Journal of Inequalities in Pure and Applied Mathematics

CORRECTION TO THE PAPER "BOUNDED LINEAR OPERATOR IN PROBABILISTIC NORMED SPACES"

R. SAADATI AND H. ADIBI

Institute for Applied Mathematics Studies
1, 4th Fajr, Amol 46176-54553, Iran
EMail: rsaadati@eml.cc
Department of Mathematics and Computer Science Amirkabir University of Technology 424 Hafez Avenue, Tehran 15914, Iran EMail: adibih@aut.ac.ir

Abstract

We show that Theorem 2.4 of a recent paper by I.H. Jebril and R.I.M. Ali is incorrect.

2000 Mathematics Subject Classification: 54E70, 46S40
Key words: Probabilistic normed spaces; Bounded linear operator; Counterexample.
The authors would like to thank the referees for giving useful comments and suggestions for the improvement of this paper.

Theorem 2.4 of [2] asserts that if T is strongly B-bounded and $\mu_{T p}$ is strictly increasing on $[0,1]$, then T is strongly C-bounded. To show that this is not so,

Correction to the paper "Bounded Linear Operator in Probabilistic Normed Spaces"
R. Saadati and H. Adibi

Title Page

Contents
Go Back
Close
Quit
Page 2 of 4

Page 4
consider the simple $P N$ space generated by the real line \mathbb{R} with its usual norm and the distribution function G given by $G(x)=x /(1+x)$, so that for any p in \mathbb{R} and any $x \geq 0, \nu_{p}(x)=x /(x+|p|)$. This space is a Menger space under \mathbf{M} and therefore a $P N$ space in the sense of Šerstnev [1]. Now let $T: \mathbb{R} \rightarrow \mathbb{R}$ be the linear map defined by $T p=2 p$ and note that $\nu_{2 p}$ is strictly increasing on $[0,1]$. Then if $h>2$,

$$
\nu_{T p}(h x)=\frac{h x}{h x+2|p|} \geq \frac{h x}{h x+h|p|}=\nu_{p}(x)
$$

whence T is strongly B-bounded. (Note that this holds in any simple $P N$ space.) But for $x=1 / 2$ and $p=1 / 4$, we have $\nu_{p}(x)=2 / 3>1 / 2=1-x$, whereas, for any h in $(0,1), \nu_{2 p}(h x)=h /(1+h)<1-h / 2=1-h x$, so that T is not strongly C-bounded.

Correction to the paper "Bounded Linear Operator in Probabilistic Normed Spaces"
R. Saadati and H. Adibi

Title Page
Contents

Go Back
Close
Quit
Page 3 of 4

Page 3 of 4

References

[1] C. ALSINA, B. SCHWEIZER AND A. SKLAR, On the definition of a probabilistic normed space, Aequationes Math., 46 (1993) 91-98.
[2] I.H. JEBRIL AND R.M. ALI, Bounded linear operator in probabilistic normed spaces, J. Inequal. Pure Appl. Math., 4(1) (2003), Art. 8. [ONLINE: http://jipam.vu.edu.au/article.php?sid=244]

Correction to the paper "Bounded Linear Operator in Probabilistic Normed Spaces"
R. Saadati and H. Adibi

. Ineq. Pure and Appl. Math. 6(4) Art. 108, 2005 http://jipam.vu.edu.au

