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Abstract

Due in part to their many interesting properties, a family of graphs has been
studied under a variety of names, by various authors, since the late 1970’s.
Only recently has it become apparent that the many different looking defini-
tions for these threshold graphs are all equivalent. While the pedigree of strict
partitions of positive integers is much older, their evolution into the lattice of
shifted shapes is relatively recent. In this partly expository article we show, from
the perspective of partially ordered sets, that the family of connected threshold
graphs is isomorphic to the lattice of shifted shapes, and then discuss some
implications of this identification for threshold graphs.

2000 Mathematics Subject Classification: 05A17, 05C75
Key words: Automorphism group, Distributive lattice, Eigenvalue, Graphic partition,

Laplacian spectrum, Order ideal, Poset, Projective representation, Satu-
rated chain, Shifted shape, Split graph, Strict partition, Threshold graph,
Young subgroup, Young’s lattice.

The authors gratefully acknowledge useful suggestions and helpful references sup-
plied by I. Gessel, V. Reiner, B. Sagan, I. Terada and the anonymous referee.

Dedicated to the memory of Russ’s mother, Joan Diane Seiss, and Tom’s step-
mother, Mary Lederer Roby.

http://jipam.vu.edu.au/
mailto:
mailto:merris@csuhayward.edu
mailto:
mailto:troby@csuhayward.edu
http://jipam.vu.edu.au/
http://www.ams.org/msc/


The Lattice of Threshold Graphs

Russell Merris and Tom Roby

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 3 of 38

J. Ineq. Pure and Appl. Math. 6(1) Art. 2, 2005

http://jipam.vu.edu.au

Contents
1 Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Threshold Graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
3 The Lattice of Shifted Shapes. . . . . . . . . . . . . . . . . . . . . . . . . . 20
4 Lattice of Order Ideals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
5 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
References

http://jipam.vu.edu.au/
mailto:
mailto:merris@csuhayward.edu
mailto:
mailto:troby@csuhayward.edu
http://jipam.vu.edu.au/


The Lattice of Threshold Graphs

Russell Merris and Tom Roby

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 4 of 38

J. Ineq. Pure and Appl. Math. 6(1) Art. 2, 2005

http://jipam.vu.edu.au

1. Preliminaries
A partition of r is a nonnegative integer sequenceπ = (π1, π2, . . . , πn), where
π1 ≥ π2 ≥ · · · ≥ πn, andr = π1 + π2 + · · · + πn. The nonzeroπi are called
thepartsof π and their number, denoted`(π), is thelengthof π. We will write
π ` r to indicate thatπ is a partition ofr, and refer tor as therank of π.

Two partitions ofr areequivalentif they have the same multiset of parts,
i.e., if they differ only in the number of terminal 0’s. Thus, e.g.,

(6, 2, 2, 1), (6, 2, 2, 1, 0), (6, 2, 2, 1, 0, 0), . . .

are equivalent partitions of 11 each of length 4;(0, 0, 0) is equivalent to the
empty partitionϕ of length and rank 0.

Example 1.1. SupposeG = (V,E) is a (simple) graph with vertex setV =
{1, 2, . . . , n} and edge setE of cardinality o(E) = m. Denote bydG(i) the
degreeof vertexi, that is, the number of edges ofG incident withi. Suppose
d1 ≥ d2 ≥ · · · ≥ dn ≥ 0 are these vertex degrees (re)arranged in nonincreasing
order. By what has come to be known as the “first theorem of graph theory”,
d(G) = (d1, d2, . . . , dn) ` 2m.

Say that partitionπ = (π1, π2, . . . , πn) is graphic if there is a graphH with
π = d(H). Not every partition is graphic. Ifπ is graphic, its rank must be even
and, because (simple) graphs have no loops or multiple edges,π1 ≤ `(π) − 1.
That these obvious necessary conditions are not sufficient is illustrated, e.g., by
ρ = (5, 4, 4, 2, 2, 1).

The unifying theme of the present paper is the notion of a “maximal” graphic
partition. To make this idea precise, supposeα = (a1, a2, . . . , as) andβ =
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(b1, b2, . . . , bt) are nonincreasing sequences of real numbers. Thenβ weakly
majorizesα, writtenβ �

w
α, if s ≥ t,

(1.1)
k∑

i=1

bi ≥
k∑

i=1

ai, 1 ≤ k ≤ t,

and

(1.2)
t∑

i=1

bi ≥
s∑

i=1

ai.

If β weakly majorizesα, and equality holds in Inequality (1.2), thenβ ma-
jorizesα, writtenβ � α. If β � α andβ is not equivalent toα, thenβ strictly
majorizesα. (The standard reference for variations on the theme of majoriza-
tion is [16].)

For nonnegative integer sequences, majorization has a useful geometric de-
scription. Supposeπ ` r > 0. TheFerrers (or Young) diagramF (π) is a left-
justified array consisting of̀(π) rows of “boxes”; theith row of F (π) contains
a total ofπi boxes. The Ferrers diagram afforded, e.g., byτ = (4, 3, 3, 2, 2, 2) `
16 is illustrated in Fig.1. Because rows that contain zero boxes do not explicitly
appear inF (π), equivalent partitions afford the same Ferrers diagram. For the
most part, we will treat equivalent partitions as if they were equal.

Lemma 1.1 (Muirhead’s Lemma [16, p. 135]). If π,γ ` r, thenπ � γ if and
only ifF (π) can be obtained fromF (γ) by moving boxes up (to lower numbered
rows).

http://jipam.vu.edu.au/
mailto:
mailto:merris@csuhayward.edu
mailto:
mailto:troby@csuhayward.edu
http://jipam.vu.edu.au/


The Lattice of Threshold Graphs

Russell Merris and Tom Roby

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 6 of 38

J. Ineq. Pure and Appl. Math. 6(1) Art. 2, 2005

http://jipam.vu.edu.au

Figure 1:F (τ).

A little care must be taken when moving boxes to ensure that the resulting
array is a legitimate Ferrers diagram. With this caveat in mind, it follows easily
from Lemma1.1 that majorization induces a partial order on{F (π) : π ` r}.
In other words, the set of (equivalence classes of) partitions ofr is partially
ordered by majorization.

Lemma 1.2 ([22]). Supposeπ,γ ` r. If π is graphic and ifπ majorizesγ, then
γ is graphic.

Supposed(G) = π. While the details may be a little awkward to write down,
the proof of Lemma1.2amounts to showing how moving boxes down inF (π)
can be made to correspond to moving edges around in a graph obtained fromG
by adding sufficiently many isolated vertices.

Definition 1.1. A graphic partitionπ ` r is maximal provided no graphic par-
tition strictly majorizesπ.
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Figure 2:F (τ ∗) = F (τ)t.

There are several well known criteria for a partition to be graphic (see, e.g.,
[23], but be wary of misprints). For our purposes, the most useful necessary
and sufficient conditions are those commonly attributed to Hässelbarth [12], but
first published by Ruch and Gutman [22].

Supposeπ ` r. Theconjugateof π is the partitionπ∗ whose Ferrers diagram
F (π∗) = F (π)t, thetransposeof F (π). In other words,π∗ ` r is the partition
whoseith part isπ∗i = o({j : πj ≥ i}), the number of boxes in theith columnof
F (π). If τ = (4, 3, 3, 2, 2, 2) then (see Fig.2) τ ∗ = (6, 6, 3, 1).

The number ofdiagonal boxesin F (π) is f(π) = o({i : πi ≥ i}). The
diagonal boxes in Fig.s1 – 2 have been filled (darkened), making it easy to see
that f(τ) = 3 = f(τ ∗). Note thatF (π) is completely determined by its first
f(π) rows and columns.

Theorem 1.3 (Ruch-Gutman Theorem [22]). Supposeπ ` 2m. Thenπ is
graphic if and only if

(1.3)
k∑

i=1

πi ≤
k∑

i=1

(π∗i − 1) , 1 ≤ k ≤ f(π).
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If τ = (4, 3, 3, 2, 2, 2) ` 16 then, as we have seen,f(τ) = 3 and τ ∗ =
(6, 6, 3, 1). Because4 < 6 − 1, 4 + 3 < (6 − 1) + (6 − 1), and4 + 3 + 3 <
(6 − 1) + (6 − 1) + (3 − 1), the Ruch-Gutman inequalities are satisfied:τ is
graphic. Two nonisomorphic graphs with degree sequenceτ are exhibited in
Fig. 3. If π = (5, 4, 3, 2, 1) ` 15 then, because 15 is odd,π is not graphic.
If ρ = (5, 4, 4, 2, 2, 1) ` 18, thenf(ρ) = 3 andρ∗ = (6, 5, 3, 3, 1). While
5 = (6 − 1) and5 + 4 = (6 − 1) + (5 − 1), the third inequality in (1.3) is not
satisfied;5+4+4 > (6−1)+(5−1)+(3−1). Becauseρ does not satisfy the
Ruch-Gutman inequalities, it is not graphic (confirming an earlier observation).

Figure 3: Graphs satisfyingd(G) = τ = (4, 3, 3, 2, 2, 2).

Definition 1.2. A threshold partition is a graphic partition for which equality
holds throughout (1.3), i.e.,π ` 2m is a threshold partition if and only if

(1.4) πi = π∗i − 1, 1 ≤ i ≤ f(π).

Geometrically,π is a threshold partition if and only ifF (π) can be decom-
posed, as in Fig.4, into anf(π) × f (π) array of boxes in the upper left-hand
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corner, called theDurfee square, a row off(π) boxes directly below the Durfee
square, darkened in Fig.4, and a piece below rowf(π) + 1 that is the transpose
of the piece to the right of the Durfee square. It follows, forf(π) < k < `(π),
thatπ∗k = πk+1 ≤ πk. Thus, for any threshold partitionπ, of lengthn = `(π),

(1.5) π∗k ≤ πk + 1, 1 ≤ k < n.

Figure 4: Decomposition ofF (6, 5, 3, 3, 2, 2, 1).

Theorem 1.4. Supposeπ ` 2m. Thenπ is a maximal graphic partition if and
only if π is a threshold partition.

The idea of the proof is that Inequalities (1.3) precisely limit the extent to
which boxes can be moved up in a Ferrers diagram and maintain the property
that the corresponding partition is graphic. Details can be found, e.g., in [22].
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A threshold graphis one whose degree sequence is a threshold (maximal)
partition. First introduced in connection with set packing and knapsack prob-
lems [3] and, independently, in the analysis of parallel processes in computer
programming [13], threshold graphs have been rediscovered in a variety of con-
texts, leading to numerous equivalent definitions. (See, e.g., [1], [5], [11], [15],
[17], [18], [20], and [21].)

Supposeπ = (π1, π2, . . . , πn) ` 2m is a threshold partition of lengtht (so
thatπt > 0 = πt+1 = · · · = πn). LetG be a threshold graph withd(G) = π.
ThenG hasn− t isolated vertices (that go unrepresented inF (π)). Moreover,
becauseπ1 + 1 = π∗1 = t, it must be that some vertex ofG is adjacent to every
other vertex of positive degree. So, ifG is a threshold graph then it can have at
most one nontrivial component (consisting of more than one vertex), and that
component must have at least onedominatingvertex.

Say that two graphs areequivalentif they are isomorphic, to within isolated
vertices; that is,H1 andH2 are equivalent if they are both edgeless graphs or
if H ′

1
∼= H ′

2, whereH ′
i is the graph obtained fromHi by deleting all of its

isolated vertices,i = 1, 2. In particular, every threshold graph is equivalent to a
connected threshold graph.

Theorem 1.5. If π is a threshold partition then, up to isomorphism, there is
exactly one connected threshold graphG that satisfiesd(G) = π.1

For the sake of completeness, we sketch a proof of this well-known result.
Supposeu is a dominating vertex of a graphG. LetH = G−u be the graph ob-

1Indeed, more is true: Apart from isolated vertices, there is a uniquelabeledgraph with
degree sequenceπ. As present purposes do not require this stronger result, we say no more
about it.
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tained fromG by deleting vertexu (and all the edges incident with it). Because
the Ferrers diagramF (d(H)) is obtained fromF (d(G)) by deleting its first row
and column,G is a threshold graph if and only ifH is a threshold graph. (See,
e.g., Fig.5.) The result now follows by induction and the fact that every graph
on fewer than five vertices is uniquely determined by its degree sequence.

Figure 5:F (6, 5, 3, 3, 2, 2, 1)

The idea for the proof of Theorem1.5 can be used to construct a threshold
graph having a prescribed (threshold) degree sequence.

Algorithm 1 (Threshold Algorithm). Let π = (π1, π2, . . . , πn) ` 2m be a
threshold partition.

SetV = {1, 2, . . . , n} andE = φ

For i = 1 to f(π)

For j = i to πi
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E = E ∪ {{i, j + 1}}
Nextj

Nexti
End

Supposeπ = (6, 5, 3, 3, 2, 2, 1) is the threshold partition whose Ferrers dia-
gram appears in Fig.5. If π is used as input for the Threshold Algorithm, the
output is illustrated in Fig.6.

Figure 6: A threshold graph.

The reader may verify that ifτ = (4, 3, 3, 2, 2, 2) were used as input, the
output of the Threshold Algorithm would be a graph with degree sequence
(4, 3, 3, 3, 1, 0). (While τ is graphic, it is not maximal.)

Recall that thecomplementof G = (V,E) is the graphGc = (V,Ec), where
uv ∈ Ec if and only if uv /∈ E, i.e., the edges ofGc are the edges of the
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complete graph,Kn, that do not belong toG. If Fig. 6 is viewed as a clockwise
application of the Threshold Algorithm, the edges ofK7 that are “missing” from
Fig. 6 may be construed as a counterclockwise application, constructingGc.
Note that the degree sequence,d(Gc), corresponds to the shape complementary
toF (d(G)) inside then× (n− 1) rectangle. For the threshold graph of Figures
5 and6, we getd(Gc) = (5, 4, 4, 3, 3, 1). These observations yield the well
known fact thatG is a threshold graph if and only ifGc is a threshold graph.
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2. Threshold Graphs
SupposeG is a threshold graph. It is convenient to denote byF (G) the Ferrers
diagram corresponding tod(G). Similarly, letf(G) = f(d(G)) be the number
of boxes on the main diagonal ofF (G).

For any graphG = (V,E), the set ofneighborsof u ∈ V isNG(u) = {v ∈
V : uv ∈ E}. The Threshold Algorithm produces a graphG on vertex set
V = {1, 2, . . . , n} that satisfies

(2.1) NG(i) = {1, 2, . . . , i− 1, i+ 1, . . . , πi + 1}, i ≤ f(π),

and

(2.2) NG(i) = {1, 2, . . . , πi}, i > f(π),

whereπ = d(G). In particular, thekth largest vertex degree ofG is dk = dG(k),
1 ≤ k ≤ n.

Lemma 2.1.LetG = (V,E) be a connected threshold graph onn ≥ 3 vertices.
If G 6= Kn , then there is a nonadjacent pair of verticesi, j ∈ V such that
H = (V,E ∪ {ij}) is a threshold graph.

Proof. Without loss of generality we may assume thatV = {1, 2, . . . , n} and
that dk = dG(k), 1 ≤ k ≤ n. BecauseG 6= Kn, f(G) < n − 1. Let i be
minimal such thatdi < n − 1. Then2 ≤ i ≤ f(G) + 1. If i = f(G) + 1 then,
becaused(G) is a threshold sequence,di = f(G) = i− 1. (See Fig.4.) Choose
j = i + 1. By (2.2), ij /∈ E. Sincedi−1 = n − 1 forcesdn ≥ i − 1, it must be
thatd1 = d2 = · · · = di−1 = n − 1 anddi = di+1 = · · · = dn = i − 1. In this
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caseF (H) is obtained fromF (G) by adding new boxes in positions(i, i) and
(i + 1, i), the first at the end of rowi and the second at the end of columni. In
particular,d(H) is a threshold sequence.

If i ≤ f(G), thendi ≥ i. Choosej = di + 2 ≤ n. By (2.1), ij /∈ E. Since
di = j − 2 forcesd∗i = j − 1, it must be thatdj−1 ≥ i anddj < i. Because
di−1 = n − 1, dj ≥ dn ≥ i − 1. Therefore,dj = i − 1. In this case,F (H) is
obtained fromF (G) by adding two new boxes in positions(i, j − 1) and(j, i),
one at the end of rowi, and a second at the end of columni. Thus,d(H) is a
threshold sequence.

Denote byTn, n ≥ 1, the set of connected threshold graphs onn vertices.
If n ≥ 2, theno(Tn) = 2n−2 (an observation, implicit in [15, p. 468], made
explicit in [18]). Let Θn be the graph with vertex setTn, in whichG,H ∈ Tn

are adjacent if and only if (up to isomorphism)G can be obtained fromH by the
addition or deletion of a single edge. (The graphΘn is an undirected variation
on a theme of Balínska and Quintas [2]. When extended to include disconnected
threshold graphs, it becomes the 1-skeleton of the polytope of degree sequences
studied in [21].)

Theorem 2.2. If n ≥ 1 thenΘn is connected.

Proof. LetG ∈ Tn. If G 6= Kn then (Lemma2.1) there is a path inΘn fromG
toKn.

Definition 2.1. If G andH are graphs, writeG ≤ H to indicate thatG is
equivalent to a subgraph ofH.
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Strictly speaking, Definition2.1partially orders not the family of graphs, but
the set of all equivalence classes of graphs. Like flies swarming around a thor-
oughbred horse, isolated vertices associated with threshold graphs are a trivial
but annoying complication. From this point on, we will treat equivalent thresh-
old graphs as if they were equal. Consistent with our treatment of equivalent
partitions, this amounts to little more than choosing the connected threshold
graphs as a system of distinct representatives for the equivalence classes of all
threshold graphs. Given this identification, the restriction of “≤” to Tn is a par-
tial order, andΘn may be viewed as a “Hasse diagram” for the partially ordered
set (poset)Tn.

Recall that a posetP is locally finite if the interval[x, z] = {y ∈ P : x ≤
y ≤ z} is finite for all x, z ∈ P . If x, z ∈ P and [x, z] = {x, z}, thenz
coversx. A Hasse diagramof P is a graph whose vertices are the elements
of P , whose edges are the cover relations, and such thatz is drawn “above”x
wheneverx < z.

A lattice is a posetP in which every pair of elementsx, y ∈ P has a least
upper bound (orjoin), x ∨ y ∈ P , and a greatest lower bound (ormeet), x ∧
y ∈ P . Lattice P is distributive if x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) for all x, y, z ∈ P . (An excellent reference for
variations on the theme of posets is [27].)

Denote byY the set of all (equivalence classes of) partitions. Ifµ, ν ∈ Y ,
defineµ ≤ ν to mean that̀ (µ) ≤ `(ν) andµi ≤ νi, 1 ≤ i ≤ `(µ). Informally,
µ ≤ ν if F (µ) ⊂ F (ν) in the sense thatF (µ) fits insideF (ν). With respect to
this partial ordering,Y is a locally finite distributive lattice, commonly known
asYoung’s lattice. (See, e.g., [7], [25], or [27].) The unique smallest element of
Y is 0̂ = ϕ, the empty partition.
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Definition 2.2. For eachn ≥ 2, denote byYn the induced subposet ofY corre-
sponding to the threshold partitions of lengthn, i.e., the even rank partitionsπ
that satisfy (1.4) and whose first part isπ1 = n− 1. LetY1 = {ϕ}.

The posetYn is half of the “minuscule poset”M(n) discussed, e.g., in [24,
§5].

Lemma 2.3. SupposeG,H ∈ Tn. ThenG ≤ H (in Tn) if and only ifd(G) ≤
d(H) (in Yn).

Proof. We begin by extending the partial order of Young’s lattice to unordered
sequences of nonnegative integers: IfA = (a1, a2, . . . , ar) andB = (b1, b2, . . . , bs),
defineA ≥ B to mean thatr ≥ s, andai ≥ bi, 1 ≤ i ≤ s. If we denote by
Ā = (ā1, ā2, . . . , ār) the sequence obtained fromA by rearranging its elements
in nonincreasing order, it follows by induction thatĀ ≥ B̄ wheneverA ≥ B.
In particular, ifG is obtained fromH by deleting one or more edges, then
dG(i) ≤ dH(i), 1 ≤ i ≤ n; that is,G ≤ H impliesd(G) ≤ d(H).

Conversely, letG = (V,E) andH = (W,F ) be connected threshold graphs
onn vertices withd(G) ≤ d(H). By the Threshold Algorithm, we may assume
V = W = {1, 2, . . . , n}; if di = dG(i) and δi = dH(i), 1 ≤ i ≤ n, that
d(G) = (d1, d2, . . . , dn), andd(H) = (δ1, δ2, . . . , δn); and thatd1 = n−1 = δ1.
If d(G) = d(H), then (Theorem1.5) G ∼= H. Otherwise,F (G) 6= F (H) and
there is a largest positive integerk ≤ f(H), such thatdk < δk. Let r = δ∗k =
δk +1. By (2.1), e = kr ∈ E(H). By (1.5), r > dk +1 ≥ d∗k = o({i : di ≥ k}),
which implies thatdr < k. Similarly,r = δ∗k implies thatδr ≥ k. Thus,δr > dr.
LetH ′ = H − e. SinceF (H ′) is obtained fromF (H) by taking a box from the
end of columnk, and a second box from the end of rowk, H ′ is a connected
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threshold graph that satisfiesd(H ′) ≥ d(G). Because this process of deleting
edges may be continued until the resulting graph has the same degree sequence
asG, it follows thatH contains a subgraph isomorphic toG, i.e.,G ≤ H.

Recall that thedualof posetP is the posetP ∗ on the same set asP , but such
thatx ≤ y in P ∗ if and only if y ≤ x in P . If P is isomorphic toP ∗, thenP is
self-dual.

Theorem 2.4. The bijectionG → d(G) is a poset isomorphism fromTn onto
Yn. In particular,Tn is a self-dual distributive lattice.

ThatTn is a lattice was observed previously in [10, Section 4]. (Also see [5]
and [15].) Using Theorem2.4it is easy to strengthen Lemma2.1by identifying,
as in [21], exactly which edges can be added to, or deleted from, a threshold
graph so that the result is another threshold graph.

Proof of Theorem2.4. The first statement is immediate from Theorem1.5 and
Lemma2.3. To prove the second, We first show that the induced subposet
Yn is an induced sublattice of Young’s LatticeY . Supposeπ,σ ∈ Yn. If
µi = max {πi, σi}, 1 ≤ i ≤ n, thenµ = (µ1, µ2, . . . , µn) is the join of
π and σ in Y . To show thatµ ∈ Yn, supposej ≤ f(µ) = o({i : µi ≥
i}) = max {f(π), f(σ)}. Becauseµs ≥ j if and only if max {πs, σs} ≥ j,
µ∗j = o({s : µs ≥ j}) = max {π∗j , σ∗j} = max {πj, σj} + 1 = 1 + µj. Thus,
µ ∈ Yn. Replacing maximums with minimums, the same argument shows that
the meet inY of π andσ is an element ofYn.

BecauseY is distributive, the induced sublatticeYn is distibutive. Thus, from
the first statement of the theorem,Tn is distributive.
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Duality is easier to check from the perspective of graphs. SupposeG ∈ Tn.
Let u be a dominating vertex ofG and setH = G − u. Recall thatH and
its complement are (not necessarily connected) threshold graphs. Letψ(G) =
u·Hc be the (cone) graph obtained fromHc by adding vertexu andn− 1 edges
connectingu to every vertex ofHc. Then, up to isomorphism,ψ is well defined,
andψ : Tn → Tn is injective.

If G1, G2 ∈ Tn, thenG1 ≤ G2 if and only if G1 is isomorphic to a graph
G′

1 that can be obtained fromG2 by deleting some of its edges, but none of its
vertices, i.e., to aspanningsubgraphG′

1 ofG2. If u is a dominating vertex ofG1

thenu′, the vertex ofG′
1 to which it corresponds, must be a dominating vertex

of G′
1 and, hence, ofG2. Thus,G1 ≤ G2 if and only if G1 − u is isomorphic

to a spanning subgraph ofG2 − u′, if and only if (G2 − u′)c is isomorphic to a
spanning subgraph of(G1 − u)c, if and only ifψ(G2) ≤ ψ(G1).

Since it is a distributive lattice,Tn is isomorphic to the lattice of “order ide-
als” of Pn, the induced subposet of its “join irreducible” elements [27, Ch. 3].
For the purposes of this article, the relevant conclusion is that the posetTn is
completely determined byPn. We shall return to this point in Section4.

Because the partial orderings ofTn andYn extend naturally to

= =
⋃
n≥1

Tn and Ỹ =
⋃
n≥1

Yn,

respectively, the following is an immediate consequence of Theorem2.4.

Corollary 2.5. The bijectionG → d(G) is a poset isomorphism from= onto
Ỹ .
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3. The Lattice of Shifted Shapes
Up to this point, the focus of our attention has been on the number of vertices
ofG and the length ofπ. In what follows, it will sometimes be more convenient
to focus instead on the number of edges ofG and the rank ofπ.

Supposeπ ` 2m. If µi = π∗i − 1 and νi = πi, 1 ≤ i ≤ f(π), then,
from (1.3), π is graphic if and only ifµ weakly majorizesν, an observation
that simplifies the statement of the Ruch-Gutman criteria without adding much
clarity. Let us see what can be done about that. Begin by dividingF (π) into
two disjoint pieces. Denote byB(π) those boxes ofF (π) that lie strictly below
its diagonal, and letA(π) be the rest, i.e.,A(π) consists of those boxes that lie
on the diagonal or lie to the right of a diagonal box. Informally,A(π) is the
piece ofF (π) on orabovethe diagonal, andB(π) is the piece (strictly)below
the diagonal. Forτ = (4, 3, 3, 2, 2, 2), the division ofF (τ) intoA(τ) andB(τ)
is illustrated in Fig.7.

Figure 7: Division ofF (τ).
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Definition 3.1. Supposeπ ` r. Letα(π) be the partition whose parts are the
lengths of the rows of the shifted shapeA(π). Denote byβ(π) the partition
whose parts are the lengths of the columns ofB(π).

From Fig.7, α(τ) = (4, 2, 1) andβ(τ) = (5, 4). Together with (1.1) – (1.4),
this division ofF (π) leads to the following variation on the theme of Ruch and
Gutman.

Theorem 3.1. Supposeπ ` 2m. Thenπ is graphic if and only ifβ(π) weakly
majorizesα(π). Moreover,π is a threshold partition if and only ifβ(π) = α(π).

We will abbreviateα(d(G)) andβ(d(G)) by α(G) andβ(G), respectively.
Let us look a little more closely at what it means to be a shifted shape. Unlike

F (π), the rows ofA(π) are not left-justified. Each successive row is shifted one
(more) box to the right. The left-hand boundary ofA(π) looks like an inverted
staircase. On the other hand, becauseA(π) is just the top half ofF (π), the
rules that apply to the right-hand boundary are the same forA(π) as forF (π),
i.e., the last box in rowi + 1 of A(π) can extend no further to the right than
the last box in rowi. The right-hand boundary rule applied toF (π) reflects
the fact that the parts ofπ form a nonincreasing sequence. Because the left-
hand boundary rules are different, the same right-hand rule applied toA(π)
implies that the parts ofα(π) form a (strictly) decreasing sequence. That is,
the parts ofα(π) are all different. Partitions with distinct parts are calledstrict
partitions. If α = (α1, α2, . . . , αk) is a strict partition ofm, denotedα ` m,
thenα1 > α2 > · · · > αk, and there is a unique shifted shape whoseith row
containsαi boxes,1 ≤ i ≤ k.

Corollary 3.2. The mappingπ → α(π) is a bijection from the threshold parti-
tions of2m onto the strict partitions ofm.
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Representing the connected threshold graphG by the strict partitionα(G),
the self-dual distributive latticeT6 (from Theorem2.4) is illustrated in Fig.8.

It follows from Corollary 3.2 that Ỹ is identical to what has come to be
known as thelattice of shifted shapes. (See, e.g., [7], or [26, §3].) From this
identification (and Corollary2.5), it follows that= is a locally finite distributive
lattice with least element̂0 = K1, i.e., = is a so-calledfinitary distributive
lattice.

Recall that a subsetC of a posetP is achain if any two elements ofC are
comparable (inP ). A chain issaturatedif there do not existx, z ∈ C andy ∈
P\C such thatx < y < z. In a locally finite lattice, a chainx0 < x1 < · · · < xk

(of lengthk = o(C)− 1) is saturated if and only ifxi coversxi−1, 1 ≤ i ≤ k.
Because it is a finitary lattice,= has a unique rank functionλ : = → N,

whereλ(G) is the length of any saturated chain from0̂ = K1 toG, i.e.,λ(G) =
m, the number of edges ofG.

Let tm (not to be confused withTn) be the number of nonisomorphic con-
nected threshold graphs havingm edges. By Corollary3.2, tm is equal to the
number of strict partitions of rankm. The generating function for strict parti-
tions has been known at least since the time of Euler:∑

m≥0

tmx
m =

∏
i≥1

(1 + xi)(3.1)

= 1 + x+ x2 + 2x3 + 2x4 + 3x5 + 4x6 + · · · .

Together with Corollaries2.5 and3.2, these remarks imply that= is a so-
called “graded poset” with “rank generating function” given by (3.1).
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Definition 3.2. LetG ∈ = be a fixed but arbitrary connected threshold graph.
Denote bye (G) the number of saturated chains in= fromK1 toG.

RepresentingG ∈ = byα(G), the first few levels (ranks) of the graded poset
= are illustrated in Fig.9. The numbers in the figure are the corresponding
values ofe(G). (Note that they follow a recurrence reminiscent of Pascal’s
triangle.)

Starting with an unlimited number of isolated vertices,e(G) is the number
of ways to “construct” the threshold graphG by adding edges, one at a time,
subject to the condition that every time an edge is added the result is a threshold
graph. (The Threshold Algorithm corresponds to constructingα(G) a row at a
time.)

Corollary 3.3. LetG be a threshold graph havingm edges and degree sequence
π = d(G). Supposeα(π) = (ρ1, ρ2, . . . , ρr) ` m wherer = f(G), and
ρi = πi − i+ 1, 1 ≤ i ≤ r. Then

(3.2) e(G) =
m!

ρ!

∏
i<j

ρi − ρj

ρi + ρj

whereρ! = ρ1!ρ2! · · · ρr!, i.e., apart from a power of 2 depending onm andr,
e(G) is the degree of the projective representation ofSm corresponding toα(π).

Proof. The result follows from Corollaries2.5 and 3.2, and the fact that the
number of saturated chains from̂0 to d(G) in Ỹ is given by the right-hand side
of (3.2). (See, e.g., [14, III.8, Ex. 12].) The natural bijection between projective
representations of the symmetric groups and strict partitions is an old result
going back to Schur, a modern account of which can be found in [28].
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Figure 8: Hasse diagram ofT6.
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Figure 9:= ∼= Ỹ .
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4. Lattice of Order Ideals
Let I be a (possibly empty) subset of the posetP . If y ∈ I, x ∈ P , andx < y,
together imply thatx ∈ I, thenI is anorder idealof P . The set of all order
ideals ofP , ordered by inclusion, is a poset denotedJ(P ). An elementy /∈ 0̃ of
a distributive latticeL is join irreducibleif y is not the least upper bound of two
elements, both of which are strictly less thany (i.e.,y is join irreducible if it has
exactly one edge below it in any Hasse diagram ofL.) The next result follows
from the fact that= is a finitary distributive lattice [27, Prop. 3.4.3].

Theorem 4.1. If P is the induced subposet of join irreducible elements of=,
then= ∼= J(P), the lattice of order ideals ofP .

Can one give an explicit description ofP? Any element that coverŝ0 is join
irreducible. Glancing at Fig.9, one finds only one such shifted shape, namely,
�, corresponding to the strict partition (1). Indeed, it is clear from Fig.9, not
only that�� ∼(2), ��� ∼(3), etc., are join irreducible, but that there are
others as well, namely those corresponding to the strict partitions(2, 1), (3, 2),
and(3, 2, 1). We leave it as an exercise to show that the join irreducible shifted
shapes are precisely those that are right-justified.

What about a graph-theoretic interpretation ofP? Say that two edges of
G are equivalent if there is an automorphism ofG that carries one to the other.
Then the connected threshold graphG lies inP if and only if, up to equivalence,
there is a unique edgee of G such thatG − e is a threshold graph. This, of
course, is not so much an answer as another way of stating the question. A
more useful characterization of join irreducible threshold graphs involves the
unrelated notion of a “join” of graphs.
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Definition 4.1. LetG1 = (V1, E1) andG2 = (V2, E2) be graphs on disjoint sets
of vertices. Their join is the graphG1•G2 = (V,E), whereV = V1 ∪ V2 andE
is the union ofE1 ∪ E2 and the set{uv : u ∈ V1 andv ∈ V2}.

The particular instance of the join of a graph and a single vertex(u•Hc)
occurred in the proof of Theorem2.4.

Theorem 4.2. SupposeG ∈ =. ThenG ∈ P if and only if, for some pair of
positive integersr and s, G ∼= Kr•Kc

s , the join of a complete graph and the
complement of a complete graph.

Proof. SupposeG ∈ P. Becausê0 /∈ P , G has an edge. IfG = Kn then
n ≥ 2, r = n − 1 ands = 1. Otherwise, letπ = d(G). Becauseα(π) = β(π)
corresponds to a right-justified shifted shape, there exists a positive integerr
such thatπ1 = π2 = · · · = πr = n − 1 andπr+1 = · · · = πn = r. In other
words,r (< n) of the vertices ofG are dominating vertices, and the remaining
s = n − r of its vertices are adjacent (only) to the dominating vertices; that is,
G ∼= Kr•Kc

s . Conversely, ifG ∼= Kr•Kc
s ∈ =, thenα(G) corresponds to a

right-justified shifted shape.

Definition 4.2. Denote by[n] the poset{1, 2, . . . , n} under the natural ordering
of the integers. Thus[n] is ann-element chain (of lengthn − 1). Denote byN
the poset of the natural numbers ordered by magnitude.

Recall that the direct (or cartesian)productof posetsP andQ is the poset
P × Q = {(x, y) : x ∈ P andy ∈ Q}, where(x, y) ≤ (p, q) if (and only if)
x ≤ p andy ≤ q. If P ∩ Q = φ, the disjointunion of P andQ is the poset
P +Q, wherex ≤ y if eitherx, y ∈ P andx ≤ y, orx, y ∈ Q andx ≤ y.
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The poset of right-justified shifted shapes (the join irreducible elements of
Ỹ ∼= =) turns out, itself, to be a finitary distributive lattice. Denote byP1

the induced subposet ofP consisting of its join irreducible elements, so that
P ∼= J(P1). ThenP1 is isomorphic toN × [2] (makingP “semi-Pascal” [7,
p. 381-382]). In the language of strict partitions,α(π) ∈ P1, if and only if
m ≥ 2 andα(π) = (m), corresponding to a shifted shape with a single row
of boxes, orα(π) = (r − 1, r − 2, . . . , 1), corresponding to a right-justified
“inverted staircase”. The connected threshold graph emerging from(m) is the
“star”,K1•Kc

m, while the inverted staircase corresponds toKr.
Because a product of chains is a finitary distributive lattice,P1 ∼= J(P2)

where, it turns out,P2 ∼= N+[1]. In the language of strict partitions,α(π) ∈ P2

if and only if α(π) = (2, 1), orm ≥ 3 andα(π) = (m). Graph theoretically,
G ∈ P2 if and only if G = K3 or G is a star onn ≥ 4 vertices. These
observations are summarized in the following.

Theorem 4.3. The lattice= of connected threshold graphs is isomorphic to
J(J(J(P2))), whereP2 is the induced subposet of= consisting ofK3 and the
stars onn ≥ 4 vertices.

For the remainder of this section, we return to the self-dual distributive lattice
Tn of connected threshold graphs onn vertices. Our goal is an analog of Theo-
rem4.3for Tn. The desired result, stated from the perspective of shifted shapes,
can be found in [24]. We merely flesh out some of the details and interpret them
from the perspective of threshold graphs.

Denote the poset of join irreducible elements ofTn by Pn, so thatTn =
J(Pn). A glance at Fig.8 reveals thatP6 6⊂ T6 ∩ P. Some elements ofP6

correspond to shifted shapes that are not right-justified. This is easily explained.
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Because a connected threshold graph on 6 vertices has a (dominating) vertex of
degree 5, the first row of every shifted shape in Fig.8 must contain 5 boxes. In
general, the join-irreducible elements ofTn corresponded to shifted shapes that
are right justifiedwith the possible exception of the first row.

Definition 4.3. SupposeG is a graph with a dominating vertexu. Denote by
G#Kc

t the graph obtained fromG by addingt new verticesvi, 1 ≤ i ≤ t, and
t new edges{u, vi}, 1 ≤ i ≤ t.

If G has two dominating vertices,u1 andu2, then the version ofG#Kc
t

obtained by addingt neighbors tou1 is isomorphic to the version obtained by
addingt neighbors tou2. Thus, up to isomorphism, it does not matter which
dominating vertex ofG is chosen to play the role ofu in Definition 4.3. More
importantly, ifd(G) is a threshold sequence, thend(G#Kc

t ) is a threshold se-
quence.

Theorem 4.4.The set of join irreducible elements ofTn isPn = {(Kr•Kc
s)#K

c
t :

r + s+ t = n}.

Proof. Becauseα(G#Kc
t ) is obtained fromα(G) by addingt boxes to its first

row, the result follows from Theorems2.4 and4.2, and the discussion leading
up to Definition4.3.

Lemma 4.5. The posetPn of join irreducible elements ofTn is a distributive
lattice.

Proof. While Pn is an induced subposet ofTn, it is not a sublattice ofTn. Sup-
posex, y ∈ Pn. From Theorem2.4 and the proof of Theorem4.4, we may
identify x andy with shifted shapes whose first rows have lengthn − 1 and
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whose remaining rows (if any) are right-justified. The meet ofx andy in Tn is
the intersection of their shifted shapes. Because it belongs toPn, this intersec-
tion is the meet ofx andy in Pn.

Denote byz andz′ the joins ofx andy in Pn andTn, respectively. Thenz′

is obtained fromx andy by superimposing their shifted shapes. If, apart from
its first row,z′ is right-justified, thenz = z′. Otherwise,z is obtained fromz′

by adding a rectangular array of boxes to its lower right hand corner.
The proof that the join and meet ofPn distribute over each other is straight-

forward.

It follows from Lemma4.5 thatPn = J(P 1
n), whereP 1

n is the subposet of
join irreducible elements ofPn.

Theorem 4.6. The subposet of join irreducible elements ofPn is P 1
n =

{(Kr•Kc
s)#K

c
t : r + s+ t = n, andr = 2 or s = 0}.

Proof. From among all possible ways to expressG∈ Pn in the form(Kr•Kc
s)#K

c
t ,

choose those for whichr is as large as possible and from among those, choose
the one for whichs is as large as possible. Thus, for example, we chooseK6

overK5•Kc
1 andK2#K

c
4 over (K1•Kc

2)#K
c
3. Note that, as long asn ≥ 2,

this canonical form results inr ≥ 2. If the canonical form ofG ∈ Pn is
(Kr•Kc

s)#K
c
t with r ≥ 3 ands ≥ 1, thenG is a join (in the latticePn) of the

incomparable graphs(Kr•Kc
s−1)#K

c
t+1 and (Kr−1•Kc

s+1)#K
c
t . This proves

that the join irreducible elements of (the lattice)Pn are contained in the set
identified asP 1

n in the statement of the theorem.
If the canonical form ofG ∈ Pn is (K2•Kc

s)#K
c
t , then the corresponding

shifted shapez has two rows, the first of lengthn−1 and the second of lengths.

http://jipam.vu.edu.au/
mailto:
mailto:merris@csuhayward.edu
mailto:
mailto:troby@csuhayward.edu
http://jipam.vu.edu.au/


The Lattice of Threshold Graphs

Russell Merris and Tom Roby

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 31 of 38

J. Ineq. Pure and Appl. Math. 6(1) Art. 2, 2005

http://jipam.vu.edu.au

In order forz to be the join ofx, y ∈ Pn, neither ofx andy can have more than
two rows and they must both have first rows of lengthn − 1. Thus, ifx 6= y,
the one with the shorter second row is less than the other one. It follows thatz
is join irreducible.

If the canonical form ofG ∈ Pn is Kr#K
c
t , with r > 2, then, with the

possible exception of the first row of lengthn − 1, the corresponding shifted
shapez is an inverted staircase. In order forz to be the join ofx, y ∈ Pn, at
least one of them, sayx, must haver rows. But this meansz ≤ x ≤ z. This
completes the proof that the set identified asP 1

n in the statement consists only
of join irreducible elements ofPn.

Figure 10:P 1
n for n ≥ 7.
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A few minutes with paper and pencil will show thatT2
∼= [1], T3

∼= [2] and
T4
∼= [4] are (trivial) chains. It follows from Theorem4.6thatP 1

n
∼= [n−3]×[2],

n ≥ 5. (See Fig.10.) From this observation, it is straightforward both to show
thatPn is self-dual and thatP 1

n is a distributive lattice. The induced subposet
P 2

n , of join irreducible elements ofP 1
n , is isomorphic to[1] + [n− 4], n ≥ 5.

Theorem 4.7.The latticeTn of connected threshold graphs onn ≥ 5 vertices is
isomorphic toJ(J(J(P 2

n))), whereP 2
n is the induced subposet ofTn consisting

ofK4#K
c
n−4 and(K2•Kc

s)#K
c
n−2−s, 3 ≤ s ≤ n− 2.

Proof. Immediate from Fig.10
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5. Concluding Remarks
If G = (V,E) is a graph, denote byD(G) (not to be confused withd(G)) the di-
agonal matrix of its vertex degrees, i.e.,D(G) = diag(dG(1), dG(2), . . . , dG(n)).
Let A(G) = (aij) be the(0, 1)−adjacency matrix (withaij = 1 if and only if
{i, j} ∈ E). TheLaplacianmatrix ofG isL(G) = D(G)− A(G). ThenL(G)
is a symmetric, positive semidefinite, singularM -matrix. Denote the spectrum
of L(G) by s(G) = (λ1, λ2, . . . , λn), whereλ1 ≥ λ2 ≥ · · · ≥ λn = 0. Then
[17] G is a threshold graph if and only ifs(G) = d(G)∗, the conjugate of
its degree sequence. IfG ∈ P, the induced subposet of join irreducible ele-
ments of=, then (Theorem4.2), G ∼= Kr•Kc

s , r + s = n. Thus,G hasr
vertices of degreen − 1 ands vertices of degreer. Becaused(G)∗ = s(G),
λ1 = λ2 = · · · = λr = n, λr+1 = λr+2 = · · · = λn−1 = r, andλn = 0. It
follows thatP = = ∩L whereL is the set consisting of those graphsG such
thatL(G) has at most two distinct nonzero eigenvalues. This set of graphs, a
natural algebraic generalization ofP, has been characterized completely by van
Dam [4] and Haemers [9].

Supposeπ ` 2m. Then (Theorem3.1) π is graphic if and only ifβ(π) �
w

α(π), andπ is threshold if and only ifβ(π) = α(π). Weaker than equality
but stronger than weak majorization is the relation of (ordinary) majorization,
the case in whichA(π) andB(π) contain the same number of boxes. What,
if anything, can be said about graphsG for which β(G) majorizesα(G)? It
turns out thatβ(G) � α(G) if and only if G is a so-calledsplit graph. The
split graphs have many interesting characterizations, e.g.,G = (V,E) is a split
graph if and only ifV can be partitioned into the disjoint union of a clique and
an independent set, if and only if bothG andGc are chordal [6], and so on. A
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discussion of the many manifestations of split graphs can be found, e.g., in [19].
It is sometimes useful to write partitions “backwards”, in nondecreasing no-

tation. In backward notation,(3, 3, 3, 3, 2, 1, 1, 1) becomes[1, 1, 1, 2, 3, 3, 3, 3],
which can be abbreviated[13, 2, 34], where superscripts are used to denote mul-
tiplicities.

Theorem 5.1. LetG be a connected threshold graph with (backward) degree
sequenced(G) = [1r1 , 2r2 , . . . , (n − 1)rn−1 ]. As a group of permutations of its
n vertices, the automorphism group ofG is the “Young subgroup” associated
with d(G), i.e.,

A (G) ∼= Sr1 × Sr2 × · · · × Srn−1 .

This result is a consequence of the structure of threshold graphs displayed in
[8] or [15]. As we proceed to demonstrate, it is also an easy consequence of the
Threshold Algorithm.

Lemma 5.2.LetG = (V,E) be a connected threshold graph onn ≥ 2 vertices.
Supposei, j ∈ V , i 6= j. If dG(i) = dG(j), thenNG(i)\j = NG(j)\i.

Proof. We may assume thatV = {1, 2, . . . , n} and thatG emerged from the
Threshold Algorithm, so thatdk = dG(k), 1 ≤ k ≤ n. Supposei < j and let
s = f(G). Becaused(G) is a threshold partition,ds+1 = s and eitherds > s, or
ds = s andds+2 < s. Thus, becausedi = dj, it cannot happen that bothi ≤ s
andj ≥ s+ 2. This leaves two possibilities: Eitherj ≤ s+ 1 or i > s. In each
of these cases, the result follows from Equations (2.1) and (2.2).

We are grateful to the referee for pointing out that Lemma5.2 also follows
from [3] where it is shown that no subset of vertices of a threshold graph can be

http://jipam.vu.edu.au/
mailto:
mailto:merris@csuhayward.edu
mailto:
mailto:troby@csuhayward.edu
http://jipam.vu.edu.au/


The Lattice of Threshold Graphs

Russell Merris and Tom Roby

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 35 of 38

J. Ineq. Pure and Appl. Math. 6(1) Art. 2, 2005

http://jipam.vu.edu.au

arranged in an "alternating cycle" consisting of an edge, a non-edge, an edge, a
non-edge, ...

Proof of Theorem5.1. Fix a positive integerk. Let Dk be the set of vertices
of G of degreek. If o(Dk) ≥ 2 then, by the same approach used to prove
Lemma5.2, eitherDk is a clique or it is an independent set. Thus, by Lemma
5.2, any permutation ofV (G) that fixes the vertices not contained inDk is an
automorphism ofG. Because no automorphism ofG can send a vertex of degree
k to a vertex of degreed 6= k, the proof is complete.
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