Journal of Inequalities in Pure and
Applied Mathematics

THE LATTICE OF THRESHOLD GRAPHS

RUSSELL MERRIS AND TOM ROBY

Department of Mathematics and Computer Science
California State University
Hayward, CA 94542, USA.

EMail: merris@csuhayward.edu
URL: http://www.sci.csuhayward.edu/~rmerris

EMail: troby@csuhayward.edu
URL: http://seki.csuhayward.edu/~troby

(©2000Victoria University
ISSN (electronic): 1443-5756
218-04

volume 6, issue 1, article 2,
2005.

Received 31 October, 2003;
accepted 28 October, 2004.

Communicated by: R. Mathias

Abstract
Contents
44
| 2
Home Page
Go Back

Close

Quit


Please quote this number (218-04) in correspondence regarding this paper with the Editorial Office.

mailto:mathias@math.wm.edu
http://jipam.vu.edu.au/
mailto:merris@csuhayward.edu
http://www.sci.csuhayward.edu/~rmerris
mailto:troby@csuhayward.edu
http://seki.csuhayward.edu/~troby
http://www.vu.edu.au/

Abstract

Due in part to their many interesting properties, a family of graphs has been
studied under a variety of names, by various authors, since the late 1970's.
Only recently has it become apparent that the many different looking defini-
tions for these threshold graphs are all equivalent. While the pedigree of strict
partitions of positive integers is much older, their evolution into the lattice of
shifted shapes is relatively recent. In this partly expository article we show, from
the perspective of partially ordered sets, that the family of connected threshold
graphs is isomorphic to the lattice of shifted shapes, and then discuss some
implications of this identification for threshold graphs.
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A partition of r is a nonnegative integer sequence- (m, 7, ..., T,), where
T > Mg > -+ > my, andr = m + m + -+ - + m,. The nonzeror; are called
the partsof = and their number, denotédr), is thelengthof 7. We will write
7 | r to indicate thatr is a partition ofr, and refer ta- as therank of .

Two partitions ofr are equivalentif they have the same multiset of parts,
i.e., if they differ only in the number of terminal 0’s. Thus, e.g.,

<6 2 2 1) (6 2 2 1 0) (6 2 2 1 0 O) o The Lattice of Threshold Graphs

. . i . Russell Merris and Tom Roby
are equivalent partitions of 11 each of length(8;0,0) is equivalent to the

empty partitionp of length and rank 0.

Example 1.1. Suppose&~ = (V, E) is a (simple) graph with vertex sét = UL

{1,2,...,n} and edge seE of cardinality o(F) = m. Denote byd(i) the SO

degreeof vertex:, that is, the number of edges Gfincident withi. Suppose P >

dy > dy > --- > d, > 0are these vertex degrees (re)arranged in nonincreasing

order. By what has come to be known as the “first theorem of graph theory”, S %

d(G) = (dl, d27 cee dn) F 2m. Go Back
Say that partitionr = (7, m, ..., m,) is graphicif there is a graph with Close

7w = d(H). Not every partition is graphic. i is graphic, its rank must be even Quit

and, because (simple) graphs have no loops or multiple edges,/(r) — 1.

That these obvious necessary conditions are not sufficient is illustrated, e.g., by Page 4 of 38

p=1(544,221).
The unifying theme of the present paper is the notion of a “maximal” graphic
partition. To make this idea precise, suppose= (a,as,...,as) andg =

J. Ineq. Pure and Appl. Math. 6(1) Art. 2, 2005
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(b1, b, ...,b,) are nonincreasing sequences of real numbers. Thereakly
majorizesa, written g > «, if s > t,
w

k k
(1.1) >bi>Y a,  1<k<t,

and

¢ S The Lattice of Threshold Graphs

1.2 b; > 2
( ) Z = Z @i Russell Merris and Tom Roby

i=1 i=1

If 3 weakly majorizesy, and equality holds in InequalityL (2), thens ma-

jorizesa, written 3 = «. If 5 = « and/j is not equivalent tey, theng strictly Title Page

majorizesa. (The standard reference for variations on the theme of majoriza- Contents

tion is [16].) <« NS
For nonnegative integer sequences, majorization has a useful geometric de-

scription. Suppose + r > 0. TheFerrers(or Young diagram F'(r) is a left- < 4

justified array consisting of(r) rows of “boxes”; thei™ row of F'(7) contains S0 Bl

atotal ofr; boxes. The Ferrers diagram afforded, e.g.7by (4,3,3,2,2,2) - Close

16 is illustrated in Fig.1. Because rows that contain zero boxes do not explicitly
appear inF'(w), equivalent partitions afford the same Ferrers diagram. For the Quit

most part, we will treat equivalent partitions as if they were equal. Page 5 of 38

Lemma 1.1 (Muirhead’s Lemma [16, p. 135)). If 7,y F r, thent > ~ if and

only if F'(7) can be obtained froni’() by moving boxes up (to lower numbered > Ined. Pure and Appl. Math. 6(1) Art. 2, 2005
) http://jipam.vu.edu.au
rows).
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Figure 1:F (7).

A little care must be taken when moving boxes to ensure that the resulting
array is a legitimate Ferrers diagram. With this caveat in mind, it follows easily
from Lemmal.1 that majorization induces a partial order pA(7) : 7 - r}.

In other words, the set of (equivalence classes of) partitionsisfpartially
ordered by majorization.

Lemma 1.2 ([27]). Supposer,y - r. If 7 is graphic and ifr majorizesy, then
~ is graphic.

Supposel(G) = w. While the details may be a little awkward to write down,
the proof of Lemmal.2 amounts to showing how moving boxes dowr¥ifr)
can be made to correspond to moving edges around in a graph obtained from
by adding sufficiently many isolated vertices.

Definition 1.1. A graphic partitionz + r is maximal provided no graphic par-
tition strictly majorizesr.
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Figure 2:F(7*) = F(7)".
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There are several well known criteria for a partition to be graphic (see, e.g.,
[27], but be wary of misprints). For our purposes, the most useful necessary
and sufficient conditions are those commonly attributed to Hasselba4thbt
first published by Ruch and Gutman’.

Supposer - r. Theconjugateof 7 is the partitiont™ whose Ferrers diagram
F(r*) = F(r)!, thetransposeof F' (7). In other wordss* + r is the partition
whosei" partist; = o({j : m; > i}), the number of boxes in th& columnof
F(m). If 7= (4,3,3,2,2,2) then (see Fig2) 7* = (6,6, 3, 1).

The number ofdiagonal boxesn F(r) is f(7) = o({i : m; > i}). The
diagonal boxes in Fig.5— 2 have been filled (darkened), making it easy to see
that f(7) = 3 = f(7*). Note thatF'(r) is completely determined by its first
f(7) rows and columns.

Theorem 1.3 (Ruch-Gutman Theorem ?7]). Supposer + 2m. Thenr is
graphic if and only if

k k
(1.3) stzw—l), 1<k < f(n).

i=
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If 7 = (4,3,3,2,2,2) - 16 then, as we have seelfi(r) = 3 andt* =
(6,6,3,1). Becausel < 6 —1,4+3 < (6 —1)+ (6 —1),and4 +3+3 <
(6—-1)+(6—1)+ (3—1), the Ruch-Gutman inequalities are satisfieds
graphic. Two nonisomorphic graphs with degree sequenaee exhibited in
Fig. 3. If 7 = (5,4,3,2,1) I 15 then, because 15 is odd,is not graphic.
If p = (5,4,4,2,2,1) 18, then f(p) = 3 andp* = (6,5,3,3,1). While
5=(6-1)and5+4 = (6—1)+ (5— 1), the third inequality in {.3) is not
satisfiedp+4+4 > (6—1)+(5—1)+ (3 —1). Because does not satisfy the
Ruch-Gutman inequalities, it is not graphic (confirming an earlier observation). The Lattice of Threshold Graphs

Russell Merris and Tom Roby

Title Page
Contents
44 44
. L < 4
Figure 3: Graphs satisfying(G) = 7 = (4, 3,3,2,2,2).
Go Back
" L . " : . Close
Definition 1.2. A threshold partition is a graphic partition for which equality _
holds throughoutX.3), i.e.,7 - 2m is a threshold partition if and only if Quit
Page 8 of 38
(1.4) m=m —1, 1<i< f(m). g
Geometrically;r is a threshold partition if and only i (7) can be decom- o ivamanetuan

posed, as in Fig4, into anf(mw) x f(w) array of boxes in the upper left-hand


http://jipam.vu.edu.au/
mailto:
mailto:merris@csuhayward.edu
mailto:
mailto:troby@csuhayward.edu
http://jipam.vu.edu.au/

corner, called th®urfee squarea row of f () boxes directly below the Durfee
square, darkened in Fig, and a piece below rovi(7) + 1 that is the transpose
of the piece to the right of the Durfee square. It follows, forr) < k < {(n),
thatw; = 7,1 < m. Thus, for any threshold partition, of lengthn = ¢(r),

(1.5) T < T+ 1, 1<k<n.

OO0 oo
OO0 OO0 |
I:l I:l D Russell Merris and Tom Roby
HE B
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Close
Theorem 1.4. Supposer - 2m. Thenr is a maximal graphic partition if and Quit
only if 7 is a threshold patrtition.
Page 9 of 38

The idea of the proof is that Inequalitie®.$) precisely limit the extent to
which boxes can be moved up in a Ferrers diagram and maintain the property ; req pure and appl. Math. 6(1) Art 2, 2005
that the corresponding partition is graphic. Details can be found, e.g.7Jin | AL S| IR T
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A threshold graphis one whose degree sequence is a threshold (maximal)
partition. First introduced in connection with set packing and knapsack prob-
lems [3] and, independently, in the analysis of parallel processes in computer
programming { =], threshold graphs have been rediscovered in a variety of con-
texts, leading to numerous equivalent definitions. (See, elg[, [11], [15],

[17], [14], [2(], and [P1].)

Supposer = (my,m,...,m,) F 2m is a threshold partition of length(so
thatr, > 0 = myyy = --- = m,). Let G be a threshold graph witt( G) = .
ThenG hasn — t isolated vertices (that go unrepresentediix)). Moreover, The Lattice of Threshold Graphs

becauser; + 1 = 7} = ¢, it must be that some vertex 6f is adjacent to every
other vertex of positive degree. So(ifis a threshold graph then it can have at
most one nontrivial component (consisting of more than one vertex), and that

Russell Merris and Tom Roby

component must have at least af@minatingvertex. Title Page
Say that two graphs aexjuivalentf they are isomorphic, to within isolated Contents
vertices; that is/; and H, are equivalent if they are both edgeless graphs or
if H = HJ}, whereH/ is the graph obtained fror#/; by deleting all of its b dd
isolated vertices, = 1, 2. In particular, every threshold graph is equivalent to a < >
connected threshold graph.
Go Back
Theorem 1.5.If 7 is a threshold partition then, up to isomorphism, there is p—
exactly one connected threshold gra@hhat satisfies!(G) = .t
Quit

For the sake of completeness, we sketch a proof of this well-known result.

Suppose: is a dominating vertex of a gragh. Let H = G —u be the graph ob- PrigE 103

Indeed, more is true: Apart from isolated vertices, thgre is a urlajpeded graph with T
degree sequence As present purposes do not require this stronger result, we say no more  http://jipam.vu.edu.au
about it.
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tained from G by deleting vertex: (and all the edges incident with it). Because
the Ferrers diagrami(d(H)) is obtained from¥'(d(G)) by deleting its first row
and column( is a threshold graph if and only ff is a threshold graph. (See,
e.g., Fig.5.) The result now follows by induction and the fact that every graph
on fewer than five vertices is uniquely determined by its degree sequence.

. D D The Lattice of Threshold Graphs

. D D Russell Merris and Tom Roby
= D Title Page
. Contents
44 44
Figure 5:F(6,5,3,3,2,2,1) P >
. Go Back
The idea for the proof of Theorem5 can be used to construct a threshold
graph having a prescribed (threshold) degree sequence. Close
Algorithm 1 (Threshold Algorithm). Letr = (m,m,...,m,) F 2m be a Quit
threshold partition. Page 11 of 38
SetV ={1,2,...,n}andE = ¢
Fori=1to f(ﬂ-) J. Ineq. Pure and Appl. Math. 6(1) Art. 2, 2005

http://jipam.vu.edu.au

Forj=1itom;
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E=FUu{{i,j+1}}
Nextj
Next:
End

Supposer = (6,5, 3,3,2,2,1) is the threshold partition whose Ferrers dia-
gram appears in Figh. If 7 is used as input for the Threshold Algorithm, the
output is illustrated in Fig6.

1 The Lattice of Threshold Graphs
/ 9 Russell Merris and Tom Roby
7O \
\ Title Page
6 O O3 Contents
/ <« >
50 A < >
] Go Back
Figure 6: A threshold graph.
Close
. . . it
The reader may verify that if = (4,3,3,2,2,2) were used as input, the Qui
output of the Threshold Algorithm would be a graph with degree sequence Page 12 of 38
(4,3,3,3,1,0). (While 7 is graphic, it is not maximal.)
Recall that theomplemenof G = (V, E) is the graphG© = (V, £¢), where ey FUGEE AL LD CEA & 8L

http://jipam.vu.edu.au

wv € E°if and only if uv ¢ E, i.e., the edges ofr° are the edges of the
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complete graphi,, that do not belong t6:. If Fig. 6 is viewed as a clockwise
application of the Threshold Algorithm, the edgeg@gfthat are “missing” from
Fig. 6 may be construed as a counterclockwise application, construGting
Note that the degree sequend&;:°), corresponds to the shape complementary
to F'(d(G)) inside then x (n — 1) rectangle. For the threshold graph of Figures
5 and6, we getd(G°) = (5,4,4,3,3,1). These observations yield the well
known fact that= is a threshold graph if and only @° is a threshold graph.
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Suppos€= is a threshold graph. It is convenient to denotertiy~) the Ferrers
diagram corresponding (G). Similarly, let f(G) = f(d(G)) be the number
of boxes on the main diagonal 6%(G).

For any graplG = (V, E), the set oheighborsof u € V' is Ng(u) = {v €
V : wv € E}. The Threshold Algorithm produces a graghon vertex set
V ={1,2,...,n} that satisfies

(2.1) Ne(i)={1,2,...,i—1,i+1,...,m+1}, i < f(m),
and
(2.2) Ne(i) ={1,2,...,m}, i > f(m),

wherer = d(G). In particular, thes™ largest vertex degree 6f is d;, = dg(k),
1<k <n.

Lemma2.1.LetG = (V, E) be a connected threshold graph on> 3 vertices.
If G # K, , then there is a nonadjacent pair of verticeg € V such that
H = (V,EU{ij}) is a threshold graph.

Proof. Without loss of generality we may assume that= {1,2,...,n} and
thatd, = dg(k), 1 < k < n. Becauses # K,, f(G) < n — 1. Leti be
minimal such thatl, < n — 1. Then2 < < f(G) + 1. If i = f(G) + 1 then,
because/(G) is a threshold sequencé,= f(G) =i — 1. (See Fig4.) Choose
j=1+1.By(2.2,i5 ¢ E. Sinced,_; = n — 1forcesd,, > i — 1, it must be
thatd =dy =---=d;_1=n—1andd, =d;;, =---=d, =i— 1. Inthis
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casel’(H) is obtained fromF'(G) by adding new boxes in positiors i) and
(1 + 1,14), the first at the end of rowand the second at the end of columnn
particular,d(H) is a threshold sequence.

If i < f(G), thend; > i. Choosej = d; + 2 < n. By (2.1),j ¢ E. Since
d; = j — 2 forcesd; = j — 1, it must be that/,_; > i andd; < i. Because
dioy =n—1,d; > d, >1i— 1. Therefored; = ¢ — 1. In this caseF'(H) is
obtained fromF'(G) by adding two new boxes in positios j — 1) and(7, 7),
one at the end of row, and a second at the end of columnThus,d(H) is a

threshold sequence. O The Lattice of Threshold Graphs
Denote byT,, n > 1, the set of connected threshold graphsrovertices. USSR Al

If n > 2, theno(T,,) = 2”2 (an observation, implicit inl[5, p. 468], made

explicit in [15]). Let ©,, be the graph with vertex sét,, in whichG, H € T, Title Page

are adjacent if and only if (up to isomorphisti)can be obtained frori by the
addition or deletion of a single edge. (The graphis an undirected variation
on atheme of Bafiska and Quintas’]. When extended to include disconnected <« >
threshold graphs, it becomes the 1-skeleton of the polytope of degree sequences
studied in P1].)

Contents

>

Theorem 2.2.1f n > 1 then®,, is connected. Go Back

Close
Proof. LetG € T,,. If G # K, then (Lemm&2.1) there is a path i®,, from G

to K,. ] Quit

Definition 2.1. If G and H are graphs, writeG < H to indicate thatG is Page 15 of 38

equivalent to a subgraph d@f.

J. Ineq. Pure and Appl. Math. 6(1) Art. 2, 2005
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Strictly speaking, Definitio2.1 partially orders not the family of graphs, but
the set of all equivalence classes of graphs. Like flies swarming around a thor-
oughbred horse, isolated vertices associated with threshold graphs are a trivial
but annoying complication. From this point on, we will treat equivalent thresh-
old graphs as if they were equal. Consistent with our treatment of equivalent
partitions, this amounts to little more than choosing the connected threshold
graphs as a system of distinct representatives for the equivalence classes of all
threshold graphs. Given this identification, the restriction gf to 7, is a par-
tial order, and,, may be viewed as a “Hasse diagram” for the partially ordered e Lattice of Threshold Graphs
set (posetY;,.

Recall that a poseP is locally finiteif the interval [z, 2] = {y € P : z <
y < z}is finite forallz,z € P. If x,z € P and[x,z] = {z,z}, thenz
coversz. A Hasse diagranof P is a graph whose vertices are the elements Title Page
of P, whose edges are the cover relations, and such:tlsatirawn “above

Russell Merris and Tom Roby

Contents
whenever: < z.

A lattice is a posetP in which every pair of elements, y € P has a least 4 dd
upper bound (ojoin), = V y € P, and a greatest lower bound (e}, x A < >
y € P. Lattice P is distributiveif x A (y V z) = (z Ay) V (z A 2) and o Back

0 bac

xV(yNz)=(zVy)A(zVz)forall z,y,z € P. (An excellent reference for
variations on the theme of posets is7.) Close

Denote byY the set of all (equivalence classes of) partitionsu.lf € Y, Quit
definey < vto mean that(u) < ¢(v) andy; < v;, 1 < i < £(p). Informally,
w <vif F(u) C F(v) in the sense that'(u) fits inside F'(v). With respect to Page 16 of 38
this partial orderingy” is a locally finite distributive lattice, commonly known
asYoung's lattice (See, e.g.,{], [27], or [27].) The unique smallest element of o '";;-pﬁ’;ﬁpa;nf\sz':eMda;'j;Lﬂ)A”- SRR
Y is0 = ¢, the empty partition.
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Definition 2.2. For eachn > 2, denote by, the induced subposet bf corre-
sponding to the threshold partitions of lengthi.e., the even rank partitions
that satisfy {.4) and whose first partis; = n — 1. LetY; = {¢}.

The posety,, is half of the “minuscule poset}/ (n) discussed, e.g., i’f,
85].

Lemma 2.3. Suppose&~, H € T,,. ThenG < H (in T,,) if and only ifd(G) <
d(H) (inY,).

. . . . The Lattice of Threshold Graphs
Proof. We begin by extending the partial order of Young’s lattice to unordered

sequences of nonnegative integersd K= (a1, as, . .., a,) andB = (by, bs, .. ., b),
defineA > B to mean that > s, anda; > b;, 1 < i < s. If we denote by

A = (ay,as, .. .,a,) the sequence obtained framby rearranging its elements Title Page
in nonincreasing order, it follows by induction that> B wheneverd > B.

Russell Merris and Tom Roby

In particular, if G is obtained fromH by deleting one or more edges, then Contents

da(i) < dg(i),1 <1< n;thatis,G < H impliesd(G) < d(H). <« >
Conversely, letG = (V, E) andH = (W, F') be connected threshold graphs < >

onn vertices withd(G) < d(H). By the Threshold Algorithm, we may assume

V=W ={1,2,...,n}; if d; = dg(i) andd; = dg(i), 1 < i < n, that Go Back

d(G) = (dl, do, ..., dn)1 andd(H) = (51, Do, ... 7571)1 andthatl; =n—1 = 4;. Close

If d(G) = d(H), then (Theorenl.5) G = H. Otherwise F(G) # F(H) and —

there is a largest positive integer< f(H), such thatl, < ;. Letr = o} =
e+1.By(2.0),e=kre E(H). By (1.5,r > dp+1>d; =o({i: d; > k}), Page 17 of 38
which implies thatl, < k. Similarly,r = §; implies that), > k. Thus,j, > d,.

Let H' = H —e. SinceF'(H') is obtained from¥'(H ) by taking a box from the 3. Ineq. Pure and Appl. Math. 6(1) Art. 2, 2005
end of columnk, and a second box from the end of réwH’ is a connected hitp:/jipam.vu.edu.au
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threshold graph that satisfidéH’) > d(G). Because this process of deleting
edges may be continued until the resulting graph has the same degree sequence
asG, it follows that H contains a subgraph isomorphicdgi.e.,G < H. [

Recall that thelual of posetP is the posef’* on the same set d3, but such
thatz < yin P*ifand only ify < z in P. If P isisomorphic toP*, thenP is
self-dual

Theorem 2.4. The bijectionG — d(G) is a poset isomorphism froffi, onto
Y,,. In particular, T,, is a self-dual distributive lattice. The Lattice of Threshold Graphs

Russell Merris and Tom Roby

ThatT, is a lattice was observed previously ir)] Section 4]. (Also see]
and [L5].) Using Theoren?.4it is easy to strengthen Lemndal by identifying,
as in 21], exactly which edges can be added to, or deleted from, a threshold Title Page
graph so that the result is another threshold graph.

Contents
Proof of Theoren?.4. The first statement is immediate from Theorérh and <« NS
Lemma?2.3. To prove the second, We first show that the induced subposet
Y, is an induced sublattice of Young's Lattidé. Supposer,c € Y,. If 4 >
i = max{m,o;}, 1 < i < n,thenpy = (uq,pu2,...,u,) is the join of Go Back
mando in Y. To show thaty € Y, supposej < f(u) = o({i : p; > Close

i}) = max{f(m), f(0)}. Becauseu, > j if and only if max {75, o5} > j,
w; =o({s: ps > j}) = max{nj, 05} = max{m;,0;} +1 =1+ p;. Thus, Quit
i € Y,. Replacing maximums with minimums, the same argument shows that
the meet int” of r ando is an element oYf,.

Becausé’ is distributive, the induced sublatti¢g is distibutive. Thus, from e ————————
the first statement of the theoreff, is distributive. http://jipam.vu.edu.au

Page 18 of 38
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Duality is easier to check from the perspective of graphs. Sup@osé€l;,.
Let v be a dominating vertex of and setH = G — u. Recall thatH and
its complement are (not necessarily connected) threshold graphs,(Get=
u-H¢ be the (cone) graph obtained fraif by adding vertex. andn — 1 edges
connecting: to every vertex of{¢. Then, up to isomorphism; is well defined,
andvy : T,, — T, is injective.

If G1,Gy € T, thenG; < G, if and only if Gy is isomorphic to a graph
G’ that can be obtained froiid, by deleting some of its edges, but none of its
vertices, i.e., to apanningsubgraphG’ of G,. If v is a dominating vertex afr;
thenw’, the vertex ofGG; to which it corresponds, must be a dominating vertex
of G| and, hence, ofs,. Thus,G; < G, if and only if Gy — w is isomorphic
to a spanning subgraph 6f, — «/, if and only if (G5 — «’)¢ is isomorphic to a
spanning subgraph ¢, — )¢, if and only if (G3) < ¥(Gy). O

Since it is a distributive latticel}, is isomorphic to the lattice of “order ide-
als” of P,, the induced subposet of its “join irreducible” elemenis, [Ch. 3].
For the purposes of this article, the relevant conclusion is that the ppsst
completely determined b¥,,. We shall return to this pointin Sectigh

Because the partial orderingsBf andY,, extend naturally to

S:UTn and Y:UYR,
n>1 n>1

respectively, the following is an immediate consequence of The@rém

Corollary 2.5. The bijectionG' — d(G) is a poset isomorphism frofs onto
Y.

The Lattice of Threshold Graphs
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Up to this point, the focus of our attention has been on the number of vertices
of G and the length of. In what follows, it will sometimes be more convenient
to focus instead on the number of edges-adnd the rank ofr.

Supposer - 2m. If y; = nf —1landy;, = m, 1 < i < f(n), then,
from (1.39), 7 is graphic if and only ifu weakly majorizes/, an observation
that simplifies the statement of the Ruch-Gutman criteria without adding much
clarity. Let us see what can be done about that. Begin by dividifig) into
two disjoint pieces. Denote b () those boxes of () that lie strictly below
its diagonal, and let\(r) be the rest, i.e.A(w) consists of those boxes that lie
on the diagonal or lie to the right of a diagonal box. Informaly;r) is the
piece of F'(m) on orabovethe diagonal, and(~) is the piece (strictlypelow
the diagonal. For = (4,3, 3,2, 2,2), the division of F(7) into A(7) and B(r)
is illustrated in Fig.7.

L mOOO
O B(T)ZHH av= O
00 -~

Figure 7: Division ofF'(7).
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Definition 3.1. Supposer I r. Leta(w) be the partition whose parts are the
lengths of the rows of the shifted shapér). Denote bys(w) the partition
whose parts are the lengths of the column#6f).

From Fig.7, a(7) = (4,2,1) andg(1) = (5,4). Together with {.1) — (1.4),
this division of F'(r) leads to the following variation on the theme of Ruch and
Gutman.

Theorem 3.1. Supposer + 2m. Thenr is graphic if and only if3(7) weakly
majorizesu(m). Moreoverr is a threshold partition if and only if(7) = «a(7).

We will abbreviaten(d(G)) andg(d(G)) by a(G) and3(G), respectively.

Let us look a little more closely at what it means to be a shifted shape. Unlike
F(m), the rows ofA () are not left-justified. Each successive row is shifted one
(more) box to the right. The left-hand boundaryAxfr) looks like an inverted Title Page
staircase. On the other hand, becadse) is just the top half ofF'(x), the

The Lattice of Threshold Graphs

Russell Merris and Tom Roby

rules that apply to the right-hand boundary are the samel o) as for F'(x), Contents
i.e., the last box in row + 1 of A(xr) can extend no further to the right than A 44
the last box in rowi. The right-hand boundary rule applied f7) reflects < >
the fact that the parts of form a nonincreasing sequence. Because the left-

hand boundary rules are different, the same right-hand rule appliedtd Go Back
implies that the parts ofi(7) form a (strictly) decreasing sequence. That is, Close
the parts ofx(w) are all different. Partitions with distinct parts are calidct Quit

partitions If & = (a, aq,...,q) is a strict partition ofn, denotedw + m,
thena; > a, > --- > a;, and there is a unique shifted shape whiseow Page 21 of 38
containsy; boxes,1 <1 < k.

J. Ineq. Pure and Appl. Math. 6(1) Art. 2, 2005

Corollary 3.2. The mappingr — «() is a bijection from the threshold parti- http:/jipam.vu.edu.au

tions of2m onto the strict partitions ofn.
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Representing the connected threshold grapy the strict partition(G),
the self-dual distributive latticé; (from Theoren®.4) is illustrated in Fig.8.

It follows from Corollary 3.2 that Y is identical to what has come to be
known as thdattice of shifted shapeqSee, e.g., ], or [26, 8§3].) From this
identification (and Corollarg.5), it follows that< is a locally finite distributive
lattice with least element = K, i.e., S is a so-calledinitary distributive
lattice.

Recall that a subsét of a posetP is achainif any two elements of” are
comparable (inP). A chain issaturatedif there do not exist:, z € C' andy €
P\C'suchthat: < y < z. Inalocally finite lattice, a chaimy < z; < -+ < xy,
(of lengthk = o(C') — 1) is saturated if and only if; coverse; 1,1 <i < k.

Because it is a finitary latticey has a unique rank functioh : & — N,
where)(G) is the length of any saturated chain frome= K, to G, i.e., \(G) =
m, the number of edges @f.

Let ¢, (not to be confused witli},) be the number of nonisomorphic con-
nected threshold graphs havingedges. By Corollang.2, t,, is equal to the
number of strict partitions of rank:.. The generating function for strict parti-
tions has been known at least since the time of Euler:

(3.1) Z tma"™ = H(l + z")

m>0 i>1

=l4z+a2+223+20 " +32° + 428+ .

Together with Corollarie€.5 and 3.2, these remarks imply that is a so-
called “graded poset” with “rank generating function” given Bylj.

The Lattice of Threshold Graphs
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Definition 3.2. LetG € & be a fixed but arbitrary connected threshold graph.
Denote by (G) the number of saturated chainsfrom K, to G.

Representing: € by a(G), the first few levels (ranks) of the graded poset
& are illustrated in Fig.9. The numbers in the figure are the corresponding
values ofe(G). (Note that they follow a recurrence reminiscent of Pascal’s
triangle.)

Starting with an unlimited number of isolated vertice&) is the number
of ways to “construct” the threshold gragh by adding edges, one at a time,
subject to the condition that every time an edge is added the result is a threshol

d The Lattice of Threshold Graphs

graph. (The Threshold Algorithm corresponds to constructifi@) a row at a Russell Merris and Tom Roby
time.)
Corollary 3.3. LetG be a threshold graph having edges and degree sequence Title Page

7 = d(G). Supposex(m) = (p1,p2,...,pr) & m wherer = f(G), and

pi=m—1+1,1<i<r. Then Contents

H p; — 44 44
(3.2) :

z<j pi + p] | | 2
wherep! = pi!p,!---p,l, i.e., apart from a power of 2 depending enandr, Go Back
e(@) is the degree of the projective representatiosgfcorresponding tax (7). Close
Proof. The result follows from Corollarieg.5 and 3.2, and the fact that the Quit
number of saturated chains franto d(G) in Y is given by the right-hand side Page 23 of 38

of (3.2). (See, e.g.,14, 111.8, Ex. 12].) The natural bijection between projective
representatlons of the symmetric groups anq strict partitions is an old result | S ———
going back to Schur, a modern account of which can be founddp [ ] http://jipam.vu.edu.au
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Figure 8: Hasse diagram df;.
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Let I be a (possibly empty) subset of the poBetlf y € I, z € P, andx < y,
together imply that: € I, then! is anorder idealof P. The set of all order
ideals of P, ordered by inclusion, is a poset denotdd”). An elementy ¢ 0 of

a distributive latticel is join irreducibleif y is not the least upper bound of two
elements, both of which are strictly less thaf.e.,y is join irreducible if it has
exactly one edge below it in any Hasse diagrani 9fThe next result follows
from the fact that¥ is a finitary distributive latticeZd 7, Prop. 3.4.3].

The Lattice of Threshold Graphs

Theorem 4.1.1f P is the induced subposet of join irreducible elementS pf
thenS = J(P), the lattice of order ideals dP.

Russell Merris and Tom Roby

Can one give an explicit description B2 Any element that covefsis join Title Page
irreducible. Glancing at Figo, one finds only one such shifted shape, namely,
[, corresponding to the strict partition (1). Indeed, it is clear from Bigiot
only thatJO ~(2), OO ~(3), etc., are join irreducible, but that there are 4« >
others as well, namely those corresponding to the strict partitiaris, (3, 2),

Contents

and(3,2,1). We leave it as an exercise to show that the join irreducible shifted 4 g

shapes are precisely those that are right-justified. Go Back
What about a graph-theoretic interpretation®? Say that two edges of EleEs

G are equivalent if there is an automorphismothat carries one to the other. _

Then the connected threshold gra@hies in P if and only if, up to equivalence, Quit

there is a unique edgeof G such thatG' — e is a threshold graph. This, of Page 26 of 38

course, is not so much an answer as another way of stating the question. A

more useful characterization of join irreducible threshold graphs involves the 3 ineq. pure and Appi. Matn. 6(1) Art. 2, 2005
H [THP T http://ji .Vu. .

unrelated notion of a “join” of graphs. p#jipam.vul.edu.au
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Definition 4.1. LetG, = (V4, Ey) andGy = (V3, E») be graphs on disjoint sets
of vertices. Their join is the grapfi, G, = (V, E), whereV =V, UV, andE
is the union off; U F5 and the se{uv : u € V; andv € 14},

The particular instance of the join of a graph and a single vet@x/©)
occurred in the proof of Theorefh4.

Theorem 4.2. Suppose&= € 3. ThenG € P if and only if, for some pair of
positive integers: and s, G = K,eK¢, the join of a complete graph and the

complement of a complete graph. The Lattice of Threshold Graphs
Proof. Supposel € P. Becausd) ¢ P, G has an edge. I&§ = K, then Russell Merris and Tom Roby
n > 2,r =n—1ands = 1. Otherwise, letr = d(G). Becausex(r) = (()
corresponds to a right-justified shifted shape, there exists a positive integer Title Page
suchthatry = m =--- =n. =n—-1andn,,; = --- = 7w, = r. In other Content
words,r (< n) of the vertices of7 are dominating vertices, and the remaining Onten's
s = n — r of its vertices are adjacent (only) to the dominating vertices; that is, 4« >
G =~ K,eK¢. Conversely, ifG =~ K,eK¢ € S, thena(G) corresponds to a
. oS . s < | 2
right-justified shifted shape. ]

. . Go Back
Definition 4.2. Denote byn] the pose{1, 2, ..., n} under the natural ordering
of the integers. Thug:] is ann-element chain (of length — 1). Denote byN Close
the poset of the natural numbers ordered by magnitude. Quit

Recall that the direct (or cartesiapjoductof posetsP and() is the poset Page 27 of 38
Px@Q ={(z,y) : x € Pandy € Q}, where(x,y) < (p, q) if (and only if)
r < pandy < gq. If PNQ = ¢, the disjointunionof P and( is the poset 3. Ineq. Pure and Appl. Math. 6(1) Art. 2, 2005

http://jipam.vu.edu.au

P+ Q,wherex < yifeitherz,y € Pandx <y, orx,y € Q andz < y.
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The poset of right-justified shifted shapes (the join irreducible elements of
Y o J) turns out, itself, to be a finitary distributive lattice. Denote BY
the induced subposet @ consisting of its join irreducible elements, so that
P = J(P'). ThenP?! is isomorphic taN x [2] (makingP “semi-Pascal” |,
p. 381-382]). In the language of strict partitiong,r) € P!, if and only if
m > 2 anda(m) = (m), corresponding to a shifted shape with a single row

of boxes, ora(w) = (r — 1,r — 2,...,1), corresponding to a right-justified
“inverted staircase”. The connected threshold graph emerging (fronis the
“star”, K;e K¢, while the inverted staircase correspondsio The Lattice of Threshold Graphs

Because a product of chains is a finitary distributive lattieé, = J(P?)
where, it turns outP? = N+ [1]. In the language of strict partitions(r) € P>
if and only if a(7) = (2,1), orm > 3 anda(w) = (m). Graph theoretically,

Russell Merris and Tom Roby

G € P?ifand only if G = K3 or G is a star onn > 4 vertices. These Title Page
observations are summarized in the following. CHTETS
Theorem 4.3. The latticeS of connected threshold graphs is isomorphic to pp >

J(J(J(P?))), whereP? is the induced subposet @fconsisting ofK’; and the

stars onn > 4 vertices. < 4
For the remainder of this section, we return to the self-dual distributive lattice Go Back

T,, of connected threshold graphs oivertices. Our goal is an analog of Theo- Close

rem4.3for T,,. The desired result, stated from the perspective of shifted shapes, Quit

can be found in{4]. We merely flesh out some of the details and interpret them

from the perspective of threshold graphs. Page 28 of 38

Denote the poset of join irreducible elementsiofby P,, so that7,, =
J(P,). A glance at Fig.8 reveals that?; ¢ Ts N P. Some elements aF
correspond to shifted shapes that are not right-justified. This is easily explained.

J. Ineq. Pure and Appl. Math. 6(1) Art. 2, 2005
http://jipam.vu.edu.au
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Because a connected threshold graph on 6 vertices has a (dominating) vertex of

degree 5, the first row of every shifted shape in Eigaust contain 5 boxes. In
general, the join-irreducible elements’Bf corresponded to shifted shapes that
are right justifiedwith the possible exception of the first row

Definition 4.3. Supposé€~ is a graph with a dominating vertex Denote by
G#K; the graph obtained from’ by addingt new vertices);, 1 < < ¢, and
t new edgegu,v;}, 1 <i <t.

If G has two dominating vertices;; andus,, then the version oG# K¢
obtained by adding neighbors tau; is isomorphic to the version obtained by
addingt neighbors tous. Thus, up to isomorphism, it does not matter which
dominating vertex of~ is chosen to play the role af in Definition 4.3. More
importantly, if d(G) is a threshold sequence, thé{G#K;) is a threshold se-
qguence.

Theorem 4.4.The set of join irreducible elements ©f is P, = { (K, e K)# K[ :
r+s+t=n}.

Proof. Becausey(G#K7Y) is obtained fromy(G) by addingt boxes to its first
row, the result follows from Theorenis4 and4.2, and the discussion leading
up to Definition4.3. O

Lemma 4.5. The posetP, of join irreducible elements df;, is a distributive
lattice.

Proof. While P, is an induced subposet @}, it is not a sublattice of,,. Sup-
posez,y € P,. From Theoren?.4 and the proof of Theorem.4, we may
identify x andy with shifted shapes whose first rows have length 1 and

The Lattice of Threshold Graphs

Russell Merris and Tom Roby

Title Page

Contents
44 44
< | 2
Go Back
Close
Quit
Page 29 of 38

J. Ineq. Pure and Appl. Math. 6(1) Art. 2, 2005
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:
mailto:merris@csuhayward.edu
mailto:
mailto:troby@csuhayward.edu
http://jipam.vu.edu.au/

whose remaining rows (if any) are right-justified. The meet ehdy in 7T, is
the intersection of their shifted shapes. Because it belongs,tthis intersec-
tion is the meet of andy in P,.

Denote byz andz’ the joins ofz andy in P, and7,, respectively. Then’
is obtained fromz andy by superimposing their shifted shapes. If, apart from
its first row, 2’ is right-justified, then: = 2’. Otherwise,: is obtained fronr’
by adding a rectangular array of boxes to its lower right hand corner.

The proof that the join and meet &, distribute over each other is straight-

forward. ] The Lattice of Threshold Graphs
It follows from Lemma4.5that P, = J(P!), whereP! is the subposet of Russell Merris and Tom Roby

join irreducible elements aP,.

Theorem 4.6. The subposet of join irreducible elements Bf is P! = llfs PR

{(K,oKS)#Kf :r+s+t=n,andr =2ors =0} Contents

Proof. From among all possible ways to expréss P, in the form(K, e K¢)# K, 4« 44

choose those for whichis as large as possible and from among those, choose < >

the one for whichs is as large as possible. Thus, for example, we chdgse

over Ko K7 and Ky# K over (K0 K5)#KS. Note that, as long as > 2, Go Back

this canonical form results in > 2. If the canonical form ofG € P, is Close

(K, eKS)#K{ with r > 3 ands > 1, thenG is a join (in the latticeP,) of the _

incomparable graph@K,eK: | )# K7, , and (K,_1eK{, ,)# K. This proves Quit

that the join irreducible elements of (the latticB) are contained in the set Page 30 of 38

identified asP! in the statement of the theorem.
If the canonical form o7 € P, is (K0 K¢)# K, then the corresponding 3. In;;- P;r__eandAppl. Mdath. 6(1) Art. 2, 2005
i i [ljipam.vu. .

shifted shape has two rows, the first of length— 1 and the second of length pIpam v Eat 8
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In order forz to be the join ofr, y € P,, neither ofr andy can have more than
two rows and they must both have first rows of length- 1. Thus, ifx # v,

the one with the shorter second row is less than the other one. It follows that
is join irreducible.

If the canonical form ofG € P, is K,#K§, with r > 2, then, with the
possible exception of the first row of length— 1, the corresponding shifted
shapez is an inverted staircase. In order foto be the join ofr,y € P,, at
least one of them, say, must have- rows. But this means < z < z. This
completes the proof that the set identified/alsin the statement consists only
of join irreducible elements aP,. O

K ;
/ }T\—\\Kz°}\;_:
w

K/'{,

K ol
/ o Ky Ky K, 6

KHEE
I Y RS NN S
(Ky+K3 )FK, s

K4k
s NNV .
o Ky Ky K,

Figure 10:P! forn > 7.
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A few minutes with paper and pencil will show tH&t = [1], T3 = [2] and
T, = [4] are (trivial) chains. It follows from Theorerh6that P! = [n—3] x [2],
n > 5. (See Fig.10.) From this observation, it is straightforward both to show
that P, is self-dual and thaP! is a distributive lattice. The induced subposet
P2, of join irreducible elements P!, is isomorphic td1] + [n — 4], n > 5.

Theorem 4.7.The latticeT,, of connected threshold graphs ar> 5 vertices is
isomorphic taJ(J(J(P?))), whereP? is the induced subposet 6f consisting
of Ky#K¢ ,and (K, KS)#KE 5 ,3<s<n-—2.

Proof. Immediate from Fig10 ]
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If G = (V, E)isagraph, denote b (G) (not to be confused witti(G)) the di-
agonal matrix of its vertex degrees, i.B.(G) = diag(da(1),dc(2),...,dg(n)).
Let A(G) = (a;;) be the(0, 1)—adjacency matrix (with:;; = 1 if and only if
{i,j} € E). TheLaplacianmatrix of G is L(G) = D(G) — A(G). ThenL(G)

is a symmetric, positive semidefinite, singuldrmatrix. Denote the spectrum
of L(G) by s(G) = (A, A2, ..., \n), Whered; > Xy > --- > )\, = 0. Then
[17] G is a threshold graph if and only (G) = d(G)*, the conjugate of
its degree sequence. @ € P, the induced subposet of join irreducible ele-

The Lattice of Threshold Graphs

ments ofS, then (Theoreml.2), G = K,eK¢, r + s = n. Thus,G hasr Russell Merris and Tom Roby
vertices of degree — 1 ands vertices of degree. Becausel(G)* = s(G),
A=A = =)\ =mn, )\7»4_1 = )\r+2 ==\ =T, and)\n =0. It Title Page

follows thatP? = & N ¥ where Z is the set consisting of those grapksuch
that L.(G) has at most two distinct nonzero eigenvalues. This set of graphs,
natural algebraic generalizationBf has been characterized completely by van <« >
Dam [4] and Haemersd].

Supposer F 2m. Then (Theoren8.1) = is graphic if and only if3(7) >

a(m), andr is threshold if and only if3(7) = «(w). Weaker than equality
but stronger than weak majorization is the relation of (ordinary) majorization, Close
the case in whictd(w) and B(w) contain the same number of boxes. What, Quit
if anything, can be said about grapésfor which 5(G) majorizesa(G)? It
turns out that3(G) > «(G) if and only if G is a so-calledsplit graph The Page 33 of 38
split graphs have many interesting characterizations, €.¢-,(V, E) is a split
graph if and only ifl” can be partitioned into the disjoint union of a clique and > '"r:;-pﬁ;giepaaﬂfn*\sz'-eMdaLh-afLﬂ)A"- 223
an independent set, if and only if bothandG* are chordal §], and so on. A ' -

Contents

o))

< 4
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discussion of the many manifestations of split graphs can be found, e.g].in [

It is sometimes useful to write partitions “backwards”, in nondecreasing no-
tation. In backward notation{3, 3, 3, 3,2, 1,1, 1) becomes1, 1, 1,2, 3, 3, 3, 3],
which can be abbreviatgd?®, 2, 3!], where superscripts are used to denote mul-
tiplicities.

Theorem 5.1. Let G be a connected threshold graph with (backward) degree

sequence(G) = [1™,22,...,(n — 1)™']. As a group of permutations of its
n vertices, the automorphism group @Gfis the “Young subgroup” associated ,
. . The Lattice of Threshold Graphs
with d(G), i.e.,
A (G) o~ Sn X Sr2 oo X ST - Russell Merris and Tom Roby

This result is a consequence of the structure of threshold graphs displayed in

[8] or [15]. As we proceed to demonstrate, it is also an easy consequence of the Tide Page
Threshold Algorithm. Contents
Lemmab5.2.LetG = (V, E') be a connected threshold graph or> 2 vertices. 4« >
Suppose, j € Vi # j. If da(i) = da(j), thenNea(i)\j = Ne(j)\i. > S
Proof. We may assume that = {1,2,...,n} and thatG emerged from the Go Back
Threshold Algorithm, so that, = dg(k), 1 < k < n. Suppose < j and let
s = f(G). Becausel(G) is a threshold partition/,, ; = s and eithekl, > s, or Close
ds = s andd,;, < s. Thus, becausé; = d;, it cannot happen that both< s Quit
andj > s + 2. This leaves two possibilities: Eithgr< s + 1 ori > s. In each T
of these cases, the result follows from Equatidhg)(and .2). ] d

We are grateful to the referee for pointing out that Lenfiriaalso follows L AR AL LR FEE 2, 2

o . http://ji .vu.edu.
from [3] where it is shown that no subset of vertices of a threshold graph can be pipam i eduad
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arranged in an "alternating cycle" consisting of an edge, a non-edge, an edge, a

non-edge, ...

Proof of Theoren®.1 Fix a positive integel. Let D, be the set of vertices
of G of degreek. If o(D;) > 2 then, by the same approach used to prove
Lemmab.2, eitherD, is a clique or it is an independent set. Thus, by Lemma
5.2, any permutation o/ (G) that fixes the vertices not containediih, is an
automorphism ofs. Because no automorphism@fcan send a vertex of degree
k to a vertex of degreé # k, the proof is complete. O
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