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ABSTRACT. Due in part to their many interesting properties, a family of graphs has been studied
under a variety of names, by various authors, since the late 1970’s. Only recently has it become
apparent that the many different looking definitions for thsesholdgraphs are all equivalent.
While the pedigree aftrict partitionsof positive integers is much older, their evolution into the
lattice of shifted shapes is relatively recent. In this partly expository article we show, from the
perspective of partially ordered sets, that the family of connected threshold graphs is isomorphic
to the lattice of shifted shapes, and then discuss some implications of this identification for
threshold graphs.
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1. PRELIMINARIES

A partition of r is a nonnegative integer sequence- (m, 7, ..., T,), wherer; > my >
<oo > m,,andr = m +me+ - - -+ m,. The nonzerar; are called thgartsof © and their number,
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2 RUSSELL MERRIS AND TOM ROBY

denoted/(r), is thelengthof 7. We will write 7 - r to indicate thatr is a partition ofr, and
refer tor as therank of 7.

Two partitions ofr areequivalentf they have the same multiset of parts, i.e., if they differ
only in the number of terminal 0’s. Thus, e.g.,

(6,2,2,1), (6,2,2,1,0), (6,2,2,1,0,0),...

are equivalent partitions of 11 each of length(@,0, 0) is equivalent to thempty partitiony
of length and rank 0.

Example 1.1. Suppose~ = (V, E) is a (simple) graph with vertex s&t = {1,2,...,n} and

edge sef’ of cardinalityo( E') = m. Denote byl (i) thedegreeof vertexi, that is, the number

of edges ofG incident withi. Supposel; > d, > --- > d, > 0 are these vertex degrees
(re)arranged in nonincreasing order. By what has come to be known as the “first theorem of
graph theory’d(G) = (di,ds, . .., d,) - 2m.

Say that partitionr = (7, 7o, ..., m,) is graphicif there is a graph{ with = = d(H). Not
every partition is graphic. If is graphic, its rank must be even and, because (simple) graphs
have no loops or multiple edges, < /(7)) — 1. That these obvious necessary conditions are
not sufficient is illustrated, e.g., hy= (5,4,4,2,2,1).

The unifying theme of the present paper is the notion of a “maximal” graphic partition. To
make this idea precise, suppase- (ai, as,...,as) ands = (by, be, ..., b;) are nonincreasing
sequences of real numbers. Theweakly majorizesy, written 3 Z a,if s > t,

k k
(1.1) >obi=> a,  1<k<t,
i=1 i=1
and
t S
(1.2) bi> ) a;.
=1 =1

If 5 weakly majorizesy, and equality holds in Inequality (1.2), théhmajorizesa, written
6 = a. If B = « and is not equivalent tay, then s strictly majorizese. (The standard
reference for variations on the theme of majorization is [16].)

For nonnegative integer sequences, majorization has a useful geometric description. Suppose
m F r > 0. The Ferrers (or Young diagram F'(r) is a left-justified array consisting d{~)
rows of “boxes”; the'" row of F() contains a total of; boxes. The Ferrers diagram afforded,
e.g., byr =(4,3,3,2,2,2) - 16 is illustrated in Fig. Because rows that contain zero boxes
do not explicitly appear ir¥'(7), equivalent partitions afford the same Ferrers diagram. For the
most part, we will treat equivalent partitions as if they were equal.
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THE LATTICE OF THRESHOLD GRAPHS 3

Figure 1.1: F'(7).

Figure 1.2: F(t*) = F(7)t.

Lemma 1.1(Muirhead’s Lemma[16, p. 135])f 7,y I r, thent > ~ if and only if F'(7) can
be obtained fronf' () by moving boxes up (to lower numbered rows).

A little care must be taken when moving boxes to ensure that the resulting array is a legitimate
Ferrers diagram. With this caveat in mind, it follows easily from Lemima 1.1 that majorization
induces a partial order of’(7) : = - r}. In other words, the set of (equivalence classes of)
partitions ofr is partially ordered by majorization.

Lemma 1.2([22]). Supposer,y - r. If 7 is graphic and ifr majorizesy, then+ is graphic.

Supposel(G) = 7. While the details may be a little awkward to write down, the proof of
Lemmd 1.2 amounts to showing how moving boxes dowfi(in) can be made to correspond to
moving edges around in a graph obtained frGrhy adding sufficiently many isolated vertices.

J. Inequal. Pure and Appl. Math6(1) Art. 2, 2005 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

4 RUSSELL MERRIS AND TOM ROBY

Definition 1.1. A graphic partitiont + r is maximalprovided no graphic partition strictly
majorizesr.

There are several well known criteria for a partition to be graphic (see, e.3., [23], but be wary
of misprints). For our purposes, the most useful necessary and sufficient conditions are those
commonly attributed to Hasselbarth [12], but first published by Ruch and Gutman [22].

Supposer + r. Theconjugateof 7 is the partitiont* whose Ferrers diagram(7*) = F(n)?,
thetransposeof F (7). In other wordsy™ + r is the partition whosé" part isw; = o({j : 7; >
i}), the number of boxes in th# columnof F (). If 7 = (4,3,3,2,2,2) then (see Fig[ 1]2)
™ =(6,6,3,1).

The number ofliagonal boxesn F'(r) is f(r) = o({i : m; > i}). The diagonal boxes in
Fig.s[1.1 have been filled (darkened), making it easy to se¢that= 3 = f(7*). Note
that () is completely determined by its firg{7) rows and columns.

Theorem 1.3(Ruch-Gutman Theorem [22]Bupposer - 2m. Thenr is graphic if and only if

k k
(1.3) Yom<> (m-1), 1<k<f(n)

=1 i=1

If 7 =(4,3,3,2,2,2) F 16 then, as we have seefi;r) = 3 andt* = (6,6, 3, 1). Because

4<6-1,44+3<6-1)+(6—-1),and4+3+3 < (6—-1)+(6—1)+ (3—1), the
Ruch-Gutman inequalities are satisfiedis graphic. Two nonisomorphic graphs with degree
sequence- are exhibited in Fig] 1|3. Ifr = (5,4,3,2,1) + 15 then, because 15 is odd,
is not graphic. Ifp = (5,4,4,2,2,1) - 18, thenf(p) = 3 andp* = (6,5,3,3,1). While
5= (6—-1)and5+4 = (6 — 1) + (5 — 1), the third inequality in[(1]3) is not satisfied;
5+4+4>(6-1)+(5—1)+ (3—1). Becausep does not satisfy the Ruch-Gutman
inequalities, it is not graphic (confirming an earlier observation).

Figure 1.3: Graphs satisfyind(G) = 7 = (4,3,3,2,2,2).
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Definition 1.2. A thresholdpatrtition is a graphic partition for which equality holds throughout
(1.3), i.e.,7 - 2m is a threshold partition if and only if

(1.4) m =7 — 1, 1<i< f(m).

Geometrically,r is a threshold partition if and only if'(7) can be decomposed, as in Fig.
[1.4, into anf(w) x f() array of boxes in the upper left-hand corner, calledDbefee square
a row of f(r) boxes directly below the Durfee square, darkened in[Fig. 1.4, and a piece below
row f(m) + 1 that is the transpose of the piece to the right of the Durfee square. It follows, for
f(m) < k < {(m), thatry = 71 < 1. Thus, for any threshold partition, of lengthn = ¢(),

(1.5) T <+ 1, 1<k<n.

Figure 1.4: Decomposition of (6, 5, 3, 3,2,2,1).

Theorem 1.4. Supposer + 2m. Thenw is a maximal graphic partition if and only if is a
threshold partition.

The idea of the proof is that Inequalitig¢s (|1.3) precisely limit the extent to which boxes can
be moved up in a Ferrers diagram and maintain the property that the corresponding partition is
graphic. Details can be found, e.g.,in[22].

A threshold graphis one whose degree sequence is a threshold (maximal) partition. First
introduced in connection with set packing and knapsack problems [3] and, independently, in
the analysis of parallel processes in computer programming [13], threshold graphs have been
rediscovered in a variety of contexts, leading to numerous equivalent definitions. (Seg} e.g., [1],
[5], [11], [15], [17], [18], [20], and [21].)

Supposer = (m,m,...,m,) F 2m is a threshold partition of length(so thatr; > 0 =
T = -+ = m,). Let G be a threshold graph witti(G) = w. ThenG hasn — ¢ isolated
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vertices (that go unrepresentediitir)). Moreover, because, + 1 = 7] = ¢, it must be that
some vertex of7 is adjacent to every other vertex of positive degree. S6, i$ a threshold
graph then it can have at most one nontrivial component (consisting of more than one vertex),
and that component must have at least dominatingvertex.

Say that two graphs aexjuivalentf they are isomorphic, to within isolated vertices; that is,
H, andH, are equivalent if they are both edgeless graphs 8y i H), whereH] is the graph
obtained fromH; by deleting all of its isolated vertices= 1, 2. In particular, every threshold
graph is equivalent to a connected threshold graph.

Theorem 1.5.1f 7 is a threshold partition then, up to isomorphism, there is exactly one con-
nected threshold grap@' that satisfies!(G) = .1

For the sake of completeness, we sketch a proof of this well-known result. Supp®se
dominating vertex of a grap&y. Let H = G — u be the graph obtained frond by deleting
vertexu (and all the edges incident with it). Because the Ferrers diadgt@if\/)) is obtained
from F(d(G)) by deleting its first row and colum is a threshold graph if and only # is
a threshold graph. (See, e.g., 1.5.) The result now follows by induction and the fact that
every graph on fewer than five vertices is uniquely determined by its degree sequence.

Figure 1.5: F'(6,5,3,3,2,2,1)

The idea for the proof of Theorem 1.5 can be used to construct a threshold graph having a
prescribed (threshold) degree sequence.

Algorithm 1.1 (Threshold Algorithm) Let 7 = (7, ma, ..., m,) F 2m be a threshold partition.
SetV ={1,2,...,n}andE = ¢

findeed, more is true: Apart from isolated vertices, there is a uahededgraph with degree sequenceAs
present purposes do not require this stronger result, we say no more about it.
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Fori =1to f(m)
Forj =1itom;
E=FU{{i,j+1}}
Next j
Next:
End

Supposer = (6,5,3,3,2,2,1) is the threshold partition whose Ferrers diagram appears in
Fig.[1.5. If 7 is used as input for the Threshold Algorithm, the output is illustrated in[Fig). 1.6.

]
7 O/ \ 2
6O /O 3
O
] A

Figure 1.6: A threshold graph.

The reader may verify thatif = (4, 3, 3, 2, 2, 2) were used as input, the output of the Thresh-
old Algorithm would be a graph with degree sequefit8, 3, 3, 1, 0). (While 7 is graphic, it is
not maximal.)

Recall that thecomplemenbf G = (V, E) is the graphG® = (V, E¢), whereuv € E° if
and only ifuv ¢ FE, i.e., the edges ofi“ are the edges of the complete grapgh,, that do
not belong toG. If Fig. [1.§ is viewed as a clockwise application of the Threshold Algorithm,
the edges ofi; that are “missing” from Fig.[ 1|6 may be construed as a counterclockwise
application, constructing°. Note that the degree sequend&;¢), corresponds to the shape
complementary td”'(d(G)) inside then x (n — 1) rectangle. For the threshold graph of Figures
and 1.5, we get(G°) = (5,4,4, 3,3, 1). These observations yield the well known fact that
G is a threshold graph if and only @¢ is a threshold graph.
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2. THRESHOLD GRAPHS

Suppose&5 is a threshold graph. It is convenient to denotey~) the Ferrers diagram
corresponding tel(G). Similarly, let f(G) = f(d(G)) be the number of boxes on the main
diagonal of F'(G).

For any graphG = (V, E), the set ofneighborsof u € V' is Ng(u) = {v € V : wv € E}.
The Threshold Algorithm produces a graghon vertex sel” = {1,2,...,n} that satisfies

(2.1) Ne(i)={1,2,...,i—1,i+1,... m+1}, i< f(n),
and
(2.2) Ne(i)={1,2,...,m},  i> f(n),

wherer = d(G). In particular, thei'™" largest vertex degree 6f is dj, = dg(k), 1 < k < n.

Lemma 2.1. LetG = (V, F) be a connected threshold graph an> 3 vertices. IfG # K, ,
then there is a nonadjacent pair of verticeg € V' such thatd = (V, E U {ij}) is a threshold
graph.

Proof. Without loss of generality we may assume that {1,2,...,n} and thatd, = dg(k),

1 < k < n. BecauseZ # K,, f(G) < n— 1. Leti be minimal such thatl;, < n — 1.
Then2 < i < f(G) + 1. If i = f(G) + 1 then, becaus€(G) is a threshold sequence,
d; = f(G) =i—1. (See Fig[ 1}4.) Chooge=i+1. By (2.2),ij ¢ E. Sinced;_; = n—1forces
d, >i—1,itmustbethatly =dy,=---=d; 1 =n—1landd;,=d;y1=---=d,=i1—1.1In
this caseF'(H) is obtained from#'(G) by adding new boxes in positiofig i) and(i + 1, ), the
first at the end of row and the second at the end of columin particular,d(H) is a threshold
sequence.

If i < f(G), thend; > i. Choosej = d; + 2 < n. By (2.1),ij ¢ E. Sinced; = j — 2 forces
d; = j — 1, it must be that/,_, > ¢ andd; < i. Becausel,_;, =n—1,d; > d, > i — 1.
Therefored; = ¢ — 1. In this caseF'(H) is obtained from¥'(G) by adding two new boxes in
positions(i, j — 1) and(j, i), one at the end of row and a second at the end of columiThus,
d(H) is a threshold sequence. O

Denote byT,, n > 1, the set of connected threshold graphsnovertices. Ifn > 2, then
o(T,) = 22 (an observation, implicit in'[15, p. 468], made explicit in[18]). L&t be the
graph with vertex set,,, in whichGG, H € T,, are adjacent if and only if (up to isomorphism)
G can be obtained front/ by the addition or deletion of a single edge. (The graphis
an undirected variation on a theme of Baka and Quintas [2]. When extended to include
disconnected threshold graphs, it becomes the 1-skeleton of the polytope of degree sequences
studied in[21].)

Theorem 2.2.1f n > 1 then®,, is connected.
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Proof. LetG € T,,. If G # K, then (Lemma 2]1) there is a path@, from G to K,. O

Definition 2.1. If G and H are graphs, write¢s7 < H to indicate that~ is equivalent to a
subgraph off.

Strictly speaking, Definition 2|1 partially orders not the family of graphs, but the set of alll
equivalence classes of graphs. Like flies swarming around a thoroughbred horse, isolated ver-
tices associated with threshold graphs are a trivial but annoying complication. From this point
on, we will treat equivalent threshold graphs as if they were equal. Consistent with our treat-
ment of equivalent partitions, this amounts to little more than choosing the connected threshold
graphs as a system of distinct representatives for the equivalence classes of all threshold graphs.
Given this identification, the restriction of<” to T,, is a partial order, ané®,, may be viewed
as a “Hasse diagram” for the partially ordered set (pdEet)

Recall that a poseP is locally finiteif the interval[z, 2] = {y € P : = <y < z} is finite
forall z,z € P. If 2,z € P and|z, z] = {z, z}, thenz coversz. A Hasse diagranof P is a
graph whose vertices are the element®pfvhose edges are the cover relations, and such that
z is drawn “above whenever: < z.

A lattice is a posetP in which every pair of elements,y € P has a least upper bound (or
join), z V y € P, and a greatest lower bound (mee}, x A y € P. Lattice P is distributiveif
cAyVz)=(xAy)V(eAz)andzV (yAz)=(xVy A(xVz)foralzy ze P. (An
excellent reference for variations on the theme of posets is [27].)

Denote byY the set of all (equivalence classes of) partitionsu,l# € Y, definey < v to
mean that’(n) < /(v) andp; < v;, 1 < i < {(p). Informally, p < v if F(u) C F(v)in
the sense that'(.:) fits inside F'(v). With respect to this partial orderind; is a locally finite
distributive lattice, commonly known aéoung’s lattice (See, e.g.,[17],.125], o [27].) The
unique smallest element & is 0 = ¢, the empty partition.

Definition 2.2. For eachn > 2, denote byY,, the induced subposet &f corresponding to the
threshold partitions of length, i.e., the even rank partitionsthat satisfy[(1.4) and whose first
partism; =n — 1. LetY; = {¢}.

The poset,, is half of the “minuscule poset} (n) discussed, e.g., in[24, 85].
Lemma 2.3. Supposé&s, H € T,,. ThenG < H (inT,,) if and only ifd(G) < d(H) (in Y},).

Proof. We begin by extending the partial order of Young’s lattice to unordered sequences of
nonnegative integers: W = (ay,as,...,a,) andB = (by, b, ..., bs), defineA > B to mean

thatr > s, anda; > b;, 1 < i < s. If we denote byA = (a,, as, . .., a,) the sequence obtained
from A by rearranging its elements in nonincreasing order, it follows by induction4hat3
wheneverA > B. In particular, ifG is obtained fromH by deleting one or more edges, then
dg(i) < dg(i),1 <i<mn;thatis,G < H impliesd(G) < d(H).
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Conversely, leG = (V, E) andH = (W, F') be connected threshold graphsowertices
with d(G) < d(H). By the Threshold Algorithm, we may assuie= W = {1,2,...,n};
if di = dg(i) ando; = dy(i), 1 < i < n, thatd(G) = (dy,da,...,d,), andd(H) =
(61,02,...,0,); and thatd; = n — 1 = §;. If d(G) = d(H), then (Theorem 1]5§7 = H.
Otherwise F'(G) # F(H) and there is a largest positive intedex f(H ), such thatl, < dy.
Letr = 6; =6, + 1. By (2.1),e = kr € E(H). By (1.8),r > d), + 1 > dj = o({i : d; > k}),
which implies thatd, < k. Similarly, r = ¢§; implies thaté, > k. Thus,é, > d,.. Let
H' = H — e. SinceF(H') is obtained fromF'(H) by taking a box from the end of column
k, and a second box from the end of réw H’ is a connected threshold graph that satisfies
d(H') > d(G). Because this process of deleting edges may be continued until the resulting
graph has the same degree sequendg, @sfollows that H contains a subgraph isomorphic to
G,ie.,G <H. O

Recall that thedual of posetP is the posetP* on the same set &3, but such that < y in
Prifandonly ify < zin P. If Pisisomorphic toP*, thenP is self-dual

Theorem 2.4. The bijectionG — d(G) is a poset isomorphism froffj, ontoY,,. In particular,
T,, is a self-dual distributive lattice.

ThatT,, is a lattice was observed previouslyin [10, Section 4]. (Alsolsee [5]land [15].) Using
Theorenj 2.4 it is easy to strengthen Lenjma 2.1 by identifying, as in [21], exactly which edges
can be added to, or deleted from, a threshold graph so that the result is another threshold graph.

Proof of Theorem 2]4The first statement is immediate from Theotenj 1.5 and Lennja 2.3. To
prove the second, We first show that the induced subp@sstan induced sublattice of Young’s
LatticeY. Supposer,c € Y,,. If y; = max{m;,0;}, 1 < i < n,theny = (u1, po2, ..., iin)

is the join ofr ando in Y. To show thatu € Y, suppose) < f(u) = o({i : u; > i}) =

max { f(7), f(o)}. Becauseu, > j if and only if max {r,, 0.} > j, pj = o({s : ps >
J}) = max {7}, 05} = max {m;,0;} +1 =1+ ;. Thus,u € Y,,. Replacing maximums with
minimums, the same argument shows that the megtah = ando is an element oY,.

Becaus&' is distributive, the induced sublattidé is distibutive. Thus, from the first state-
ment of the theoreni,, is distributive.

Duality is easier to check from the perspective of graphs. Supg@oseT,. Letu be a
dominating vertex ofG and setH = G — u. Recall thatH and its complement are (not
necessarily connected) threshold graphs.«.(&t) = u-H° be the (cone) graph obtained from
H°¢ by adding vertex: andn — 1 edges connecting to every vertex ofH¢. Then, up to
isomorphismy) is well defined, and : T,, — T, is injective.

If G1,G2 € T, thenG; < G, if and only if G, is isomorphic to a grapl; that can be
obtained fromG, by deleting some of its edges, but none of its vertices, i.e., $pagning
subgraphGG, of G,. If u is a dominating vertex ofr; thenw’, the vertex ofG to which it
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corresponds, must be a dominating vertex:gfand, hence, ofr,. Thus,G; < G, if and only
if G1 —w isisomorphic to a spanning subgraphsf—«’, if and only if (G5 —u')¢ is isomorphic
to a spanning subgraph af; — u)¢, if and only if (G2) < ¥(Gy). O

Since it is a distributive latticel;, is isomorphic to the lattice of “order ideals” @1,, the
induced subposet of its “join irreducible” elemerits|[27, Ch. 3]. For the purposes of this article,
the relevant conclusion is that the poggtis completely determined b¥,,. We shall return to
this pointin Section}4.

Because the partial orderingsBf andY,, extend naturally to

=J7. and Y=|Jv.
n>1 n>1

respectively, the following is an immediate consequence of Thejorgm 2.4.

Corollary 2.5. The bijectionG — d(G) is a poset isomorphism frof ontoY .

3. THE LATTICE OF SHIFTED SHAPES

Up to this point, the focus of our attention has been on the number of verticésndl the
length of 7. In what follows, it will sometimes be more convenient to focus instead on the
number of edges af and the rank ofr.

Supposer t 2m. If y; = 7 —1andy; = m;, 1 < i < f(r), then, from[(1.B)s is graphic
if and only if . weakly majorizes/, an observation that simplifies the statement of the Ruch-
Gutman criteria without adding much clarity. Let us see what can be done about that. Begin
by dividing F'() into two disjoint pieces. Denote by (7) those boxes of'(7) that lie strictly
below its diagonal, and let () be the rest, i.e.A(7) consists of those boxes that lie on the
diagonal or lie to the right of a diagonal box. Informalli{) is the piece of'(7) on orabove
the diagonal, and(n) is the piece (strictlypelowthe diagonal. For = (4, 3,3,2,2,2), the
division of F'(7) into A(7) and B(r) is illustrated in Fig[ 3.1.

Figure 3.1: Division ofF'().
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Definition 3.1. Supposer I r. Let a(r) be the partition whose parts are the lengths of the
rowsof theshifted shapel(r). Denote by3(7) the partition whose parts are the lengths of the
columnsof B(r).

From Fig.[3.1a(7) = (4,2,1) and3(r) = (5,4). Together with[(1.]1) {(1]4), this division

of F'(w) leads to the following variation on the theme of Ruch and Gutman.

Theorem 3.1. Supposer - 2m. Thenr is graphic if and only if3(7) weakly majorizes(r).
Moreover,r is a threshold partition if and only if(7) = a(m).

We will abbreviaten(d(G)) and3(d(G)) by a(G) and3(G), respectively.

Let us look a little more closely at what it means to be a shifted shape. Uhlike, the
rows of A(w) are not left-justified. Each successive row is shifted one (more) box to the right.
The left-hand boundary ofi(7) looks like an inverted staircase. On the other hand, because
A(m) is just the top half off'(7), the rules that apply to the right-hand boundary are the same
for A(w) as for F'(m), i.e., the last box in row + 1 of A(w) can extend no further to the
right than the last box in row. The right-hand boundary rule applied £4r) reflects the fact
that the parts ofr form a nonincreasing sequence. Because the left-hand boundary rules are
different, the same right-hand rule applied4r) implies that the parts af(7) form a (strictly)
decreasing sequence. That is, the parts(af) are all different. Partitions with distinct parts
are calledstrict partitions If « = (ay, s, ..., a4) is a strict partition ofn, denotedy - m,
thenoy > oy > --- > oy, and there is a unique shifted shape whidseow containsy; boxes,
1<i<k.

Corollary 3.2. The mappingr — «(7) is a bijection from the threshold partitions 2fn onto
the strict partitions ofn.

Representing the connected threshold gra@gby the strict partitiony(G), the self-dual dis-
tributive latticeT (from Theorenj 2}4) is illustrated in Fig. 3.2.

It follows from Corollary{ 3.2 that is identical to what has come to be known asltéce
of shifted shapes(See, e.g.,[[7], or [26, §3].) From this identification (and Corolfary 2.5),
it follows that S is a locally finite distributive lattice with least elemeht= K7, i.e., S is a
so-calledfinitary distributivelattice.

Recall that a subsét of a posetP is achainif any two elements of’ are comparable (in
P). A chain issaturatedif there do not exist:, = € C'andy € P\C suchthatr <y < z. Ina
locally finite lattice, a chainy < z; < -+ < zy (of lengthk = o(C) — 1) is saturated if and
only if z; coverse; 1,1 < i < k.

Because it is a finitary latticéy has a unique rank functiokh : & — N, where)(G) is the
length of any saturated chain frain= K, to G, i.e.,\(G) = m, the number of edges d.

Let ¢,, (not to be confused withf},) be the number of nonisomorphic connected threshold
graphs havingn edges. By Corollarly 3]2,, is equal to the number of strict partitions of rank
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m. The generating function for strict partitions has been known at least since the time of Euler:
(3.1) D tpa™ =]+
m>0 i>1

=1+a+2”4+22° + 22" +32° +42% + - - - .

Together with Corollarief 2.5 ajd 8.2, these remarks imply thé a so-called “graded
poset” with “rank generating function” given by (8.1).

Definition 3.2. Let G € < be a fixed but arbitrary connected threshold graph. Denotg &Y
thenumber of saturated chains i& from K to G.

Representing: € 3 by a(G), the first few levels (ranks) of the graded poSeidre illustrated
in Fig. [3.3. The numbers in the figure are the corresponding valueg%f (Note that they
follow a recurrence reminiscent of Pascal’s triangle.)

Starting with an unlimited number of isolated verticeQ7) is the number of ways to “con-
struct” the threshold grapfi by adding edges, one at a time, subject to the condition that every
time an edge is added the result is a threshold graph. (The Threshold Algorithm corresponds to
constructingy(G) a row at a time.)

Corollary 3.3. Let G be a threshold graph having: edges and degree sequence= d(G).

Supposex(r) = (p1, pa,- .-, pr) - mwherer = f(G),andp; =m; —i+ 1,1 < i <r. Then
m! Pi — Py

3.2 e(G) = —

(32) (©) P! g pi =+ pj

wherep! = pi!po!- - p,!, i.e., apart from a power of 2 depending onandr, e(G) is the degree

of the projective representation 6f, corresponding tay(r).

Proof. The result follows from Corollarigs 4.5 ahd 3.2, and the fact that the number of saturated
chains from0 to d(G) in Y is given by the right-hand side .2). (See, elg.) [14, 1.8, EX.
12].) The natural bijection between projective representations of the symmetric groups and
strict partitions is an old result going back to Schur, a modern account of which can be found in
[28]. O

4. LATTICE OF ORDER IDEALS

Let I be a (possibly empty) subset of the poBetf y € I,z € P, andz < y, together imply
thatx € I, then/ is anorder idealof P. The set of all order ideals d@?, ordered by inclusion,
is a poset denoted(P). An elementy ¢ 0 of a distributive latticeL is join irreducibleif y
is not the least upper bound of two elements, both of which are strictly lesgjtliamn, y is
join irreducible if it has exactly one edge below it in any Hasse diagram)of he next result
follows from the fact thats is a finitary distributive lattice [27, Prop. 3.4.3].
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Figure 3.2: Hasse diagram df .
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Figure 3.3:3 > Y.

Theorem 4.1.1f P is the induced subposet of join irreducible elements athenS = J(P),
the lattice of order ideals oP.

Can one give an explicit description 8 Any element that cover is join irreducible.
Glancing at Fig| 3]3, one finds only one such shifted shape, namelyorresponding to the
strict partition (1). Indeed, it is clear from Fif. 8.3, not only théfl ~(2), OO0 ~(3), etc.,
are join irreducible, but that there are others as well, namely those corresponding to the strict
partitions(2, 1), (3,2), and(3, 2, 1). We leave it as an exercise to show that the join irreducible
shifted shapes are precisely those that are right-justified.

What about a graph-theoretic interpretation/R? Say that two edges @f are equivalent
if there is an automorphism @f that carries one to the other. Then the connected threshold
graphG lies in P if and only if, up to equivalence, there is a unique edgef GG such that
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G — eis athreshold graph. This, of course, is not so much an answer as another way of stating
the question. A more useful characterization of join irreducible threshold graphs involves the
unrelated notion of a “join” of graphs.

Definition 4.1. Let G; = (V4, E1) andGy, = (1, E5) be graphs on disjoint sets of vertices.
Theirjoin is the graphG, G, = (V, E), wherel’ = V; UV, andE is the union ofE; U E, and
the set{uv : v € V} andv € 14},

The particular instance of the join of a graph and a single vértek ©) occurred in the proof
of Theoreni Z.4.

Theorem 4.2. Supposé&r € . ThenG € P if and only if, for some pair of positive integers
ands, G = K,e K¢, the join of a complete graph and the complement of a complete graph.

Proof. Supposes € P. Becausé) ¢ P, G has an edge. I = K, thenn > 2,r =n — 1
ands = 1. Otherwise, letr = d(G). Becausex(w) = ((w) corresponds to a right-justified
shifted shape, there exists a positive integeuch thatr; = mo = --- = 7. = n — 1 and
41 = - = m, = r. In other wordsy (< n) of the vertices o7 are dominating vertices,
and the remaining = n — r of its vertices are adjacent (only) to the dominating vertices; that
is, G = K,eK¢. Conversely, ifG = K,eK¢ € S, thena(G) corresponds to a right-justified
shifted shape. O

Definition 4.2. Denote by[n] the pose{ 1,2, ...,n} under the natural ordering of the integers.
Thus[n] is ann-element chain (of length — 1). Denote byN the poset of the natural numbers
ordered by magnitude.

Recall that the direct (or cartesigmpductof posetsP and( is the posef’ x @ = {(z,y) :
x € Pandy € Q}, where(z,y) < (p,q) if(and only ifyx < pandy < q. If PNQ = ¢, the
disjointunionof P and( is the posetP + (), wherex < y if eitherx,y € P andx < y, or
x,y € Qandx < y.

The poset of right-justified shifted shapes (the join irreducible elemenfs®f) turns out,
itself, to be a finitary distributive lattice. Denote B} the induced subposet &f consisting of
its join irreducible elements, so th& = J(P!). ThenP! is isomorphic toN x [2] (making
P “semi-Pascal”[[7, p. 381-382]). In the language of strict partitiong;) P!, if and
only if m > 2 anda(w) = (m), corresponding to a shifted shape with a single row of boxes,
ora(r) = (r — 1,r —2,...,1), corresponding to a right-justified “inverted staircase”. The
connected threshold graph emerging fron) is the “star”, K; e K¢, while the inverted staircase
corresponds ta,.

Because a product of chains is a finitary distributive lattiee~ .J(P?) where, it turns out,
P? = N + [1]. In the language of strict partitiong,(w) € P? if and only if a(7) = (2,1), or
m > 3 anda(r) = (m). Graph theoretically? € P? if and only if G = K3 or G is a star on
n > 4 vertices. These observations are summarized in the following.
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Theorem 4.3. The latticeS of connected threshold graphs is isomorphic.to/(J(P?))),
whereP? is the induced subposet @fconsisting ofi(; and the stars om > 4 vertices.

For the remainder of this section, we return to the self-dual distributive 1&ttioéconnected
threshold graphs on vertices. Our goal is an analog of Theorfen] 4.3%pr The desired result,
stated from the perspective of shifted shapes, can be found!in [24]. We merely flesh out some
of the details and interpret them from the perspective of threshold graphs.

Denote the poset of join irreducible elementsipfby P, so that7,, = J(P,). A glance at
Fig.[3.2 reveals that; ¢ TsNP. Some elements df; correspond to shifted shapes that are not
right-justified. This is easily explained. Because a connected threshold graph on 6 vertices has
a (dominating) vertex of degree 5, the first row of every shifted shape i Fig. 3.2 must contain
5 boxes. In general, the join-irreducible element§ ptorresponded to shifted shapes that are
right justifiedwith the possible exception of the first row

Definition 4.3. Supposé€~ is a graph with a dominating vertex Denote byG# K the graph
obtained fromG by addingt new vertices;, 1 < i < ¢, andt new edgegu,v;}, 1 <i <'t.

If G has two dominating vertices; andu,, then the version of# K obtained by adding
neighbors tau; is isomorphic to the version obtained by addingeighbors tas,. Thus, up to
isomorphism, it does not matter which dominating verte&a$ chosen to play the role afin
Definition[4.3. More importantly, ifl(G) is a threshold sequence, thé{G# K7 ) is a threshold
sequence.

Theorem 4.4. The set of join irreducible elements @f, is P, = {(K, e KS)#K{ :r+ s+t =

Proof. Becausex(G#K7) is obtained fromn(G) by addingt boxes to its first row, the result
follows from Theoremg 2]4 anjd 4.2, and the discussion leading up to Definition 4.3. O

Lemma 4.5. The posef’, of join irreducible elements df,, is a distributive lattice.

Proof. While P, is an induced subposet @F,, it is not a sublattice of;,,. Suppose:,y € P,.
From Theorem 2]4 and the proof of Theorem 4.4, we may identdpdy with shifted shapes
whose first rows have length— 1 and whose remaining rows (if any) are right-justified. The
meet ofz andy in T, is the intersection of their shifted shapes. Because it belongs, tthis
intersection is the meet afandy in P,.

Denote byz andz’ the joins ofz andy in P, andT,,, respectively. Then’ is obtained from
x andy by superimposing their shifted shapes. If, apart from its first edug right-justified,
thenz = /. Otherwise; is obtained from’ by adding a rectangular array of boxes to its lower
right hand corner.

The proof that the join and meet &, distribute over each other is straightforward. [
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It follows from Lemmd 4.5 thaf’, = J(P}), whereP} is the subposet of join irreducible
elements ofP,.

Theorem 4.6. The subposet of join irreducible elementsityfis P! = {(K, e KS)# K¢ : r +
s+t=mn,andr =2ors=0}.

Proof. From among all possible ways to expr&ss= P, in the form (K, e K¢)# Ky, choose
those for whichr is as large as possible and from among those, choose the one for which
s is as large as possible. Thus, for example, we chdosever K;e K¢ and Ky,# K| over

(K10 K$5)#K5. Note that, as long as > 2, this canonical form results in > 2. If the
canonical form ofG € P, is (K,eK¢)#K{ with r > 3 ands > 1, thenG is a join (in the
lattice P,,) of the incomparable graphigd, e K¢ | )# K7, , and(K,_ 8K )# K. This proves

that the join irreducible elements of (the lattide) are contained in the set identified BS in

the statement of the theorem.

If the canonical form ofy € P, is (K0 K¢)# K, then the corresponding shifted shap®as
two rows, the first of length — 1 and the second of length In order forz to be the join of
x,y € P,, neither ofx andy can have more than two rows and they must both have first rows
of lengthn — 1. Thus, ifz # y, the one with the shorter second row is less than the other one.
It follows thatz is join irreducible.

If the canonical form of7 € P, is K,# K¢, with r > 2, then, with the possible exception of
the first row of lengthh — 1, the corresponding shifted shapées an inverted staircase. In order
for z to be the join ofz, y € P,, at least one of them, say must have- rows. But this means
z < x < z. This completes the proof that the set identified’Asn the statement consists only
of join irreducible elements aP,. O

L
& Ky Ky
’./-(’ .-"/
KK, s Z
OO ey s € (i
/ Ky &y ik 6
KAKC /

ST S ——— . C .
(Ky K5 J#E, s

K EKC
A —— g g o
o (K- Ky K,

Figure 4.1: P! forn > 7.
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A few minutes with paper and pencil will show that = [1], 73 = [2] andT; = [4] are
(trivial) chains. It follows from Theorern 4.6 th&! = [n — 3] x [2], n > 5. (See Fig| 4]1.)
From this observation, it is straightforward both to show tRafs self-dual and thaP! is a
distributive lattice. The induced subpoget, of join irreducible elements P}, is isomorphic
to[1] + [n —4],n > 5.

Theorem 4.7. The lattice7,, of connected threshold graphs en > 5 vertices is isomor-
phic to J(J(J(P?))), where P? is the induced subposet @, consisting of K,#K¢_, and
(Koo KO#KS 5 ,3<s<n-—2.

Proof. Immediate from Fig|. 4]1 O

5. CONCLUDING REMARKS

If G = (V, E)isagraph, denote b (G) (not to be confused withi(G)) the diagonal matrix
of its vertex degrees, i.e)(G) = diag(da(1),da(2),...,de(n)). Let A(G) = (a;;) be the
(0, 1)—adjacency matrix (witl;; = 1 if and only if {7, j} € E). TheLaplacianmatrix of G is
L(G) = D(G) — A(G). ThenL(G) is a symmetric, positive semidefinite, singulermatrix.
Denote the spectrum df(G) by s(G) = (A, A2, ..., A\n), Whereh; > Ay > --- >\, = 0.
Then [17]G is a threshold graph if and only (G) = d(G)*, the conjugate of its degree
sequence. Ity € P, the induced subposet of join irreducible elements§ypthen (Theorem
4.2),G = K,eK¢, v+ s = n. Thus,G hasr vertices of degree — 1 ands vertices of degree
r. Becausel(G)* = s(G),\1 =X =+ =X\ =1, A1 = A\pyg = -+ = \,_1 = 1, and
A = 0. It follows that? = &N £ where Z is the set consisting of those grapfissuch
that L(G) has at most two distinct nonzero eigenvalues. This set of graphs, a natural algebraic
generalization of?, has been characterized completely by van Dam [4] and Haemers [9].
Supposer + 2m. Then (Theore17) is graphic if and only if(r) - a(r), andr is
threshold if and only if3(7) = (7). Weaker than equality but stronger than weak majorization
is the relation of (ordinary) majorization, the case in whithr) and B(r) contain the same
number of boxes. What, if anything, can be said about grdplisr which 5(G) majorizes
a(G)? It turns out that?(G) > «(G) if and only if G is a so-calledsplit graph The split
graphs have many interesting characterizations, €.g= (V, F) is a split graph if and only
if V' can be partitioned into the disjoint union of a clique and an independent set, if and only
if both G andG* are chordal([6], and so on. A discussion of the many manifestations of split
graphs can be found, e.g., in[19].
It is sometimes useful to write partitions “backwards”, in nondecreasing notation. In back-
ward notation,(3,3,3,3,2,1,1,1) becomes|1,1,1,2,3,3,3,3|, which can be abbreviated
(13,2, 3%], where superscripts are used to denote multiplicities.

Theorem 5.1. Let G be a connected threshold graph with (backward) degree sequitite=
(17272 .. (n—1)"1]. As a group of permutations of itsvertices, the automorphism group
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of G is the “Young subgroup” associated withiG), i.e.,

A(G) =S, X Spy X -+ XS, .

This result is a consequence of the structure of threshold graphs displayéd in[[8] or [15]. As
we proceed to demonstrate, it is also an easy consequence of the Threshold Algorithm.

Lemma 5.2. Let G = (V, E) be a connected threshold graph en> 2 vertices. Suppose
i,j €V,i# j. fdg(i) = da(j), thenNg(i)\j = Na(j)\i.

Proof. We may assume that = {1,2,...,n} and thatG emerged from the Threshold Algo-
rithm, so thatd, = dg(k), 1 < k < n. Suppose < j and lets = f(G). Becausel(G) is a
threshold partitiond,., = s and eithew/; > s, ord, = s andd,.» < s. Thus, becausé, = d;,
it cannot happen that both< s andj > s + 2. This leaves two possibilities: Eithgr< s + 1
ori > s. In each of these cases, the result follows from Equatjons (2.1] and (2.2). O

We are grateful to the referee for pointing out that Lenima 5.2 also follows from [3] where it
is shown that no subset of vertices of a threshold graph can be arranged in an "alternating cycle"
consisting of an edge, a non-edge, an edge, a non-edge, ...

Proof of Theorer 5]1Fix a positive integek. Let D, be the set of vertices a¥ of degreek.

If o(Dy) > 2 then, by the same approach used to prove Lefnma 5.2, dithex a clique or it
is an independent set. Thus, by Lenmd 5.2, any permutatidii@j that fixes the vertices not
contained inD,, is an automorphism aff. Because no automorphism@fcan send a vertex of
degreek to a vertex of degreé # k, the proof is complete. O
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