AN ELEMENTARY PROOF OF BLUNDON'S INEQUALITY

GABRIEL DOSPINESCU, MIRCEA LASCU, COSMIN POHOATA, AND MARIAN TETIVA
École Normale Supérieure, Paris, France. gdospi2002@yahoo.com
gil Publishing House, Zalău, Romania. gill993@zalau.astral.ro 13 Pridvorului Street, Bucharest 010014, Romania. pohoata_cosmin2000@yahoo.com
"Gheorghe Roşca Codreanu" High-School, Bârlad 731183, Romania. rianamro@yahoo.com

Received 05 August, 2008; accepted 11 October, 2008
Communicated by K.B. Stolarsky

Abstract

In this note, we give an elementary proof of Blundon's Inequality. We make use of a simple auxiliary result, provable by only using the Arithmetic Mean - Geometric Mean Inequality.

Key words and phrases: Blundon's Inequality, Geometric Inequality, Arithmetic-Geometric Mean Inequality.
2000 Mathematics Subject Classification. Primary 52A40; Secondary 52C05.

For a given triangle $A B C$ we shall consider that A, B, C denote the magnitudes of its angles, and a, b, c denote the lengths of its corresponding sides. Let R, r and s be the circumradius, the inradius and the semi-perimeter of the triangle, respectively. In addition, we will occasionally make use of the symbols \sum (cyclic sum) and Π (cyclic product), where

$$
\sum f(a)=f(a)+f(b)+f(c), \quad \prod f(a)=f(a) f(b) f(c) .
$$

In the American Mathematical Monthly, W. J. Blundon [1] asked for the proof of the inequality

$$
s \leq 2 R+(3 \sqrt{3}-4) r
$$

which holds in any triangle $A B C$. The solution given by the editors was in fact a comment made by A. Makowski [3], who refers the reader to [2], where Blundon originally published this inequality, and where he actually proves more, namely that this is the best such inequality in the following sense: if, for the numbers k and h the inequality

$$
s \leq k R+h r
$$

is valid in any triangle, with the equality occurring when the triangle is equilateral, then

$$
2 R+(3 \sqrt{3}-4) r \leq k R+h r .
$$

In this note we give a new proof of Blundon's inequality by making use of the following preliminary result:
Lemma 1. Any positive real numbers x, y, z such that

$$
x+y+z=x y z
$$

satisfy the inequality

$$
(x-1)(y-1)(z-1) \leq 6 \sqrt{3}-10
$$

Proof. Since the numbers are positive, from the given condition it follows immediately that $x<x y z \Leftrightarrow y z>1$, and similarly $x z>1$ and $y z>1$, which shows that it is not possible for two of the numbers to be less than or equal to 1 (neither can all the numbers be less than 1). Because if a number is less than 1 and two are greater than 1 the inequality is obviously true (the product from the left-hand side being negative), we still have to consider the case when $x>1, y>1, z>1$. Then the numbers $u=x-1, v=y-1$ and $w=z-1$ are positive and, replacing $x=u+1, y=v+1, z=w+1$ in the condition from the hypothesis, one gets

$$
u v w+u v+u w+v w=2
$$

By the Arithmetic Mean - Geometric Mean inequality

$$
u v w+3 \sqrt[3]{u^{2} v^{2} w^{2}} \leq u v w+u v+u w+v w=2
$$

and hence for $t=\sqrt[3]{u v w}$ we have

$$
t^{3}+3 t^{2}-2 \leq 0 \Leftrightarrow(t+1)(t+1+\sqrt{3})(t+1-\sqrt{3}) \leq 0 .
$$

We conclude that $t \leq \sqrt{3}-1$ and thus,

$$
(x-1)(y-1)(z-1) \leq 6 \sqrt{3}-10 .
$$

The equality occurs when $x=y=z=\sqrt{3}$. This proves Lemma 1 .
We now proceed to prove Blundon's Inequality.
Theorem 2. In any triangle $A B C$, we have that

$$
s \leq 2 R+(3 \sqrt{3}-4) r
$$

The equality occurs if and only if $A B C$ is equilateral.
Proof. According to the well-known formulae

$$
\cot \frac{A}{2}=\sqrt{\frac{s(s-a)}{(s-b)(s-c)}}, \quad \cot \frac{B}{2}=\sqrt{\frac{s(s-b)}{(s-c)(s-a)}}, \quad \cot \frac{C}{2}=\sqrt{\frac{s(s-c)}{(s-a)(s-b)}}
$$

we deduce that

$$
\sum \cot \frac{A}{2}=\prod \cot \frac{A}{2}=\frac{s}{r}
$$

and

$$
\sum \cot \frac{A}{2} \cot \frac{B}{2}=\sum \frac{s}{s-a}=\frac{4 R+r}{r} .
$$

In this case, by applying Lemma 1 to the positive numbers $x=\cot \frac{A}{2}, y=\cot \frac{B}{2}$ and $z=\cot \frac{C}{2}$, it follows that

$$
\left(\cot \frac{A}{2}-1\right)\left(\cot \frac{B}{2}-1\right)\left(\cot \frac{C}{2}-1\right) \leq 6 \sqrt{3}-10
$$

and therefore

$$
2 \prod \cot \frac{A}{2}-\left(\sum \cot \frac{A}{2} \cot \frac{B}{2}\right) \leq 6 \sqrt{3}-9 .
$$

This can be rewritten as

$$
\frac{2 s}{r}-\frac{4 R+r}{r} \leq 6 \sqrt{3}-9,
$$

and thus

$$
s \leq 2 R+(3 \sqrt{3}-4) r .
$$

The equality occurs if and only if $\cot \frac{A}{2}=\cot \frac{B}{2}=\cot \frac{C}{2}$, i.e. when the triangle $A B C$ is equilateral. This completes the proof of Blundon's Inequality.

References

[1] W.J. BLUNDON, Problem E1935, The Amer. Math. Monthly, 73 (1966), 1122.
[2] W.J. BLUNDON, Inequalities associated with the triangle, Canad. Math. Bull., 8 (1965), 615-626.
[3] A. MAKOWSKI, Solution of the Problem E1935, The Amer. Math. Monthly, 75 (1968), 404.

