THE ARITHMETIC-ALGEBRAIC MEAN INEQUALITY VIA SYMMETRIC MEAN

Department of Mathematics
University of California, Irvine
340 Rowland Hall, Irvine, CA 92697-3875, USA
EMail: ovillare@math.uci.edu
URL: http://math.uci.edu/~oscar

Received:	02 August, 2008
Accepted:	06 August, 2008
Communicated by:	P.S. Bullen
2000 AMS Sub. Class.:	Primary 26D15
Key words:	Arithmetic mean, Geometric mean, Symmetric mean, Inequality
Abstract:	We give two proofs of the arithmetic-algebraic mean inequality by giving a char- acterization of symmetric means.

AG mean
Oscar G. Villareal vol. 9, iss. 3, art. 78, 2008

Title Page
Contents

Conts

$\langle 4$	
4	
Page 1 of 12	
Go Back	

Full Screen

Close

journal of inequalities in pure and applied mathematics

Contents

1 Introduction 3
2 First Proof of Theorem 1.1 4
3 Second Proof of Theorem 1.1 7

Oscar G. Villareal vol. 9, iss. 3, art. 78, 2008

Title Page
Contents

44	$>$
$\mathbf{4}$	$>$

Page 2 of 12
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
© 2007 Victoria University. All rights reserved.

1. Introduction

Let $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$ be an n-tuple of positive real numbers. The inequality of arithmetic-algebraic means states that

$$
\sqrt[n]{a_{1} a_{2} \cdots a_{n}} \leq \frac{a_{1}+\cdots+a_{n}}{n}
$$

The left-hand side of the inequality is called the geometric mean and the right-hand side the arithmetic mean. We will refer to this inequality as $A G_{n}$ to specify the size of the n-tuple. This inequality has been known in one form or another since antiquity and numerous proofs have been given over the centuries. Bullen's book [1], for example, gives over seventy proofs. We give two proofs based on a characterization of symmetric means as the smallest among the means constructed by homogeneous symmetric polynomials. The main result is
Theorem 1.1. Let $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$ be an n-tuple of positive real numbers, $f\left(x_{1}\right.$, \ldots, x_{n}) be a homogenous symmetric polynomial of degree $k, 1 \leq k \leq n$, having positive coefficients, and let $s_{k}\left(x_{1}, \ldots, x_{n}\right)$ be the k-th elementary symmetric polynomial. Then

$$
\frac{s_{k}\left(a_{1}, \ldots, a_{n}\right)}{\binom{n}{k}} \leq \frac{f\left(a_{1}, \ldots, a_{n}\right)}{f(1, \ldots, 1)}
$$

There is equality if and only if the a_{i}^{\prime} s are all equal.
Note that $\binom{n}{k}=s_{k}(1, \ldots, 1)$. Similarly we note that if the coefficents of f are all equal to one, then $f(1, \ldots, 1)$ is the number of monomials comprising f. Thus it is reasonable to think of $\frac{f\left(a_{1}, \ldots, a_{n}\right)}{f(1, \ldots, 1)}$ as a mean for f as in the theorem. The theorem implies the arithmetic-algebraic mean inequality by taking $k=n, f\left(x_{1}, \ldots, x_{n}\right)=$ $\left(x_{1}+\cdots+x_{n}\right)^{n}$ so that $f(1, \ldots, 1)=n^{n}$, and then taking n-th roots.

We shall give two proofs of Theorem 1.1. The first depends on Muirhead's Theorem. The second proves $A G_{n}$ and Theorem 1.1 in one induction step.

AG mean
Oscar G. Villareal
vol. 9, iss. 3, art. 78, 2008

Title Page
Contents

Page 3 of 12
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. First Proof of Theorem 1.1

For any function $f\left(x_{1}, \ldots, x_{n}\right)$, the symmetric group S_{n} acts on the x_{k} 's, and so we set

$$
\sum!f\left(x_{1}, \ldots, x_{n}\right)=\sum_{\sigma \in S_{n}} f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
$$

In particular, for an n-tuple of nonnegative real numbers $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$, when

$$
f\left(x_{1}, \ldots, x_{n}\right)=x^{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}
$$

we set

$$
[\alpha]=\frac{1}{n!} \sum!x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}
$$

Note that $[1,0, \ldots, 0]$ is the arithmetic mean while $\left[\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right]$ is the geometric mean.

Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right), \beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)$ be two n-tuples of nonnegative real numbers. Muirhead's theorem gives conditions under which an inequality exists of the form

$$
[\alpha]=\frac{1}{n!} \sum!x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}} \leq[\beta]=\frac{1}{n!} \sum!x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \cdots x_{n}^{\beta_{n}}
$$

valid for all positve x_{i} 's. To do this we first note that $[\alpha]$ is invariant under permutations of the α_{i} 's and so we introduce an eqivalence relation as follows. We write $\alpha \leq \beta$ if some permutation of the coordinates of α and β satisfies

$$
\begin{gathered}
\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}=\beta_{1}+\beta_{2}+\ldots+\beta_{n} \\
\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{n} \text { and } \beta_{1} \geq \beta_{2} \geq \ldots \geq \beta_{n} \\
\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k} \leq \beta_{1}+\beta_{2}+\ldots+\beta_{k} \text { for } k=1,2, \ldots, n .
\end{gathered}
$$

Muirhead's Theorem states

AG mean
Oscar G. Villareal
vol. 9, iss. 3, art. 78, 2008

Title Page
Contents

Page 4 of 12
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Theorem 2.1. The inequality

$$
[\alpha]=\frac{1}{n!} \sum!x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}} \leq[\beta]=\frac{1}{n!} \sum!x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \cdots x_{n}^{\beta_{n}}
$$

is valid for all positve x_{i} 's if and only if $\alpha \leq \beta$. There is equality only when $\alpha=\beta$ or the x_{i} 's are all equal.

We refer to [2] for the proof of this theorem and further discussion. Before giving the first proof of Theorem 1.1 we need a lemma.
Lemma 2.2. Let $\left(a_{1 j}, \ldots, a_{n_{j} j}\right) \in \mathbb{R}^{n_{j}}$ for $j=1, \ldots, m$, and let c_{1}, \ldots, c_{m} be positive real numbers. Suppose $a \leq \frac{a_{1 j}+\cdots+a_{n_{j} j}}{n_{j}}$ for each j. Then

$$
a \leq \frac{c_{1}\left(a_{11}+\cdots+a_{n_{1} 1}\right)+c_{2}\left(a_{12}+\cdots+a_{n_{2} 2}\right)+\cdots+c_{m}\left(a_{1 m}+\cdots+a_{n_{m} m}\right)}{c_{1} n_{1}+c_{2} n_{2}+\cdots+c_{m} n_{m}}
$$

AG mean
Oscar G. Villareal
vol. 9, iss. 3, art. 78, 2008

Title Page
Contents
There is equality if and only if the original inequalities are all equalities.
Proof. For each j we rewrite $a \leq \frac{a_{1 j}+\cdots+a_{n_{j} j}}{n_{j}}$ as $n_{j} a \leq a_{1 j}+\cdots+a_{n_{j} j}$. We then multiply by c_{j} to obtain $c_{j} n_{j} a \leq c_{j}\left(a_{1 j}+\cdots+a_{n_{j} j}\right)$. We now add over all j to obtain

$$
\begin{aligned}
& \left(c_{1} n_{1}+c_{2} n_{2}+\cdots+c_{m} n_{m}\right) a \\
& \leq c_{1}\left(a_{11}+\cdots+a_{n_{1} 1}\right)+c_{2}\left(a_{12}+\cdots+a_{n_{2} 2}\right)+\cdots+c_{m}\left(a_{1 m}+\cdots+a_{n_{m} m}\right)
\end{aligned}
$$

Page 5 of 12
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
By dividing by the coefficient of a we get the lemma. Note that if at least one of the original inequalities is strict, then the argument shows the final inequality is also strict.

Proof of Theorem 1.1. Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a homogenous symmetric polynomial of degree k with positive coefficients. The monomials of f break up into orbits under
the action of the symmetric group S_{n} and so we may write $f=c_{1} f_{1}+\cdots+c_{m} f_{m}$, $c_{j}>0$ where each f_{j} is a homogenous polynomial with all non-zero coefficients equal to one and for which S_{n} acts transitively. In view of Lemma 2.2, for the proof of Theorem 1.1 we may assume $f\left(x_{1}, \ldots, x_{n}\right)$ itself is a homogenous polynomial of degree k with all non-zero coefficients equal to one and for which S_{n} acts transitively.

For such an f, it follows that there exists an α such that $f\left(x_{1}, \ldots, x_{n}\right)=t[\alpha]$, where $t=f(1,1, \ldots, 1)$ is the number of monomials comprising f. We note that $s_{k}\left(x_{1}, \ldots, x_{n}\right)=\binom{n}{k}[1,1, \ldots, 1,0, \ldots, 0]$ with $k 1$'s and $n-k 0$'s. Since $[1,1, \ldots, 1,0, \ldots, 0] \leq \alpha$, Theorem 2.1 gives the result.

AG mean
Oscar G. Villareal vol. 9, iss. 3, art. 78, 2008

Title Page
Contents

Page 6 of 12
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

3. Second Proof of Theorem 1.1

The inequality of arithmetic-geometric means can be stated in polynomial form in two ways. By taking n-th powers we get

$$
a_{1} \cdots a_{n} \leq\left(\frac{a_{1}+\cdots+a_{n}}{n}\right)^{n}
$$

Alternately, if we let $a_{i}=A_{i}^{n}$ we get

$$
A_{1} \cdots A_{n} \leq \frac{A_{1}^{n}+\cdots+A_{n}^{n}}{n}
$$

We will refer to these equivalent inequalities also as $A G_{n}$.
Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a homogenous symmetric polynomial. The monomials of f break up into orbits under the action of the symmetric group S_{n} and so we may write $f=c_{1} f_{1}+\cdots+c_{m} f_{m}, c_{j} \in \mathbb{R}$ where each f_{j} is a homogenous polynomial with all non-zero coefficients equal to one and for which S_{n} acts transitively. In view of Lemma 2.2, for the proof of Theorem 1.1 we may assume $f\left(x_{1}, \ldots, x_{n}\right)$ itself is a homogenous polynomial with all non-zero coefficients equal to one and for which S_{n} acts transitively.

Proposition 3.1. Assume $A G_{2}, \ldots, A G_{n-1}$. Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a homogenous symmetric polynomial of degree $k, 1 \leq k \leq n$, with all non-zero coefficients equal to one and for which S_{n} acts transitively. Assume $f\left(x_{1}, \ldots, x_{n}\right) \neq x_{1}^{n}+\cdots+x_{n}^{n}$. Then the conclusion of Theorem 1.1 holds.
Proof. The polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ has a monomial of the form $x_{1}^{\ell_{1}} x_{2}^{\ell_{2}} \cdots x_{s}^{\ell_{s}}$ where $k=\operatorname{deg} f=\ell_{1}+\cdots+\ell_{s}$ and $0<\ell_{j}<n$. By $A G_{\ell_{j}}$ for each j we have

AG mean
Oscar G. Villareal
vol. 9, iss. 3, art. 78, 2008

Title Page
Contents

Page 7 of 12
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\begin{aligned}
\ell_{1} x_{1} x_{2} \cdots x_{\ell_{1}} & \leq x_{1}^{\ell_{1}}+\cdots+x_{\ell_{1}}^{\ell_{1}}, \\
\ell_{2} x_{\ell_{1}+1} x_{\ell_{1}+2} \cdots x_{\ell_{1}+\ell_{2}} & \leq x_{\ell_{1}+1}^{\ell_{2}}+\cdots+x_{\ell_{1}+\ell_{2}}^{\ell_{2}},
\end{aligned}
$$

$$
\ell_{s} x_{\ell_{1}+\cdots+\ell_{s-1}+1} x_{\ell_{1}+\cdots+\ell_{s-1}+2} \cdots x_{\ell_{1}+\cdots+\ell_{s}} \leq x_{\ell_{1}+\cdots+\ell_{s-1}+1}^{\ell_{s}}+\cdots+x_{\ell_{1}+\cdots+\ell_{s}}^{\ell_{s}} .
$$

Since $k=\operatorname{deg} f=\ell_{1}+\cdots+\ell_{s}$, we multiply the inequalities to obtain

$$
\begin{equation*}
\ell_{1} \cdots \ell_{s} x_{1} \cdots x_{k} \leq\left(x_{1}^{\ell_{1}}+\cdots+x_{\ell_{1}}^{\ell_{1}}\right) \cdots\left(x_{\ell_{1}+\cdots+\ell_{s-1}+1}^{\ell_{s}}+\cdots+x_{\ell_{1}+\cdots+\ell_{s}}^{\ell_{s}}\right) . \tag{3.1}
\end{equation*}
$$

Inequality (3.1) now yields
AG mean
Oscar G. Villareal
vol. 9, iss. 3, art. 78, 2008

Title Page

Contents
(3.2) $\sum!\ell_{1} \cdots \ell_{s} x_{1} \cdots x_{k}$

$$
\leq \sum!\left(x_{1}^{\ell_{1}}+\cdots+x_{\ell_{1}}^{\ell_{1}}\right) \cdots\left(x_{\ell_{1}+\cdots+\ell_{s}-1+1}^{\ell_{s}}+\cdots+x_{\ell_{1}+\cdots+\ell_{s}}^{\ell_{s}}\right) .
$$

Since $\sum!x_{1} \cdots x_{k}$ consists of $n!$ monomials with coefficient one, we get

$$
\sum!x_{1} \cdots x_{k}=\frac{n!}{\binom{n}{k}} s_{k}\left(x_{1}, \ldots, x_{n}\right) .
$$

Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
where $t=f(1, \ldots, 1)$ is the number of monomials of f. Plugging this into (3.2), then we see that if the x_{i} 's are not all equal then at least one permutation of (3.1) is a strict inequality and hence inequality (3.2) is also strict.

By the previous proposition and the discussion preceding it, in order to prove Theorem 1.1, it suffices to prove $A G_{n}$ for all $n \geq 2$.
Theorem 3.2. $A G_{n}$ is true for all $n \geq 2$.
Proof. The proof is by induction on n. The case $n=2$ is standard. For $x, y \in \mathbb{R}$, $x, y>0$ we have $(\sqrt{x}-\sqrt{y})^{2} \geq 0$ with equality if and only if $x=y$. Expanding we get.

$$
\begin{aligned}
x-2 \sqrt{x y}+y & \geq 0, \\
x+y & \geq 2 \sqrt{x y}, \\
\frac{x+y}{2} & \geq \sqrt{x y} .
\end{aligned}
$$

We now assume $A G_{2}, \ldots, A G_{n}$ and we prove $A G_{n+1}$. To this end, it suffices to show that

$$
x_{1} \cdots x_{n+1} \leq\left(\frac{x_{1}+\cdots+x_{n+1}}{n+1}\right)^{n+1}
$$

AG mean
Oscar G. Villareal
vol. 9, iss. 3, art. 78, 2008

Title Page
Contents

Page 9 of 12
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Where we have set $s=x_{1}+\cdots+x_{n+1}$. Multiplying these inequalities over k, we get

$$
\begin{aligned}
x_{1} \cdots x_{n+1} & \leq \prod_{k=1}^{n+1} \frac{s+(n-1) x_{k}}{2 n} \\
& =\frac{1}{(2 n)^{n+1}} \prod_{k=1}^{n+1}\left(s+(n-1) x_{k}\right) .
\end{aligned}
$$

Multiplying through by $(2 n)^{n+1}$ and expanding we get,

$$
\begin{equation*}
(2 n)^{n+1} x_{1} \cdots x_{n+1} \leq \sum_{k=0}^{n+1}(n-1)^{k} s_{k}\left(x_{1}, \ldots, x_{n+1}\right) s^{n+1-k} \tag{3.3}
\end{equation*}
$$

We now use Proposition 3.1 and the discussion preceding it to conclude

$$
s_{k}\left(x_{1}, \ldots, x_{n+1}\right) \leq\binom{ n+1}{k} \frac{s^{k}}{(n+1)^{k}}
$$

for $0<k<n+1$. Plugging this into (3.3), we get,
(3.4) $(2 n)^{n+1} x_{1} \cdots x_{n+1}$

$$
\leq \sum_{k=0}^{n}\binom{n+1}{k}\left(\frac{n-1}{n+1}\right)^{k} s^{n+1}+(n-1)^{n+1} s_{n+1}\left(x_{1}, \ldots, x_{n+1}\right)
$$

Moving

$$
(n-1)^{n+1} s_{n+1}\left(x_{1}, \ldots, x_{n+1}\right)=(n-1)^{n+1} x_{1} \cdots x_{n+1}
$$

Oscar G. Villareal vol. 9, iss. 3, art. 78, 2008

Title Page
Contents

Page 10 of 12
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
to the other side, we get

$$
\begin{aligned}
\left((2 n)^{n+1}-(n-1)^{n+1}\right) x_{1} \cdots x_{n+1} & \leq \sum_{k=0}^{n}\binom{n+1}{k}\left(\frac{n-1}{n+1}\right)^{k} s^{n+1} \\
& =\left[\sum_{k=0}^{n+1}\binom{n+1}{k}\left(\frac{n-1}{n+1}\right)^{k}-\left(\frac{n-1}{n+1}\right)^{n+1}\right] s^{n+1} \\
& =\left[\left(\frac{n-1}{n+1}+1\right)^{n+1}-\left(\frac{n-1}{n+1}\right)^{n+1}\right] s^{n+1} \\
& =\left[\left(\frac{2 n}{n+1}\right)^{n+1}-\left(\frac{n-1}{n+1}\right)^{n+1}\right] s^{n+1} \\
& =\left((2 n)^{n+1}-(n-1)^{n+1}\right) \frac{s^{n+1}}{(n+1)^{n+1}}
\end{aligned}
$$

Cancelling $\left((2 n)^{n+1}-(n-1)\right)^{n+1}$, we get

$$
\begin{equation*}
x_{1} \cdots x_{n+1} \leq\left(\frac{x_{1}+\cdots+x_{n+1}}{n+1}\right)^{n+1} \tag{3.5}
\end{equation*}
$$

as desired. We note that if the x_{k} 's are distinct, then by Proposition 3.1, the inequalites used in equation (3.4) are strict. It follows that in this case inequality (3.5) is also strict.

To recap our argument, Lemma 2.2 reduces the proof of Theorem 1.1 to the case where $f\left(x_{1}, \ldots, x_{n}\right)$ is a homogenous polynomial with all non-zero coefficients equal to one, for which S_{n} acts transitively. Proposition 3.1 further reduces the proof to the $A G_{n}$. Finally, the proof of $A G_{n}$ is achieved in Theorem 3.2.

Page 11 of 12
Go Back
AG mean
Oscar G. Villareal
vol. 9, iss. 3, art. 78, 2008

Title Page
Contents

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] P.S. BULLEN, Handbook of Means and their Inequalities, Kluwer Acad. Press, Dordrecht, 2003.
[2] G.H. HARDY, J.E. LITTLEWOOD and G. POLYA, Inequalities, Cambridge Univ. Press, 1964.

AG mean
Oscar G. Villareal vol. 9, iss. 3, art. 78, 2008

Title Page
Contents

Page 12 of 12
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

