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ABSTRACT. Due in part to their many interesting properties, a family of graphs has been studied
under a variety of names, by various authors, since the late 1970’s. Only recently has it become
apparent that the many different looking definitions for thesethresholdgraphs are all equivalent.
While the pedigree ofstrict partitionsof positive integers is much older, their evolution into the
lattice of shifted shapes is relatively recent. In this partly expository article we show, from the
perspective of partially ordered sets, that the family of connected threshold graphs is isomorphic
to the lattice of shifted shapes, and then discuss some implications of this identification for
threshold graphs.
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1. PRELIMINARIES

A partition of r is a nonnegative integer sequenceπ = (π1, π2, . . . , πn), whereπ1 ≥ π2 ≥
· · · ≥ πn, andr = π1 +π2 + · · ·+πn. The nonzeroπi are called thepartsof π and their number,
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2 RUSSELL MERRIS AND TOM ROBY

denoted̀ (π), is thelengthof π. We will write π ` r to indicate thatπ is a partition ofr, and

refer tor as therank of π.

Two partitions ofr areequivalentif they have the same multiset of parts, i.e., if they differ

only in the number of terminal 0’s. Thus, e.g.,

(6, 2, 2, 1), (6, 2, 2, 1, 0), (6, 2, 2, 1, 0, 0), . . .

are equivalent partitions of 11 each of length 4;(0, 0, 0) is equivalent to theempty partitionϕ

of length and rank 0.

Example 1.1. SupposeG = (V,E) is a (simple) graph with vertex setV = {1, 2, . . . , n} and

edge setE of cardinalityo(E) = m. Denote bydG(i) thedegreeof vertexi, that is, the number

of edges ofG incident with i. Supposed1 ≥ d2 ≥ · · · ≥ dn ≥ 0 are these vertex degrees

(re)arranged in nonincreasing order. By what has come to be known as the “first theorem of

graph theory”,d(G) = (d1, d2, . . . , dn) ` 2m.

Say that partitionπ = (π1, π2, . . . , πn) is graphic if there is a graphH with π = d(H). Not

every partition is graphic. Ifπ is graphic, its rank must be even and, because (simple) graphs

have no loops or multiple edges,π1 ≤ `(π) − 1. That these obvious necessary conditions are

not sufficient is illustrated, e.g., byρ = (5, 4, 4, 2, 2, 1).

The unifying theme of the present paper is the notion of a “maximal” graphic partition. To

make this idea precise, supposeα = (a1, a2, . . . , as) andβ = (b1, b2, . . . , bt) are nonincreasing

sequences of real numbers. Thenβ weakly majorizesα, writtenβ �
w
α, if s ≥ t,

(1.1)
k∑

i=1

bi ≥
k∑

i=1

ai, 1 ≤ k ≤ t,

and

(1.2)
t∑

i=1

bi ≥
s∑

i=1

ai.

If β weakly majorizesα, and equality holds in Inequality (1.2), thenβ majorizesα, written

β � α. If β � α andβ is not equivalent toα, thenβ strictly majorizesα. (The standard

reference for variations on the theme of majorization is [16].)

For nonnegative integer sequences, majorization has a useful geometric description. Suppose

π ` r > 0. TheFerrers (or Young) diagramF (π) is a left-justified array consisting of̀(π)

rows of “boxes”; theith row ofF (π) contains a total ofπi boxes. The Ferrers diagram afforded,

e.g., byτ = (4, 3, 3, 2, 2, 2) ` 16 is illustrated in Fig. 1.1. Because rows that contain zero boxes

do not explicitly appear inF (π), equivalent partitions afford the same Ferrers diagram. For the

most part, we will treat equivalent partitions as if they were equal.
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THE LATTICE OF THRESHOLDGRAPHS 3

Figure 1.1:F (τ).

Figure 1.2:F (τ∗) = F (τ)t.

Lemma 1.1(Muirhead’s Lemma [16, p. 135]). If π,γ ` r, thenπ � γ if and only ifF (π) can

be obtained fromF (γ) by moving boxes up (to lower numbered rows).

A little care must be taken when moving boxes to ensure that the resulting array is a legitimate

Ferrers diagram. With this caveat in mind, it follows easily from Lemma 1.1 that majorization

induces a partial order on{F (π) : π ` r}. In other words, the set of (equivalence classes of)

partitions ofr is partially ordered by majorization.

Lemma 1.2([22]). Supposeπ,γ ` r. If π is graphic and ifπ majorizesγ, thenγ is graphic.

Supposed(G) = π. While the details may be a little awkward to write down, the proof of

Lemma 1.2 amounts to showing how moving boxes down inF (π) can be made to correspond to

moving edges around in a graph obtained fromG by adding sufficiently many isolated vertices.
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4 RUSSELL MERRIS AND TOM ROBY

Definition 1.1. A graphic partitionπ ` r is maximalprovided no graphic partition strictly

majorizesπ.

There are several well known criteria for a partition to be graphic (see, e.g., [23], but be wary

of misprints). For our purposes, the most useful necessary and sufficient conditions are those

commonly attributed to Hässelbarth [12], but first published by Ruch and Gutman [22].

Supposeπ ` r. Theconjugateof π is the partitionπ∗ whose Ferrers diagramF (π∗) = F (π)t,

thetransposeof F (π). In other words,π∗ ` r is the partition whoseith part isπ∗i = o({j : πj ≥
i}), the number of boxes in theith columnof F (π). If τ = (4, 3, 3, 2, 2, 2) then (see Fig. 1.2)

τ ∗ = (6, 6, 3, 1).

The number ofdiagonal boxesin F (π) is f(π) = o({i : πi ≥ i}). The diagonal boxes in

Fig.s 1.1 – 1.2 have been filled (darkened), making it easy to see thatf(τ) = 3 = f(τ ∗). Note

thatF (π) is completely determined by its firstf(π) rows and columns.

Theorem 1.3(Ruch-Gutman Theorem [22]). Supposeπ ` 2m. Thenπ is graphic if and only if

(1.3)
k∑

i=1

πi ≤
k∑

i=1

(π∗i − 1) , 1 ≤ k ≤ f(π).

If τ = (4, 3, 3, 2, 2, 2) ` 16 then, as we have seen,f(τ) = 3 andτ ∗ = (6, 6, 3, 1). Because

4 < 6 − 1, 4 + 3 < (6 − 1) + (6 − 1), and4 + 3 + 3 < (6 − 1) + (6 − 1) + (3 − 1), the

Ruch-Gutman inequalities are satisfied:τ is graphic. Two nonisomorphic graphs with degree

sequenceτ are exhibited in Fig. 1.3. Ifπ = (5, 4, 3, 2, 1) ` 15 then, because 15 is odd,π

is not graphic. Ifρ = (5, 4, 4, 2, 2, 1) ` 18, thenf(ρ) = 3 andρ∗ = (6, 5, 3, 3, 1). While

5 = (6 − 1) and5 + 4 = (6 − 1) + (5 − 1), the third inequality in (1.3) is not satisfied;

5 + 4 + 4 > (6 − 1) + (5 − 1) + (3 − 1). Becauseρ does not satisfy the Ruch-Gutman

inequalities, it is not graphic (confirming an earlier observation).

Figure 1.3: Graphs satisfyingd(G) = τ = (4, 3, 3, 2, 2, 2).
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THE LATTICE OF THRESHOLDGRAPHS 5

Definition 1.2. A thresholdpartition is a graphic partition for which equality holds throughout

(1.3), i.e.,π ` 2m is a threshold partition if and only if

(1.4) πi = π∗i − 1, 1 ≤ i ≤ f(π).

Geometrically,π is a threshold partition if and only ifF (π) can be decomposed, as in Fig.

1.4, into anf(π)× f (π) array of boxes in the upper left-hand corner, called theDurfee square,

a row off(π) boxes directly below the Durfee square, darkened in Fig. 1.4, and a piece below

row f(π) + 1 that is the transpose of the piece to the right of the Durfee square. It follows, for

f(π) < k < `(π), thatπ∗k = πk+1 ≤ πk. Thus, for any threshold partitionπ, of lengthn = `(π),

(1.5) π∗k ≤ πk + 1, 1 ≤ k < n.

Figure 1.4: Decomposition ofF (6, 5, 3, 3, 2, 2, 1).

Theorem 1.4. Supposeπ ` 2m. Thenπ is a maximal graphic partition if and only ifπ is a

threshold partition.

The idea of the proof is that Inequalities (1.3) precisely limit the extent to which boxes can

be moved up in a Ferrers diagram and maintain the property that the corresponding partition is

graphic. Details can be found, e.g., in [22].

A threshold graphis one whose degree sequence is a threshold (maximal) partition. First

introduced in connection with set packing and knapsack problems [3] and, independently, in

the analysis of parallel processes in computer programming [13], threshold graphs have been

rediscovered in a variety of contexts, leading to numerous equivalent definitions. (See, e.g., [1],

[5], [11], [15], [17], [18], [20], and [21].)

Supposeπ = (π1, π2, . . . , πn) ` 2m is a threshold partition of lengtht (so thatπt > 0 =

πt+1 = · · · = πn). Let G be a threshold graph withd(G) = π. ThenG hasn − t isolated
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6 RUSSELL MERRIS AND TOM ROBY

vertices (that go unrepresented inF (π)). Moreover, becauseπ1 + 1 = π∗1 = t, it must be that

some vertex ofG is adjacent to every other vertex of positive degree. So, ifG is a threshold

graph then it can have at most one nontrivial component (consisting of more than one vertex),

and that component must have at least onedominatingvertex.

Say that two graphs areequivalentif they are isomorphic, to within isolated vertices; that is,

H1 andH2 are equivalent if they are both edgeless graphs or ifH ′
1
∼= H ′

2, whereH ′
i is the graph

obtained fromHi by deleting all of its isolated vertices,i = 1, 2. In particular, every threshold

graph is equivalent to a connected threshold graph.

Theorem 1.5. If π is a threshold partition then, up to isomorphism, there is exactly one con-

nected threshold graphG that satisfiesd(G) = π.†

For the sake of completeness, we sketch a proof of this well-known result. Supposeu is a

dominating vertex of a graphG. LetH = G − u be the graph obtained fromG by deleting

vertexu (and all the edges incident with it). Because the Ferrers diagramF (d(H)) is obtained

from F (d(G)) by deleting its first row and column,G is a threshold graph if and only ifH is

a threshold graph. (See, e.g., Fig. 1.5.) The result now follows by induction and the fact that

every graph on fewer than five vertices is uniquely determined by its degree sequence.

Figure 1.5:F (6, 5, 3, 3, 2, 2, 1)

The idea for the proof of Theorem 1.5 can be used to construct a threshold graph having a

prescribed (threshold) degree sequence.

Algorithm 1.1 (Threshold Algorithm). Let π = (π1, π2, . . . , πn) ` 2m be a threshold partition.

SetV = {1, 2, . . . , n} andE = φ

†Indeed, more is true: Apart from isolated vertices, there is a uniquelabeledgraph with degree sequenceπ. As
present purposes do not require this stronger result, we say no more about it.
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THE LATTICE OF THRESHOLDGRAPHS 7

For i = 1 to f(π)

For j = i to πi

E = E ∪ {{i, j + 1}}
Next j

Next i

End

Supposeπ = (6, 5, 3, 3, 2, 2, 1) is the threshold partition whose Ferrers diagram appears in

Fig. 1.5. Ifπ is used as input for the Threshold Algorithm, the output is illustrated in Fig. 1.6.

Figure 1.6: A threshold graph.

The reader may verify that ifτ = (4, 3, 3, 2, 2, 2) were used as input, the output of the Thresh-

old Algorithm would be a graph with degree sequence(4, 3, 3, 3, 1, 0). (While τ is graphic, it is

not maximal.)

Recall that thecomplementof G = (V,E) is the graphGc = (V,Ec), whereuv ∈ Ec if

and only if uv /∈ E, i.e., the edges ofGc are the edges of the complete graph,Kn, that do

not belong toG. If Fig. 1.6 is viewed as a clockwise application of the Threshold Algorithm,

the edges ofK7 that are “missing” from Fig. 1.6 may be construed as a counterclockwise

application, constructingGc. Note that the degree sequence,d(Gc), corresponds to the shape

complementary toF (d(G)) inside then× (n− 1) rectangle. For the threshold graph of Figures

1.5 and 1.6, we getd(Gc) = (5, 4, 4, 3, 3, 1). These observations yield the well known fact that

G is a threshold graph if and only ifGc is a threshold graph.
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8 RUSSELL MERRIS AND TOM ROBY

2. THRESHOLD GRAPHS

SupposeG is a threshold graph. It is convenient to denote byF (G) the Ferrers diagram

corresponding tod(G). Similarly, let f(G) = f(d(G)) be the number of boxes on the main

diagonal ofF (G).

For any graphG = (V,E), the set ofneighborsof u ∈ V is NG(u) = {v ∈ V : uv ∈ E}.
The Threshold Algorithm produces a graphG on vertex setV = {1, 2, . . . , n} that satisfies

(2.1) NG(i) = {1, 2, . . . , i− 1, i+ 1, . . . , πi + 1}, i ≤ f(π),

and

(2.2) NG(i) = {1, 2, . . . , πi}, i > f(π),

whereπ = d(G). In particular, thekth largest vertex degree ofG is dk = dG(k), 1 ≤ k ≤ n.

Lemma 2.1. LetG = (V,E) be a connected threshold graph onn ≥ 3 vertices. IfG 6= Kn ,

then there is a nonadjacent pair of verticesi, j ∈ V such thatH = (V,E ∪ {ij}) is a threshold

graph.

Proof. Without loss of generality we may assume thatV = {1, 2, . . . , n} and thatdk = dG(k),

1 ≤ k ≤ n. BecauseG 6= Kn, f(G) < n − 1. Let i be minimal such thatdi < n − 1.

Then 2 ≤ i ≤ f(G) + 1. If i = f(G) + 1 then, becaused(G) is a threshold sequence,

di = f(G) = i−1. (See Fig. 1.4.) Choosej = i+1. By (2.2),ij /∈ E. Sincedi−1 = n−1 forces

dn ≥ i− 1, it must be thatd1 = d2 = · · · = di−1 = n− 1 anddi = di+1 = · · · = dn = i− 1. In

this caseF (H) is obtained fromF (G) by adding new boxes in positions(i, i) and(i+1, i), the

first at the end of rowi and the second at the end of columni. In particular,d(H) is a threshold

sequence.

If i ≤ f(G), thendi ≥ i. Choosej = di + 2 ≤ n. By (2.1),ij /∈ E. Sincedi = j − 2 forces

d∗i = j − 1, it must be thatdj−1 ≥ i anddj < i. Becausedi−1 = n − 1, dj ≥ dn ≥ i − 1.

Therefore,dj = i − 1. In this case,F (H) is obtained fromF (G) by adding two new boxes in

positions(i, j−1) and(j, i), one at the end of rowi, and a second at the end of columni. Thus,

d(H) is a threshold sequence. �

Denote byTn, n ≥ 1, the set of connected threshold graphs onn vertices. Ifn ≥ 2, then

o(Tn) = 2n−2 (an observation, implicit in [15, p. 468], made explicit in [18]). LetΘn be the

graph with vertex setTn, in whichG,H ∈ Tn are adjacent if and only if (up to isomorphism)

G can be obtained fromH by the addition or deletion of a single edge. (The graphΘn is

an undirected variation on a theme of Balińska and Quintas [2]. When extended to include

disconnected threshold graphs, it becomes the 1-skeleton of the polytope of degree sequences

studied in [21].)

Theorem 2.2. If n ≥ 1 thenΘn is connected.
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THE LATTICE OF THRESHOLDGRAPHS 9

Proof. LetG ∈ Tn. If G 6= Kn then (Lemma 2.1) there is a path inΘn fromG toKn. �

Definition 2.1. If G andH are graphs, writeG ≤ H to indicate thatG is equivalent to a

subgraph ofH.

Strictly speaking, Definition 2.1 partially orders not the family of graphs, but the set of all

equivalence classes of graphs. Like flies swarming around a thoroughbred horse, isolated ver-

tices associated with threshold graphs are a trivial but annoying complication. From this point

on, we will treat equivalent threshold graphs as if they were equal. Consistent with our treat-

ment of equivalent partitions, this amounts to little more than choosing the connected threshold

graphs as a system of distinct representatives for the equivalence classes of all threshold graphs.

Given this identification, the restriction of “≤” to Tn is a partial order, andΘn may be viewed

as a “Hasse diagram” for the partially ordered set (poset)Tn.

Recall that a posetP is locally finite if the interval[x, z] = {y ∈ P : x ≤ y ≤ z} is finite

for all x, z ∈ P . If x, z ∈ P and[x, z] = {x, z}, thenz coversx. A Hasse diagramof P is a

graph whose vertices are the elements ofP , whose edges are the cover relations, and such that

z is drawn “above”x wheneverx < z.

A lattice is a posetP in which every pair of elementsx, y ∈ P has a least upper bound (or

join), x ∨ y ∈ P , and a greatest lower bound (ormeet), x ∧ y ∈ P . LatticeP is distributiveif

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) andx ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) for all x, y, z ∈ P . (An

excellent reference for variations on the theme of posets is [27].)

Denote byY the set of all (equivalence classes of) partitions. Ifµ, ν ∈ Y , defineµ ≤ ν to

mean that̀ (µ) ≤ `(ν) andµi ≤ νi, 1 ≤ i ≤ `(µ). Informally, µ ≤ ν if F (µ) ⊂ F (ν) in

the sense thatF (µ) fits insideF (ν). With respect to this partial ordering,Y is a locally finite

distributive lattice, commonly known asYoung’s lattice. (See, e.g., [7], [25], or [27].) The

unique smallest element ofY is 0̂ = ϕ, the empty partition.

Definition 2.2. For eachn ≥ 2, denote byYn the induced subposet ofY corresponding to the

threshold partitions of lengthn, i.e., the even rank partitionsπ that satisfy (1.4) and whose first

part isπ1 = n− 1. LetY1 = {ϕ}.

The posetYn is half of the “minuscule poset”M(n) discussed, e.g., in [24, §5].

Lemma 2.3. SupposeG,H ∈ Tn. ThenG ≤ H (in Tn) if and only ifd(G) ≤ d(H) (in Yn).

Proof. We begin by extending the partial order of Young’s lattice to unordered sequences of

nonnegative integers: IfA = (a1, a2, . . . , ar) andB = (b1, b2, . . . , bs), defineA ≥ B to mean

thatr ≥ s, andai ≥ bi, 1 ≤ i ≤ s. If we denote byĀ = (ā1, ā2, . . . , ār) the sequence obtained

fromA by rearranging its elements in nonincreasing order, it follows by induction thatĀ ≥ B̄

wheneverA ≥ B. In particular, ifG is obtained fromH by deleting one or more edges, then

dG(i) ≤ dH(i), 1 ≤ i ≤ n; that is,G ≤ H impliesd(G) ≤ d(H).
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10 RUSSELL MERRIS AND TOM ROBY

Conversely, letG = (V,E) andH = (W,F ) be connected threshold graphs onn vertices

with d(G) ≤ d(H). By the Threshold Algorithm, we may assumeV = W = {1, 2, . . . , n};
if di = dG(i) and δi = dH(i), 1 ≤ i ≤ n, that d(G) = (d1, d2, . . . , dn), and d(H) =

(δ1, δ2, . . . , δn); and thatd1 = n − 1 = δ1. If d(G) = d(H), then (Theorem 1.5)G ∼= H.

Otherwise,F (G) 6= F (H) and there is a largest positive integerk ≤ f(H), such thatdk < δk.

Let r = δ∗k = δk + 1. By (2.1),e = kr ∈ E(H). By (1.5),r > dk + 1 ≥ d∗k = o({i : di ≥ k}),
which implies thatdr < k. Similarly, r = δ∗k implies thatδr ≥ k. Thus, δr > dr. Let

H ′ = H − e. SinceF (H ′) is obtained fromF (H) by taking a box from the end of column

k, and a second box from the end of rowk, H ′ is a connected threshold graph that satisfies

d(H ′) ≥ d(G). Because this process of deleting edges may be continued until the resulting

graph has the same degree sequence asG, it follows thatH contains a subgraph isomorphic to

G, i.e.,G ≤ H. �

Recall that thedual of posetP is the posetP ∗ on the same set asP , but such thatx ≤ y in

P ∗ if and only if y ≤ x in P . If P is isomorphic toP ∗, thenP is self-dual.

Theorem 2.4.The bijectionG→ d(G) is a poset isomorphism fromTn ontoYn. In particular,

Tn is a self-dual distributive lattice.

ThatTn is a lattice was observed previously in [10, Section 4]. (Also see [5] and [15].) Using

Theorem 2.4 it is easy to strengthen Lemma 2.1 by identifying, as in [21], exactly which edges

can be added to, or deleted from, a threshold graph so that the result is another threshold graph.

Proof of Theorem 2.4.The first statement is immediate from Theorem 1.5 and Lemma 2.3. To

prove the second, We first show that the induced subposetYn is an induced sublattice of Young’s

LatticeY . Supposeπ,σ ∈ Yn. If µi = max {πi, σi}, 1 ≤ i ≤ n, thenµ = (µ1, µ2, . . . , µn)

is the join ofπ andσ in Y . To show thatµ ∈ Yn, supposej ≤ f(µ) = o({i : µi ≥ i}) =

max {f(π), f(σ)}. Becauseµs ≥ j if and only if max {πs, σs} ≥ j, µ∗j = o({s : µs ≥
j}) = max {π∗j , σ∗j} = max {πj, σj} + 1 = 1 + µj. Thus,µ ∈ Yn. Replacing maximums with

minimums, the same argument shows that the meet inY of π andσ is an element ofYn.

BecauseY is distributive, the induced sublatticeYn is distibutive. Thus, from the first state-

ment of the theorem,Tn is distributive.

Duality is easier to check from the perspective of graphs. SupposeG ∈ Tn. Let u be a

dominating vertex ofG and setH = G − u. Recall thatH and its complement are (not

necessarily connected) threshold graphs. Letψ(G) = u·Hc be the (cone) graph obtained from

Hc by adding vertexu andn − 1 edges connectingu to every vertex ofHc. Then, up to

isomorphism,ψ is well defined, andψ : Tn → Tn is injective.

If G1, G2 ∈ Tn, thenG1 ≤ G2 if and only if G1 is isomorphic to a graphG′
1 that can be

obtained fromG2 by deleting some of its edges, but none of its vertices, i.e., to aspanning

subgraphG′
1 of G2. If u is a dominating vertex ofG1 thenu′, the vertex ofG′

1 to which it
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THE LATTICE OF THRESHOLDGRAPHS 11

corresponds, must be a dominating vertex ofG′
1 and, hence, ofG2. Thus,G1 ≤ G2 if and only

if G1−u is isomorphic to a spanning subgraph ofG2−u′, if and only if (G2−u′)c is isomorphic

to a spanning subgraph of(G1 − u)c, if and only ifψ(G2) ≤ ψ(G1). �

Since it is a distributive lattice,Tn is isomorphic to the lattice of “order ideals” ofPn, the

induced subposet of its “join irreducible” elements [27, Ch. 3]. For the purposes of this article,

the relevant conclusion is that the posetTn is completely determined byPn. We shall return to

this point in Section 4.

Because the partial orderings ofTn andYn extend naturally to

= =
⋃
n≥1

Tn and Ỹ =
⋃
n≥1

Yn,

respectively, the following is an immediate consequence of Theorem 2.4.

Corollary 2.5. The bijectionG→ d(G) is a poset isomorphism from= ontoỸ .

3. THE L ATTICE OF SHIFTED SHAPES

Up to this point, the focus of our attention has been on the number of vertices ofG and the

length ofπ. In what follows, it will sometimes be more convenient to focus instead on the

number of edges ofG and the rank ofπ.

Supposeπ ` 2m. If µi = π∗i − 1 andνi = πi, 1 ≤ i ≤ f(π), then, from (1.3),π is graphic

if and only if µ weakly majorizesν, an observation that simplifies the statement of the Ruch-

Gutman criteria without adding much clarity. Let us see what can be done about that. Begin

by dividingF (π) into two disjoint pieces. Denote byB(π) those boxes ofF (π) that lie strictly

below its diagonal, and letA(π) be the rest, i.e.,A(π) consists of those boxes that lie on the

diagonal or lie to the right of a diagonal box. Informally,A(π) is the piece ofF (π) on orabove

the diagonal, andB(π) is the piece (strictly)belowthe diagonal. Forτ = (4, 3, 3, 2, 2, 2), the

division ofF (τ) intoA(τ) andB(τ) is illustrated in Fig. 3.1.

Figure 3.1: Division ofF (τ).
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12 RUSSELL MERRIS AND TOM ROBY

Definition 3.1. Supposeπ ` r. Let α(π) be the partition whose parts are the lengths of the

rowsof theshifted shapeA(π). Denote byβ(π) the partition whose parts are the lengths of the

columnsof B(π).

From Fig. 3.1,α(τ) = (4, 2, 1) andβ(τ) = (5, 4). Together with (1.1) – (1.4), this division

of F (π) leads to the following variation on the theme of Ruch and Gutman.

Theorem 3.1. Supposeπ ` 2m. Thenπ is graphic if and only ifβ(π) weakly majorizesα(π).

Moreover,π is a threshold partition if and only ifβ(π) = α(π).

We will abbreviateα(d(G)) andβ(d(G)) by α(G) andβ(G), respectively.

Let us look a little more closely at what it means to be a shifted shape. UnlikeF (π), the

rows ofA(π) are not left-justified. Each successive row is shifted one (more) box to the right.

The left-hand boundary ofA(π) looks like an inverted staircase. On the other hand, because

A(π) is just the top half ofF (π), the rules that apply to the right-hand boundary are the same

for A(π) as forF (π), i.e., the last box in rowi + 1 of A(π) can extend no further to the

right than the last box in rowi. The right-hand boundary rule applied toF (π) reflects the fact

that the parts ofπ form a nonincreasing sequence. Because the left-hand boundary rules are

different, the same right-hand rule applied toA(π) implies that the parts ofα(π) form a (strictly)

decreasing sequence. That is, the parts ofα(π) are all different. Partitions with distinct parts

are calledstrict partitions. If α = (α1, α2, . . . , αk) is a strict partition ofm, denotedα ` m,

thenα1 > α2 > · · · > αk, and there is a unique shifted shape whoseith row containsαi boxes,

1 ≤ i ≤ k.

Corollary 3.2. The mappingπ → α(π) is a bijection from the threshold partitions of2m onto

the strict partitions ofm.

Representing the connected threshold graphG by the strict partitionα(G), the self-dual dis-

tributive latticeT6 (from Theorem 2.4) is illustrated in Fig. 3.2.

It follows from Corollary 3.2 that̃Y is identical to what has come to be known as thelattice

of shifted shapes. (See, e.g., [7], or [26, §3].) From this identification (and Corollary 2.5),

it follows that= is a locally finite distributive lattice with least element0̂ = K1, i.e.,= is a

so-calledfinitary distributivelattice.

Recall that a subsetC of a posetP is achain if any two elements ofC are comparable (in

P ). A chain issaturatedif there do not existx, z ∈ C andy ∈ P\C such thatx < y < z. In a

locally finite lattice, a chainx0 < x1 < · · · < xk (of lengthk = o(C) − 1) is saturated if and

only if xi coversxi−1, 1 ≤ i ≤ k.

Because it is a finitary lattice,= has a unique rank functionλ : = → N, whereλ(G) is the

length of any saturated chain from̂0 = K1 toG, i.e.,λ(G) = m, the number of edges ofG.

Let tm (not to be confused withTn) be the number of nonisomorphic connected threshold

graphs havingm edges. By Corollary 3.2,tm is equal to the number of strict partitions of rank
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m. The generating function for strict partitions has been known at least since the time of Euler:∑
m≥0

tmx
m =

∏
i≥1

(1 + xi)(3.1)

= 1 + x+ x2 + 2x3 + 2x4 + 3x5 + 4x6 + · · · .

Together with Corollaries 2.5 and 3.2, these remarks imply that= is a so-called “graded

poset” with “rank generating function” given by (3.1).

Definition 3.2. LetG ∈ = be a fixed but arbitrary connected threshold graph. Denote bye (G)

thenumber of saturated chains in= fromK1 toG.

RepresentingG ∈ = byα(G), the first few levels (ranks) of the graded poset= are illustrated

in Fig. 3.3. The numbers in the figure are the corresponding values ofe(G). (Note that they

follow a recurrence reminiscent of Pascal’s triangle.)

Starting with an unlimited number of isolated vertices,e(G) is the number of ways to “con-

struct” the threshold graphG by adding edges, one at a time, subject to the condition that every

time an edge is added the result is a threshold graph. (The Threshold Algorithm corresponds to

constructingα(G) a row at a time.)

Corollary 3.3. LetG be a threshold graph havingm edges and degree sequenceπ = d(G).

Supposeα(π) = (ρ1, ρ2, . . . , ρr) ` m wherer = f(G), andρi = πi − i+ 1, 1 ≤ i ≤ r. Then

(3.2) e(G) =
m!

ρ!

∏
i<j

ρi − ρj

ρi + ρj

whereρ! = ρ1!ρ2! · · · ρr!, i.e., apart from a power of 2 depending onm andr, e(G) is the degree

of the projective representation ofSm corresponding toα(π).

Proof. The result follows from Corollaries 2.5 and 3.2, and the fact that the number of saturated

chains from0̂ to d(G) in Ỹ is given by the right-hand side of (3.2). (See, e.g., [14, III.8, Ex.

12].) The natural bijection between projective representations of the symmetric groups and

strict partitions is an old result going back to Schur, a modern account of which can be found in

[28]. �

4. L ATTICE OF ORDER I DEALS

Let I be a (possibly empty) subset of the posetP . If y ∈ I, x ∈ P , andx < y, together imply

thatx ∈ I, thenI is anorder idealof P . The set of all order ideals ofP , ordered by inclusion,

is a poset denotedJ(P ). An elementy /∈ 0̃ of a distributive latticeL is join irreducible if y

is not the least upper bound of two elements, both of which are strictly less thany (i.e., y is

join irreducible if it has exactly one edge below it in any Hasse diagram ofL.) The next result

follows from the fact that= is a finitary distributive lattice [27, Prop. 3.4.3].
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14 RUSSELL MERRIS AND TOM ROBY

Figure 3.2: Hasse diagram ofT6.
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THE LATTICE OF THRESHOLDGRAPHS 15

Figure 3.3:= ∼= Ỹ .

Theorem 4.1. If P is the induced subposet of join irreducible elements of=, then= ∼= J(P),

the lattice of order ideals ofP .

Can one give an explicit description ofP? Any element that coverŝ0 is join irreducible.

Glancing at Fig. 3.3, one finds only one such shifted shape, namely,�, corresponding to the

strict partition (1). Indeed, it is clear from Fig. 3.3, not only that�� ∼(2), ��� ∼(3), etc.,

are join irreducible, but that there are others as well, namely those corresponding to the strict

partitions(2, 1), (3, 2), and(3, 2, 1). We leave it as an exercise to show that the join irreducible

shifted shapes are precisely those that are right-justified.

What about a graph-theoretic interpretation ofP? Say that two edges ofG are equivalent

if there is an automorphism ofG that carries one to the other. Then the connected threshold

graphG lies in P if and only if, up to equivalence, there is a unique edgee of G such that
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16 RUSSELL MERRIS AND TOM ROBY

G− e is a threshold graph. This, of course, is not so much an answer as another way of stating

the question. A more useful characterization of join irreducible threshold graphs involves the

unrelated notion of a “join” of graphs.

Definition 4.1. Let G1 = (V1, E1) andG2 = (V2, E2) be graphs on disjoint sets of vertices.

Their join is the graphG1•G2 = (V,E), whereV = V1 ∪ V2 andE is the union ofE1 ∪E2 and

the set{uv : u ∈ V1 andv ∈ V2}.

The particular instance of the join of a graph and a single vertex(u•Hc) occurred in the proof

of Theorem 2.4.

Theorem 4.2. SupposeG ∈ =. ThenG ∈ P if and only if, for some pair of positive integersr

ands,G ∼= Kr•Kc
s , the join of a complete graph and the complement of a complete graph.

Proof. SupposeG ∈ P. Becausê0 /∈ P , G has an edge. IfG = Kn thenn ≥ 2, r = n − 1

ands = 1. Otherwise, letπ = d(G). Becauseα(π) = β(π) corresponds to a right-justified

shifted shape, there exists a positive integerr such thatπ1 = π2 = · · · = πr = n − 1 and

πr+1 = · · · = πn = r. In other words,r (< n) of the vertices ofG are dominating vertices,

and the remainings = n − r of its vertices are adjacent (only) to the dominating vertices; that

is, G ∼= Kr•Kc
s . Conversely, ifG ∼= Kr•Kc

s ∈ =, thenα(G) corresponds to a right-justified

shifted shape. �

Definition 4.2. Denote by[n] the poset{1, 2, . . . , n} under the natural ordering of the integers.

Thus[n] is ann-element chain (of lengthn− 1). Denote byN the poset of the natural numbers

ordered by magnitude.

Recall that the direct (or cartesian)productof posetsP andQ is the posetP ×Q = {(x, y) :

x ∈ P andy ∈ Q}, where(x, y) ≤ (p, q) if (and only if) x ≤ p andy ≤ q. If P ∩ Q = φ, the

disjoint unionof P andQ is the posetP + Q, wherex ≤ y if either x, y ∈ P andx ≤ y, or

x, y ∈ Q andx ≤ y.

The poset of right-justified shifted shapes (the join irreducible elements ofỸ ∼= =) turns out,

itself, to be a finitary distributive lattice. Denote byP1 the induced subposet ofP consisting of

its join irreducible elements, so thatP ∼= J(P1). ThenP1 is isomorphic toN × [2] (making

P “semi-Pascal” [7, p. 381-382]). In the language of strict partitions,α(π) ∈ P1, if and

only if m ≥ 2 andα(π) = (m), corresponding to a shifted shape with a single row of boxes,

or α(π) = (r − 1, r − 2, . . . , 1), corresponding to a right-justified “inverted staircase”. The

connected threshold graph emerging from(m) is the “star”,K1•Kc
m, while the inverted staircase

corresponds toKr.

Because a product of chains is a finitary distributive lattice,P1 ∼= J(P2) where, it turns out,

P2 ∼= N + [1]. In the language of strict partitions,α(π) ∈ P2 if and only if α(π) = (2, 1), or

m ≥ 3 andα(π) = (m). Graph theoretically,G ∈ P2 if and only ifG = K3 orG is a star on

n ≥ 4 vertices. These observations are summarized in the following.
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Theorem 4.3. The lattice= of connected threshold graphs is isomorphic toJ(J(J(P2))),

whereP2 is the induced subposet of= consisting ofK3 and the stars onn ≥ 4 vertices.

For the remainder of this section, we return to the self-dual distributive latticeTn of connected

threshold graphs onn vertices. Our goal is an analog of Theorem 4.3 forTn. The desired result,

stated from the perspective of shifted shapes, can be found in [24]. We merely flesh out some

of the details and interpret them from the perspective of threshold graphs.

Denote the poset of join irreducible elements ofTn by Pn, so thatTn = J(Pn). A glance at

Fig. 3.2 reveals thatP6 6⊂ T6∩P. Some elements ofP6 correspond to shifted shapes that are not

right-justified. This is easily explained. Because a connected threshold graph on 6 vertices has

a (dominating) vertex of degree 5, the first row of every shifted shape in Fig. 3.2 must contain

5 boxes. In general, the join-irreducible elements ofTn corresponded to shifted shapes that are

right justifiedwith the possible exception of the first row.

Definition 4.3. SupposeG is a graph with a dominating vertexu. Denote byG#Kc
t the graph

obtained fromG by addingt new verticesvi, 1 ≤ i ≤ t, andt new edges{u, vi}, 1 ≤ i ≤ t.

If G has two dominating vertices,u1 andu2, then the version ofG#Kc
t obtained by addingt

neighbors tou1 is isomorphic to the version obtained by addingt neighbors tou2. Thus, up to

isomorphism, it does not matter which dominating vertex ofG is chosen to play the role ofu in

Definition 4.3. More importantly, ifd(G) is a threshold sequence, thend(G#Kc
t ) is a threshold

sequence.

Theorem 4.4.The set of join irreducible elements ofTn isPn = {(Kr•Kc
s)#K

c
t : r+ s+ t =

n}.

Proof. Becauseα(G#Kc
t ) is obtained fromα(G) by addingt boxes to its first row, the result

follows from Theorems 2.4 and 4.2, and the discussion leading up to Definition 4.3. �

Lemma 4.5. The posetPn of join irreducible elements ofTn is a distributive lattice.

Proof. While Pn is an induced subposet ofTn, it is not a sublattice ofTn. Supposex, y ∈ Pn.

From Theorem 2.4 and the proof of Theorem 4.4, we may identifyx andy with shifted shapes

whose first rows have lengthn − 1 and whose remaining rows (if any) are right-justified. The

meet ofx andy in Tn is the intersection of their shifted shapes. Because it belongs toPn, this

intersection is the meet ofx andy in Pn.

Denote byz andz′ the joins ofx andy in Pn andTn, respectively. Thenz′ is obtained from

x andy by superimposing their shifted shapes. If, apart from its first row,z′ is right-justified,

thenz = z′. Otherwise,z is obtained fromz′ by adding a rectangular array of boxes to its lower

right hand corner.

The proof that the join and meet ofPn distribute over each other is straightforward. �
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18 RUSSELL MERRIS AND TOM ROBY

It follows from Lemma 4.5 thatPn = J(P 1
n), whereP 1

n is the subposet of join irreducible

elements ofPn.

Theorem 4.6. The subposet of join irreducible elements ofPn is P 1
n = {(Kr•Kc

s)#K
c
t : r +

s+ t = n, andr = 2 or s = 0}.

Proof. From among all possible ways to expressG ∈ Pn in the form(Kr•Kc
s)#K

c
t , choose

those for whichr is as large as possible and from among those, choose the one for which

s is as large as possible. Thus, for example, we chooseK6 overK5•Kc
1 andK2#K

c
4 over

(K1•Kc
2)#K

c
3. Note that, as long asn ≥ 2, this canonical form results inr ≥ 2. If the

canonical form ofG ∈ Pn is (Kr•Kc
s)#K

c
t with r ≥ 3 ands ≥ 1, thenG is a join (in the

latticePn) of the incomparable graphs(Kr•Kc
s−1)#K

c
t+1 and(Kr−1•Kc

s+1)#K
c
t . This proves

that the join irreducible elements of (the lattice)Pn are contained in the set identified asP 1
n in

the statement of the theorem.

If the canonical form ofG ∈ Pn is (K2•Kc
s)#K

c
t , then the corresponding shifted shapez has

two rows, the first of lengthn − 1 and the second of lengths. In order forz to be the join of

x, y ∈ Pn, neither ofx andy can have more than two rows and they must both have first rows

of lengthn − 1. Thus, ifx 6= y, the one with the shorter second row is less than the other one.

It follows thatz is join irreducible.

If the canonical form ofG ∈ Pn isKr#K
c
t , with r > 2, then, with the possible exception of

the first row of lengthn− 1, the corresponding shifted shapez is an inverted staircase. In order

for z to be the join ofx, y ∈ Pn, at least one of them, sayx, must haver rows. But this means

z ≤ x ≤ z. This completes the proof that the set identified asP 1
n in the statement consists only

of join irreducible elements ofPn. �

Figure 4.1:P 1
n for n ≥ 7.
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A few minutes with paper and pencil will show thatT2
∼= [1], T3

∼= [2] andT4
∼= [4] are

(trivial) chains. It follows from Theorem 4.6 thatP 1
n
∼= [n − 3] × [2], n ≥ 5. (See Fig. 4.1.)

From this observation, it is straightforward both to show thatPn is self-dual and thatP 1
n is a

distributive lattice. The induced subposetP 2
n , of join irreducible elements ofP 1

n , is isomorphic

to [1] + [n− 4], n ≥ 5.

Theorem 4.7. The latticeTn of connected threshold graphs onn ≥ 5 vertices is isomor-

phic to J(J(J(P 2
n))), whereP 2

n is the induced subposet ofTn consisting ofK4#K
c
n−4 and

(K2•Kc
s)#K

c
n−2−s, 3 ≤ s ≤ n− 2.

Proof. Immediate from Fig. 4.1 �

5. CONCLUDING REMARKS

If G = (V,E) is a graph, denote byD(G) (not to be confused withd(G)) the diagonal matrix

of its vertex degrees, i.e.,D(G) = diag(dG(1), dG(2), . . . , dG(n)). Let A(G) = (aij) be the

(0, 1)−adjacency matrix (withaij = 1 if and only if {i, j} ∈ E). TheLaplacianmatrix ofG is

L(G) = D(G) − A(G). ThenL(G) is a symmetric, positive semidefinite, singularM -matrix.

Denote the spectrum ofL(G) by s(G) = (λ1, λ2, . . . , λn), whereλ1 ≥ λ2 ≥ · · · ≥ λn = 0.

Then [17]G is a threshold graph if and only ifs(G) = d(G)∗, the conjugate of its degree

sequence. IfG ∈ P, the induced subposet of join irreducible elements of=, then (Theorem

4.2),G ∼= Kr•Kc
s , r + s = n. Thus,G hasr vertices of degreen − 1 ands vertices of degree

r. Becaused(G)∗ = s(G), λ1 = λ2 = · · · = λr = n, λr+1 = λr+2 = · · · = λn−1 = r, and

λn = 0. It follows thatP = = ∩ L whereL is the set consisting of those graphsG such

thatL(G) has at most two distinct nonzero eigenvalues. This set of graphs, a natural algebraic

generalization ofP, has been characterized completely by van Dam [4] and Haemers [9].

Supposeπ ` 2m. Then (Theorem 3.1)π is graphic if and only ifβ(π) �
w
α(π), andπ is

threshold if and only ifβ(π) = α(π). Weaker than equality but stronger than weak majorization

is the relation of (ordinary) majorization, the case in whichA(π) andB(π) contain the same

number of boxes. What, if anything, can be said about graphsG for which β(G) majorizes

α(G)? It turns out thatβ(G) � α(G) if and only if G is a so-calledsplit graph. The split

graphs have many interesting characterizations, e.g.,G = (V,E) is a split graph if and only

if V can be partitioned into the disjoint union of a clique and an independent set, if and only

if both G andGc are chordal [6], and so on. A discussion of the many manifestations of split

graphs can be found, e.g., in [19].

It is sometimes useful to write partitions “backwards”, in nondecreasing notation. In back-

ward notation,(3, 3, 3, 3, 2, 1, 1, 1) becomes[1, 1, 1, 2, 3, 3, 3, 3], which can be abbreviated

[13, 2, 34], where superscripts are used to denote multiplicities.

Theorem 5.1.LetG be a connected threshold graph with (backward) degree sequenced(G) =

[1r1 , 2r2 , . . . , (n−1)rn−1 ]. As a group of permutations of itsn vertices, the automorphism group
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ofG is the “Young subgroup” associated withd(G), i.e.,

A (G) ∼= Sr1 × Sr2 × · · · × Srn−1 .

This result is a consequence of the structure of threshold graphs displayed in [8] or [15]. As

we proceed to demonstrate, it is also an easy consequence of the Threshold Algorithm.

Lemma 5.2. Let G = (V,E) be a connected threshold graph onn ≥ 2 vertices. Suppose

i, j ∈ V , i 6= j. If dG(i) = dG(j), thenNG(i)\j = NG(j)\i.

Proof. We may assume thatV = {1, 2, . . . , n} and thatG emerged from the Threshold Algo-

rithm, so thatdk = dG(k), 1 ≤ k ≤ n. Supposei < j and lets = f(G). Becaused(G) is a

threshold partition,ds+1 = s and eitherds > s, or ds = s andds+2 < s. Thus, becausedi = dj,

it cannot happen that bothi ≤ s andj ≥ s+ 2. This leaves two possibilities: Eitherj ≤ s+ 1

or i > s. In each of these cases, the result follows from Equations (2.1) and (2.2). �

We are grateful to the referee for pointing out that Lemma 5.2 also follows from [3] where it

is shown that no subset of vertices of a threshold graph can be arranged in an "alternating cycle"

consisting of an edge, a non-edge, an edge, a non-edge, ...

Proof of Theorem 5.1.Fix a positive integerk. LetDk be the set of vertices ofG of degreek.

If o(Dk) ≥ 2 then, by the same approach used to prove Lemma 5.2, eitherDk is a clique or it

is an independent set. Thus, by Lemma 5.2, any permutation ofV (G) that fixes the vertices not

contained inDk is an automorphism ofG. Because no automorphism ofG can send a vertex of

degreek to a vertex of degreed 6= k, the proof is complete. �
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