ).

Proof. Due to Lemma2.2, we havelnλ Z−1
λ ≤ 0 for a sufficiently largen. Thus we

havelnλ Z−1
λ Tr[X1−λ] ≥ lnλ Z−1

λ Tr[Y 1−λ] for X ∈ Cλ. Similarly to the proof of
Theorem2.1, we have

Tr[X1−λ lnλ Y ] = Tr[X1−λ lnλ

{
Z−1

λ expλ (−H/ ‖H‖)
}
]

= Tr[X1−λ
{
−H/ ‖H‖+ lnλ Z−1

λ (I − λH/ ‖H‖)
}
]

= Tr[X1−λ
{
lnλ Z−1

λ I − Z−λ
λ H/ ‖H‖

}
]

≥ Tr[Y 1−λ
{
lnλ Z−1

λ I − Z−λ
λ H/ ‖H‖

}
]

= Tr[Y 1−λ
{
−H/ ‖H‖+ lnλ Z−1

λ (I − λH/ ‖H‖)
}
]

= Tr[Y 1−λ lnλ

{
Z−1

λ expλ (−H/ ‖H‖)
}
]

= Tr[Y 1−λ lnλ Y ].
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By Eq.(2.1) we have

Sλ(X) = −Tr[X1−λ lnλ X] ≤ −Tr[X1−λ lnλ Y ] ≤ −Tr[Y 1−λ lnλ Y ] = Sλ(Y ).

Remark1. Since−x1−λ lnλ x is a strictly concave function,Sλ is a strictly concave
function on the setCλ. This means that the maximizingY is uniquely determined
so that we may regardY as a generalized Gibbs state, since an original Gibbs state
e−βH/ Tr[e−βH ], whereβ ≡ 1/T andT represents a physical temperature, gives the
maximum value of the von Neumann entropy. Thus, we may define a generalized
Helmholtz free energy by

Fλ(X, H) ≡ Tr[X1−λH]− ‖H‖Sλ(X).

This can be also represented by the Tsallis relative entropy such as

Fλ(X, H) = ‖H‖Dλ(X|Y ) + lnλ Z−1
λ Tr[X1−λ(‖H‖ − λH)].

The following corollary easily follows by taking the limit asλ → 0.

Corollary 2.4 ([12, 15]). LetY = Z−1
0 exp (−H/‖H‖), whereZ0 ≡ Tr[exp (−H/‖H‖)],

for ann× n Hermitian matrixH.

(i) If X ∈ C̃0, thenS0(X) ≤ log Z0.

(ii) If X ∈ C0, thenS0(X) ≤ S0(Y ).
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3. On Some Trace Inequalities Related to the Tsallis Relative
Entropy

In this section, we consider an extension of the following inequality [8]:

(3.1) Tr[X(log X + log Y )] ≤ 1

p
Tr[X log Xp/2Y pXp/2]

for non-negative matricesX andY , andp > 0.
For the proof of the following Theorem3.3, we use the following famous inequal-

ities.

Lemma 3.1 ([8]). For any Hermitian matricesA andB, 0 ≤ λ ≤ 1 andp > 0, we
have the inequality:

Tr
[(

epA]λe
pB

)1/p
]
≤ Tr

[
e(1−λ)A+λB

]
,

where theλ-geometric mean for positive matricesA andB is defined by

A]λB ≡ A1/2
(
A−1/2BA−1/2

)λ
A1/2.

Lemma 3.2 ([7, 13]). For any Hermitian matricesG andH, we have the Golden-
Thompson inequality:

Tr
[
eG+H

]
≤ Tr

[
eGeH

]
.

Theorem 3.3.For positive matricesX andY , p ≥ 1 and0 < λ ≤ 1, we have

(3.2) Dλ(X|Y ) ≤ −Tr[X lnλ(X
−p/2Y pX−p/2)1/p].

Proof. First of all, we note that we have the following inequality [3]

(3.3) Tr[(Y 1/2XY 1/2)rp] ≥ Tr[(Y r/2XrY r/2)p]
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for non-negative matricesX andY , and0 ≤ r ≤ 1, p > 0. Similar to the proof
of Theorem 2.2 in [5], inequality (3.2) easily follows by settingA = log X and
B = log Y in Lemma3.1such that

Tr[(Xp]λY
p)1/p] ≤ Tr[elog X1−λ+log Y λ

]

≤ Tr[elog X1−λ

elog Y λ

]

= Tr[X1−λY λ],(3.4)

by Lemma3.2. In addtion, we have

(3.5) Tr[XrY r] ≤ Tr[(Y 1/2XY 1/2)r], (0 ≤ r ≤ 1),

on takingp = 1 of inequality (3.3). By (3.4) and (3.5) we obtain:

Tr[(Xp]λY
p)1/p] = Tr

[{
Xp/2(X−p/2Y pX−p/2)λXp/2

}1/p
]

≥ Tr[X(X−p/2Y pX−p/2)λ/p].

Thus we have,

Dλ(X|Y ) =
Tr[X −X1−λY λ]

λ

≤ Tr[X −X(X−p/2Y pX−p/2)λ/p]

λ

= −
Tr[X

{
((X−p/2Y pX−p/2)1/p)λ − I

}
]

λ
= −Tr[X lnλ(X

−p/2Y pX−p/2)1/p].
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Remark2. For positive matricesX andY , 0 < p < 1 and0 < λ ≤ 1, the following
inequality does not hold in general:

(3.6) Dλ(X|Y ) ≤ −Tr[X lnλ(X
−p/2Y pX−p/2)1/p].

Indeed, the inequality (3.6) is equivalent to

(3.7) Tr[X(X−p/2Y pX−p/2)λ/p] ≤ Tr[X1−λY λ].

Then we have many counter-examples. If we setp = 0.3, λ = 0.9 and X =(
10 3
3 9

)
, Y =

(
5 4
4 5

)
, then inequality (3.7) fails. (R.H.S. minus L.H.S. of

(3.7) approximately becomes -0.00309808.) Thus, inequality (3.6) is not true in
general.

Corollary 3.4.

(i) For positive matricesX andY , the trace inequality

Dλ(X|Y ) ≤ −Tr[X lnλ(X
−1/2Y X−1/2)]

holds.

(ii) For positive matricesX andY , andp ≥ 1, we have inequality (3.1).

Proof.

(i) Putp = 1 in (1) of Theorem3.3.

(ii) Take the limit asλ → 0.
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