Journal of Inequalities in Pure and Applied Mathematics

AN EXTENSION OF RESULTS OF A. MCD. MERCER AND I. GAVREA

MAREK NIEZGODA

Department of Applied Mathematics
Agricultural University of Lublin
P.O. Box 158, Akademicka 13

PL-20-950 Lublin, Poland
EMail: marek.niezgoda@ar.lublin.pl
volume 6, issue 4, article 107, 2005.

Received 19 July, 2005; accepted 20 September, 2005.

Communicated by: P.S. Bullen

Abstract
Contents
Home Page
Go Back
Close

Abstract

In this note we extend recent results of A. McD. Mercer and I. Gavrea on convex sequences to other classes of sequences.
2000 Mathematics Subject Classification: Primary: 26D15,12E5; Secondary 26A51,39A70.
Key words: Convex sequence, Polynomial, Convex cone, Dual cone, Farkas lemma, q-class of sequences, Shift operator, Difference operator, Convex se- quence of order r.
Contents
1 Introduction 3
2 Basic Lemma 4
3 Main Result 5
4 Applications for Convex Sequences of Order r 10
References

An Extension of Results of A. McD. Mercer and I. Gavrea

Marek Niezgoda

J. Ineq. Pure and Appl. Math. 6(4) Art. 107, 2005 http://jipam.vu.edu.au

1. Introduction

The following result is valid $[1,2]$. Let $\boldsymbol{a}=\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ be a real sequence. The inequality

$$
\begin{equation*}
\sum_{k=0}^{n} a_{k} u_{k} \geq 0 \tag{1.1}
\end{equation*}
$$

holds for every convex sequence $\boldsymbol{u}=\left(u_{0}, u_{1}, \ldots, u_{n}\right)$ if and only if the polynomial

$$
P_{\boldsymbol{a}}(x):=\sum_{k=0}^{n} a_{k} x^{k}
$$

has $x=1$ as a double root and the coefficients $c_{k}(k=0,1, \ldots, n-2)$ of the polynomial

$$
\frac{P_{\boldsymbol{a}}(x)}{(x-1)^{2}}=\sum_{k=0}^{n-2} c_{k} x^{k}
$$

are non-negative. The sufficiency and necessity of this result are due, respectively, to A. McD. Mercer [2] and to I. Gavrea [1].

The purpose of this note is to extend the above result to other classes of sequences \boldsymbol{u}.

An Extension of Results of A. McD. Mercer and I. Gavrea

Marek Niezgoda

J. Ineq. Pure and Appl. Math. 6(4) Art. 107, 2005

2. Basic Lemma

A convex cone is a non-empty set $C \subset \mathbb{R}^{n+1}$ such that $\alpha C+\beta C \subset C$ for all non-negative scalars α and β. We say that a convex cone C is generated by a set $V \subset C$, and write $C=$ cone V, if every vector in C can be expressed as a non-negative linear combination of a finite number of vectors in V.

Let $\langle\cdot, \cdot\rangle$ stand for the standard inner product on \mathbb{R}^{n+1}. The dual cone of C is the cone defined by

$$
\text { dual } C:=\left\{\boldsymbol{u} \in \mathbb{R}^{n+1}:\langle\boldsymbol{u}, \boldsymbol{v}\rangle \geq 0 \text { for all } \boldsymbol{v} \in C\right\}
$$

It is well-known that

$$
\begin{equation*}
\text { dual dual } C=C \tag{2.1}
\end{equation*}
$$

for any closed convex cone $C \subset \mathbb{R}^{n+1}$ (cf. [3, Theorem 14.1, p. 121]). The result below is a key fact in our considerations. It is a consequence of (2.1) for a finitely generated cone $C=$ cone $\left\{\boldsymbol{v}_{0}, \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{p}\right\}$.
Lemma 2.1 (Farkas lemma). Let $\boldsymbol{v}, \boldsymbol{v}_{0}, \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{p}$ be vectors in \mathbb{R}^{n+1}. The following two statements are equivalent:
(i) The inequality $\langle\boldsymbol{u}, \boldsymbol{v}\rangle \geq 0$ holds for all $\boldsymbol{u} \in \mathbb{R}^{n+1}$ such that $\left\langle\boldsymbol{u}, \boldsymbol{v}_{i}\right\rangle \geq 0$, $i=0,1, \ldots, p$.
(ii) There exist non-negative scalars $c_{i}, i=0,1, \ldots, p$, such that

$$
\boldsymbol{v}=c_{0} \boldsymbol{v}_{0}+c_{1} \boldsymbol{v}_{1}+\cdots+c_{p} \boldsymbol{v}_{p}
$$

An Extension of Results of A. McD. Mercer and I. Gavrea

Marek Niezgoda

Title Page
Contents
Go Back
Close
Quit 4

J. Ineq. Pure and Appl. Math. 6(4) Art. 107, 2005

3. Main Result

Given a sequence $\boldsymbol{q}=\left(q_{0}, q_{1}, \ldots, q_{r}\right) \in \mathbb{R}^{r+1}$ with $0 \leq r \leq n$, we define
(3.1) $\boldsymbol{v}_{i}:=(\underbrace{0, \ldots, 0}_{i \text { times }}, q_{0}, q_{1}, \ldots, q_{r}, 0, \ldots, 0)=S^{i} \boldsymbol{v}_{0} \in \mathbb{R}^{n+1}$

$$
\text { for } \quad i=0,1, \ldots, n-r \text {. }
$$

Here S is the shift operator from \mathbb{R}^{n+1} to \mathbb{R}^{n+1} defined by

$$
\begin{equation*}
S\left(z_{0}, z_{1}, \ldots, z_{n}\right):=\left(0, z_{0}, z_{1}, \ldots, z_{n-1}\right) \tag{3.2}
\end{equation*}
$$

A sequence $\boldsymbol{u}=\left(u_{0}, u_{1}, \ldots, u_{n}\right) \in \mathbb{R}^{n+1}$ is said to be of \boldsymbol{q}-class, if

$$
\begin{equation*}
\left\langle\boldsymbol{u}, \boldsymbol{v}_{i}\right\rangle \geq 0 \text { for all } i=0,1, \ldots, n-r . \tag{3.3}
\end{equation*}
$$

In other words, the \boldsymbol{q}-class consists of all vectors of the cone

$$
\begin{equation*}
D:=\text { dual cone }\left\{\boldsymbol{v}_{0}, \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n-r}\right\} . \tag{3.4}
\end{equation*}
$$

Example 3.1.
(a). Set $r=0, q_{0}=1$ and

$$
\boldsymbol{v}_{i}=(\underbrace{0, \ldots, 0}_{i \text { times }}, 1,0, \ldots, 0) \in \mathbb{R}^{n+1} \text { for } i=0,1, \ldots, n \text {. }
$$

Then (3.3) reduces to

$$
u_{i} \geq 0 \text { for } i=0,1, \ldots, n
$$

An Extension of Results of A. McD. Mercer and I. Gavrea

Marek Niezgoda

J. Ineq. Pure and Appl. Math. 6(4) Art. 107, 2005

Thus D is the class of non-negative sequences.
(b). Put $r=1, q_{0}=-1$ and $q_{1}=1$, and denote

$$
\boldsymbol{v}_{i}=(\underbrace{0, \ldots, 0}_{i \text { times }},-1,1,0, \ldots, 0) \in \mathbb{R}^{n+1} \text { for } i=0,1, \ldots, n-1 \text {. }
$$

Then (3.3) gives

$$
u_{i} \leq u_{i+1} \text { for } i=0,1, \ldots, n-1
$$

which means that D is the class of non-decreasing sequences.
(c). Consider $r=2, q_{0}=1, q_{1}=-2, q_{2}=1$ and

$$
\boldsymbol{v}_{i}=(\underbrace{0, \ldots, 0}_{i \text { times }}, 1,-2,1,0, \ldots, 0) \in \mathbb{R}^{n+1} \text { for } i=0,1, \ldots, n-2
$$

In this case, (3.3) is equivalent to

$$
u_{i+1} \leq \frac{u_{i}+u_{i+2}}{2} \text { for } i=0,1, \ldots, n-2
$$

This says that \boldsymbol{u} is a convex sequence. Therefore D is the class of convex sequences.

Theorem 3.1. Let $\boldsymbol{a}=\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n+1}$ and $\boldsymbol{q}=\left(q_{0}, q_{1}, \ldots, q_{r}\right) \in \mathbb{R}^{r+1}$ be given with $0 \leq r \leq n$. Then the inequality

$$
\begin{equation*}
\sum_{k=0}^{n} a_{k} u_{k} \geq 0 \tag{3.5}
\end{equation*}
$$

An Extension of Results of A. McD. Mercer and I. Gavrea

Marek Niezgoda

J. Ineq. Pure and Appl. Math. 6(4) Art. 107, 2005 http://jipam.vu.edu.au
holds for every sequence $\boldsymbol{u}=\left(u_{0}, u_{1}, \ldots, u_{n}\right)$ of \boldsymbol{q}-class if and only if the polynomial

$$
P_{\boldsymbol{a}}(x):=\sum_{k=0}^{n} a_{k} x^{k}
$$

is divisible by the polynomial

$$
P_{\boldsymbol{q}}(x):=\sum_{k=0}^{r} q_{k} x^{k}
$$

and the coefficients $c_{k}(k=0,1, \ldots, n-r)$ of the polynomial

$$
\frac{P_{\boldsymbol{a}}(x)}{P_{\boldsymbol{q}}(x)}=\sum_{k=0}^{n-r} c_{k} x^{k}
$$

are non-negative.
Proof. The map φ that assigns to each sequence $\boldsymbol{b}=\left(b_{0}, b_{1}, \ldots, b_{m}\right)$ the polynomial

$$
\varphi(\boldsymbol{b}):=P_{\boldsymbol{b}}(x):=\sum_{k=0}^{m} b_{k} x^{k}
$$

is a one-to-one linear map from \mathbb{R}^{m+1} to the space of polynomials of degree at most m. Also, $\psi:=\varphi^{-1}$ is a one-to-one linear map. It is not difficult to check that

$$
\psi\left(x^{k} P_{\boldsymbol{b}}(x)\right)=S^{k} \psi\left(P_{\boldsymbol{b}}(x)\right)
$$

Therefore, for any polynomial

$$
P_{\boldsymbol{c}}(x):=c_{0}+c_{1} x+\cdots+c_{n-r} x^{n-r}
$$

we have

$$
\begin{aligned}
\psi\left(P_{\boldsymbol{c}}(x) P_{\boldsymbol{q}}(x)\right) & =c_{0} S^{0} \boldsymbol{v}_{0}+c_{1} S^{1} \boldsymbol{v}_{0}+\cdots+c_{n-r} S^{n-r} \boldsymbol{v}_{0} \\
& =c_{0} \boldsymbol{v}_{0}+c_{1} \boldsymbol{v}_{1}+\cdots+c_{n-r} \boldsymbol{v}_{n-r}
\end{aligned}
$$

where \boldsymbol{v}_{i} are given by (3.1). In other words,

$$
\begin{align*}
& P_{\boldsymbol{c}}(x) P_{\boldsymbol{q}}(x)=\varphi\left(c_{0} \boldsymbol{v}_{0}+c_{1} \boldsymbol{v}_{1}+\cdots+c_{n-r} \boldsymbol{v}_{n-r}\right) \tag{3.6}\\
& \text { for any } \quad \boldsymbol{c}=\left(c_{0}, c_{1}, \ldots, c_{n-r}\right) .
\end{align*}
$$

We are now in a position to show that the following statements are mutually equivalent:
(i) Inequality (3.5) holds for every \boldsymbol{u} of \boldsymbol{q}-class.
(ii) $\langle\boldsymbol{a}, \boldsymbol{u}\rangle \geq 0$ for every $\boldsymbol{u} \in$ dual cone $\left\{\boldsymbol{v}_{0}, \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n-r}\right\}$.
(iii) There exist non-negative scalars $c_{0}, c_{1}, \ldots, c_{n-r}$ such that $\boldsymbol{a}=c_{0} \boldsymbol{v}_{0}+c_{1} \boldsymbol{v}_{1}+$ $\cdots+c_{n-r} \boldsymbol{v}_{n-r}$.
(iv) There exist non-negative scalars $c_{0}, c_{1}, \ldots, c_{n-r}$ such that $P_{\boldsymbol{a}}(x)=\left(c_{0}+\right.$ $\left.c_{1} x+\cdots+c_{n-r} x^{n-r}\right) P_{\boldsymbol{q}}(x)$.

An Extension of Results of A. McD. Mercer and I. Gavrea

Marek Niezgoda

Title Page
Contents
Go Back
Close
Quit 8

In fact, (ii) is an easy reformulation of (i) (see (3.4)). That (ii) and (iii) are equivalent is a direct consequence of Farkas lemma (see Lemma 2.1). We now show the validity of the implication (iii) \Rightarrow (iv). By (iii) and (3.6), we have

$$
P_{\boldsymbol{a}}(x)=\varphi(\boldsymbol{a})=\varphi\left(c_{0} \boldsymbol{v}_{0}+c_{1} \boldsymbol{v}_{1}+\cdots+c_{n-r} \boldsymbol{v}_{n-r}\right)=P_{\boldsymbol{c}}(x) P_{\boldsymbol{q}}(x)
$$

for certain scalars $c_{k} \geq 0, k=0,1, \ldots, n-r$. Thus (iv) is proved.
To prove the implication (iv) \Rightarrow (iii) assume (iv) holds, that is $P_{\boldsymbol{a}}(x)=$ $P_{\boldsymbol{c}}(x) P_{\boldsymbol{q}}(x)$ with $c_{k} \geq 0, k=0,1, \ldots, n-r$. Then by (3.6),

$$
\begin{aligned}
\boldsymbol{a} & =\psi\left(P_{\boldsymbol{a}}(x)\right)=\psi\left(P_{\boldsymbol{c}}(x) P_{\boldsymbol{q}}(x)\right) \\
& =\psi \varphi\left(c_{0} \boldsymbol{v}_{0}+c_{1} \boldsymbol{v}_{1}+\cdots+c_{n-r} \boldsymbol{v}_{n-r}\right) \\
& =c_{0} \boldsymbol{v}_{0}+c_{1} \boldsymbol{v}_{1}+\cdots+c_{n-r} \boldsymbol{v}_{n-r} .
\end{aligned}
$$

This completes the proof of Theorem 3.1.

An Extension of Results of A. McD. Mercer and I. Gavrea

Marek Niezgoda

J. Ineq. Pure and Appl. Math. 6(4) Art. 107, 2005

4. Applications for Convex Sequences of Order r

In this section we study special types of sequences related to difference calculus and generalized convex sequences.

We introduce the difference operator on sequences $\boldsymbol{z}=\left(z_{0}, z_{1}, \ldots, z_{m}\right)$ by

$$
\Delta \boldsymbol{z}:=\left(z_{1}-z_{0}, z_{2}-z_{1}, \ldots, z_{m}-z_{m-1}\right) .
$$

Notice that $\Delta=\Delta_{m}$ acts from \mathbb{R}^{m+1} to \mathbb{R}^{m}. We define

$$
\Delta^{0} \boldsymbol{z}:=\boldsymbol{z} \text { and } \Delta^{r} \boldsymbol{z}:=\Delta_{m-r+1} \cdots \Delta_{m-1} \Delta_{m} \boldsymbol{z} \text { for } r=1,2, \ldots, m .
$$

A sequence $\boldsymbol{u} \in R^{n+1}$ is said to be convex of order r (in short, r-convex), if

$$
\Delta^{r} \boldsymbol{u} \geq 0
$$

The last inequality is meant in the componentwise sense in \mathbb{R}^{n+1-r}, that is

$$
\begin{equation*}
\left\langle\Delta^{r} \boldsymbol{u}, \boldsymbol{e}_{i}\right\rangle \geq 0 \text { for } i=0,1, \ldots, n-r \tag{4.1}
\end{equation*}
$$

where

$$
\boldsymbol{e}_{i}:=(\underbrace{0, \ldots, 0}_{i \text { times }}, 1,0, \ldots, 0) \in \mathbb{R}^{n+1-r} .
$$

In order to relate the r-convex sequences to the \boldsymbol{q}-class of Section 3, observe that (4.1) amounts to

$$
\left\langle\boldsymbol{u},\left(\Delta^{r}\right)^{T} \boldsymbol{e}_{i}\right\rangle \geq 0 \text { for } i=0,1, \ldots, n-r
$$

where $(\cdot)^{T}$ denotes the transpose. By a standard induction argument, we get

$$
\left(\Delta^{r}\right)^{T} \boldsymbol{e}_{i}=S^{i} \boldsymbol{v}_{0} \text { for } i=0,1, \ldots, n-r
$$

where S is the shift operator from \mathbb{R}^{n+1} to \mathbb{R}^{n+1} given by (3.2), and

$$
\begin{gather*}
\boldsymbol{v}_{0}:=(\boldsymbol{q}, 0, \ldots, 0) \in \mathbb{R}^{n+1} \quad \text { and } \quad \boldsymbol{q}:=\left(q_{0}, q_{1}, \ldots, q_{r}\right) \tag{4.2}\\
\text { with } q_{j}:=\binom{r}{j}(-1)^{r-j} .
\end{gather*}
$$

As in (3.1), we set

$$
\boldsymbol{v}_{i}:=S^{i} \boldsymbol{v}_{0} \text { for } i=0,1, \ldots, n-r
$$

In summary, the r-convex sequences form the \boldsymbol{q}-class for \boldsymbol{q} given by (4.2). For example, the class of r-convex sequences for $r=0$ (resp. $r=1, r=2$) is the class of non-negative (resp. non-decreasing, convex) sequences in \mathbb{R}^{n+1} (cf. Example 3.1).

By virtue of (4.2) we get

$$
P_{\boldsymbol{q}}(x)=\sum_{k=0}^{r} q_{k} x^{k}=(x-1)^{r} .
$$

Therefore we obtain from Theorem 3.1
Corollary 4.1. Let $\boldsymbol{a}=\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n+1}$ be given with $0 \leq r \leq n$. Then the inequality

$$
\begin{equation*}
\sum_{k=0}^{n} a_{k} u_{k} \geq 0 \tag{4.3}
\end{equation*}
$$

An Extension of Results of A. McD. Mercer and I. Gavrea

Marek Niezgoda

Title Page
Contents
Go Back
Close
Quit 11 of 13

J. Ineq. Pure and Appl. Math. 6(4) Art. 107, 2005
holds for every r-convex sequence $\boldsymbol{u}=\left(u_{0}, u_{1}, \ldots, u_{n}\right)$ if and only if the polynomial

$$
P_{\boldsymbol{a}}(x)=\sum_{k=0}^{n} a_{k} x^{k}
$$

has $x=1$ as a root of multiplicity at least r, and the coefficients $c_{k}(k=$ $0,1, \ldots, n-r)$ of the polynomial

$$
\frac{P \boldsymbol{a}(x)}{(x-1)^{r}}=\sum_{k=0}^{n-r} c_{k} x^{k}
$$

are non-negative.
Corollary 4.1 extends the mentioned results of A. McD. Mercer and I. Gavrea from $r=2$ to an arbitrary $0 \leq r \leq n$.

An Extension of Results of A. McD. Mercer and I. Gavrea

Marek Niezgoda

J. Ineq. Pure and Appl. Math. 6(4) Art. 107, 2005 http://jipam.vu.edu.au

References

[1] I. GAVREA, Some remarks on a paper by A. McD. Mercer, J. Inequal. Pure Appl. Math., 6(1) (2005), Art. 26. [ONLINE: http: / / jipam.vu. edu. au/article.php?sid=495]
[2] A. McD. MERCER, Polynomials and convex sequence inequalities, J. Inequal. Pure Appl. Math., 6(1) (2005), Art. 8. [ONLINE: http: / / jipam. vu.edu.au/article.php?sid=477]
[3] R.T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton 1970.

J. Ineq. Pure and Appl. Math. 6(4) Art. 107, 2005

