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Abstract: We give two proofs of the arithmetic-algebraic mean inequality by giving a char-
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1. Introduction

Let (a1, . . . , an) ∈ Rn be ann-tuple of positive real numbers. The inequality of
arithmetic-algebraic means states that

n
√

a1a2 · · · an ≤
a1 + · · ·+ an

n
.

The left-hand side of the inequality is called the geometric mean and the right-hand
side the arithmetic mean. We will refer to this inequality asAGn to specify the size of
then-tuple. This inequality has been known in one form or another since antiquity
and numerous proofs have been given over the centuries. Bullen’s book [1], for
example, gives over seventy proofs. We give two proofs based on a characterization
of symmetric means as the smallest among the means constructed by homogeneous
symmetric polynomials. The main result is

Theorem 1.1. Let (a1, . . . , an) ∈ Rn be ann-tuple of positive real numbers,f(x1,
. . . , xn) be a homogenous symmetric polynomial of degreek, 1 ≤ k ≤ n, having
positive coefficients, and letsk(x1, . . . , xn) be thek-th elementary symmetric poly-
nomial. Then

sk(a1, . . . , an)(
n
k

) ≤ f(a1, . . . , an)

f(1, . . . , 1)
.

There is equality if and only if thea′is are all equal.

Note that
(

n
k

)
= sk(1, . . . , 1). Similarly we note that if the coefficents off are

all equal to one, thenf(1, . . . , 1) is the number of monomials comprisingf . Thus it
is reasonable to think off(a1,...,an)

f(1,...,1)
as a mean forf as in the theorem. The theorem

implies the arithmetic-algebraic mean inequality by takingk = n, f(x1, . . . , xn) =
(x1 + · · ·+ xn)n so thatf(1, . . . , 1) = nn, and then takingn-th roots.

We shall give two proofs of Theorem1.1. The first depends on Muirhead’s The-
orem. The second provesAGn and Theorem1.1 in one induction step.
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2. First Proof of Theorem 1.1

For any functionf(x1, . . . , xn), the symmetric groupSn acts on thexk’s, and so we
set ∑

! f(x1, . . . , xn) =
∑
σ∈Sn

f(xσ(1), . . . , xσ(n)).

In particular, for ann-tuple of nonnegative real numbersα = (α1, α2, . . . , αn), when

f(x1, . . . , xn) = xα = xα1
1 xα2

2 · · ·xαn
n ,

we set

[α] =
1

n!

∑
! xα1

1 xα2
2 · · ·xαn

n .

Note that[1, 0, . . . , 0] is the arithmetic mean while[ 1
n
, 1

n
, . . . , 1

n
] is the geometric

mean.
Let α = (α1, α2, . . . , αn), β = (β1, β2, . . . , βn) be twon-tuples of nonnegative

real numbers. Muirhead’s theorem gives conditions under which an inequality exists
of the form

[α] =
1

n!

∑
! xα1

1 xα2
2 · · ·xαn

n ≤ [β] =
1

n!

∑
! xβ1

1 xβ2

2 · · ·xβn
n

valid for all positvexi’s. To do this we first note that[α] is invariant under permu-
tations of theαi’s and so we introduce an eqivalence relation as follows. We write
α ≤ β if some permutation of the coordinates ofα andβ satisfies

α1 + α2 + · · ·+ αn = β1 + β2 + . . . + βn,

α1 ≥ α2 ≥ · · · ≥ αn andβ1 ≥ β2 ≥ . . . ≥ βn,

α1 + α2 + · · ·+ αk ≤ β1 + β2 + . . . + βk for k = 1, 2, . . . , n.

Muirhead’s Theorem states
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Theorem 2.1.The inequality

[α] =
1

n!

∑
! xα1

1 xα2
2 · · ·xαn

n ≤ [β] =
1

n!

∑
! xβ1

1 xβ2

2 · · ·xβn
n

is valid for all positvexi’s if and only ifα ≤ β. There is equality only whenα = β
or thexi’s are all equal.

We refer to [2] for the proof of this theorem and further discussion. Before giving
the first proof of Theorem1.1we need a lemma.

Lemma 2.2. Let (a1j, . . . , anjj) ∈ Rnj for j = 1, . . . ,m, and let c1, . . . , cm be

positive real numbers. Supposea ≤ a1j+···+anjj

nj
for eachj. Then

a ≤ c1(a11 + · · ·+ an11) + c2(a12 + · · ·+ an22) + · · ·+ cm(a1m + · · ·+ anmm)

c1n1 + c2n2 + · · ·+ cmnm

.

There is equality if and only if the original inequalities are all equalities.

Proof. For eachj we rewritea ≤ a1j+···+anjj

nj
asnja ≤ a1j + · · · + anjj. We then

multiply by cj to obtaincjnja ≤ cj(a1j + · · · + anjj). We now add over allj to
obtain

(c1n1 + c2n2 + · · ·+ cmnm)a

≤ c1(a11 + · · ·+ an11) + c2(a12 + · · ·+ an22) + · · ·+ cm(a1m + · · ·+ anmm).

By dividing by the coefficient ofa we get the lemma. Note that if at least one of
the original inequalities is strict, then the argument shows the final inequality is also
strict.

Proof of Theorem1.1. Letf(x1, . . . , xn) be a homogenous symmetric polynomial of
degreek with positive coefficients. The monomials off break up into orbits under
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the action of the symmetric groupSn and so we may writef = c1f1 + · · · + cmfm,
cj > 0 where eachfj is a homogenous polynomial with all non-zero coefficients
equal to one and for whichSn acts transitively. In view of Lemma2.2, for the proof
of Theorem1.1we may assumef(x1, . . . , xn) itself is a homogenous polynomial of
degreek with all non-zero coefficients equal to one and for whichSn acts transitively.

For such anf , it follows that there exists anα such thatf(x1, . . . , xn) = t[α],
where t = f(1, 1, . . . , 1) is the number of monomials comprisingf . We note
that sk(x1, . . . , xn) =

(
n
k

)
[1, 1, . . . , 1, 0, . . . , 0] with k 1’s and n − k 0’s. Since

[1, 1, . . . , 1, 0, . . . , 0] ≤ α, Theorem2.1gives the result.
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3. Second Proof of Theorem1.1

The inequality of arithmetic-geometric means can be stated in polynomial form in
two ways. By takingn-th powers we get

a1 · · · an ≤
(

a1 + · · ·+ an

n

)n

.

Alternately, if we letai = An
i we get

A1 · · ·An ≤
An

1 + · · ·+ An
n

n
.

We will refer to these equivalent inequalities also asAGn.
Let f(x1, . . . , xn) be a homogenous symmetric polynomial. The monomials off

break up into orbits under the action of the symmetric groupSn and so we may write
f = c1f1 + · · · + cmfm, cj ∈ R where eachfj is a homogenous polynomial with
all non-zero coefficients equal to one and for whichSn acts transitively. In view of
Lemma2.2, for the proof of Theorem1.1 we may assumef(x1, . . . , xn) itself is a
homogenous polynomial with all non-zero coefficients equal to one and for which
Sn acts transitively.

Proposition 3.1.AssumeAG2,. . . ,AGn−1. Letf(x1, . . . , xn) be a homogenous sym-
metric polynomial of degreek, 1 ≤ k ≤ n, with all non-zero coefficients equal to
one and for whichSn acts transitively. Assumef(x1, . . . , xn) 6= xn

1 + · · ·+xn
n. Then

the conclusion of Theorem1.1holds.

Proof. The polynomialf(x1, . . . , xn) has a monomial of the formx`1
1 x`2

2 · · ·x`s
s where

k = deg f = `1 + · · ·+ `s and0 < `j < n. By AG`j
for eachj we have
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`1x1x2 · · ·x`1 ≤ x`1
1 + · · ·+ x`1

`1
,

`2x`1+1x`1+2 · · ·x`1+`2 ≤ x`2
`1+1 + · · ·+ x`2

`1+`2
,

...

`sx`1+···+`s−1+1x`1+···+`s−1+2 · · ·x`1+···+`s ≤ x`s
`1+···+`s−1+1 + · · ·+ x`s

`1+···+`s
.

Sincek = deg f = `1 + · · ·+ `s, we multiply the inequalities to obtain

(3.1) `1 · · · `sx1 · · ·xk ≤ (x`1
1 + · · ·+ x`1

`1
) · · · (x`s

`1+···+`s−1+1 + · · ·+ x`s
`1+···+`s

).

Inequality (3.1) now yields

(3.2)
∑

! `1 · · · `sx1 · · ·xk

≤
∑

! (x`1
1 + · · ·+ x`1

`1
) · · · (x`s

`1+···+`s−1+1 + · · ·+ x`s
`1+···+`s

).

Since
∑

! x1 · · ·xk consists ofn! monomials with coefficient one, we get∑
! x1 · · ·xk =

n!(
n
k

)sk(x1, . . . , xn).

Similarly since(x`1
1 +· · ·+x`1

`1
) · · · (x`s

`1+···+`s−1+1+· · ·+x`s
`1+···+`s

) consists of̀ 1 · · · `s

monomials with coefficient one, it follows that
∑

! ((x`1
1 +· · ·+x`1

`1
) · · · (x`s

`1+···+`s−1+1+

· · ·+x`s
`1+···+`s

) consists of̀ 1 · · · `sn! monomials with coefficient one. Thus we have∑
! ((x`1

1 +· · ·+x`1
`1

) · · · (x`s
`1+···+`s−1+1+· · ·+x`s

`1+···+`s
) =

`1 · · · `sn!

t
f(x1, . . . , xn),
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wheret = f(1, . . . , 1) is the number of monomials off . Plugging this into (3.2),
then we see that if thexi’s are not all equal then at least one permutation of (3.1) is
a strict inequality and hence inequality (3.2) is also strict.

By the previous proposition and the discussion preceding it, in order to prove
Theorem1.1, it suffices to proveAGn for all n ≥ 2.

Theorem 3.2.AGn is true for alln ≥ 2.

Proof. The proof is by induction onn. The casen = 2 is standard. Forx, y ∈ R,
x, y > 0 we have(

√
x − √

y)2 ≥ 0 with equality if and only ifx = y. Expanding
we get.

x− 2
√

xy + y ≥ 0,

x + y ≥ 2
√

xy,

x + y

2
≥ √

xy.

We now assumeAG2, . . . , AGn and we proveAGn+1. To this end, it suffices to
show that

x1 · · ·xn+1 ≤
(

x1 + · · ·+ xn+1

n + 1

)n+1

.

Now, byAG2 andAGn we have for eachk,√
xk

n
√

x1 · · ·xk−1xk+1 · · ·xn+1 ≤
xk + n

√
x1 · · ·xk−1xk+1 · · ·xn+1

2

≤ x1 + · · ·+ nxk + · · ·+ xn+1

2n

=
s + (n− 1)xk

2n
.
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Where we have sets = x1 + · · · + xn+1. Multiplying these inequalities overk, we
get

x1 · · ·xn+1 ≤
n+1∏
k=1

s + (n− 1)xk

2n

=
1

(2n)n+1

n+1∏
k=1

(s + (n− 1)xk).

Multiplying through by(2n)n+1 and expanding we get,

(3.3) (2n)n+1x1 · · ·xn+1 ≤
n+1∑
k=0

(n− 1)ksk(x1, . . . , xn+1)s
n+1−k.

We now use Proposition3.1and the discussion preceding it to conclude

sk(x1, . . . , xn+1) ≤
(

n + 1

k

)
sk

(n + 1)k

for 0 < k < n + 1. Plugging this into (3.3), we get,

(3.4) (2n)n+1x1 · · ·xn+1

≤
n∑

k=0

(
n + 1

k

) (
n− 1

n + 1

)k

sn+1 + (n− 1)n+1sn+1(x1, . . . , xn+1).

Moving
(n− 1)n+1sn+1(x1, . . . , xn+1) = (n− 1)n+1x1 · · ·xn+1
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to the other side, we get

(
(2n)n+1 − (n− 1)n+1

)
x1 · · ·xn+1 ≤

n∑
k=0

(
n + 1

k

) (
n− 1

n + 1

)k

sn+1

=

[
n+1∑
k=0

(
n + 1

k

) (
n− 1

n + 1

)k

−
(

n− 1

n + 1

)n+1
]

sn+1

=

[(
n− 1

n + 1
+ 1

)n+1

−
(

n− 1

n + 1

)n+1
]

sn+1

=

[(
2n

n + 1

)n+1

−
(

n− 1

n + 1

)n+1
]

sn+1

=
(
(2n)n+1 − (n− 1)n+1

) sn+1

(n + 1)n+1
.

Cancelling((2n)n+1 − (n− 1))
n+1, we get

(3.5) x1 · · ·xn+1 ≤
(

x1 + · · ·+ xn+1

n + 1

)n+1

,

as desired. We note that if thexk’s are distinct, then by Proposition3.1, the in-
equalites used in equation (3.4) are strict. It follows that in this case inequality (3.5)
is also strict.

To recap our argument, Lemma2.2 reduces the proof of Theorem1.1 to the
case wheref(x1, . . . , xn) is a homogenous polynomial with all non-zero coefficients
equal to one, for whichSn acts transitively. Proposition3.1further reduces the proof
to theAGn. Finally, the proof ofAGn is achieved in Theorem3.2.
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