AN ELEMENTARY PROOF OF BLUNDON'S INEQUALITY

GABRIEL DOSPINESCU

École Normale Supérieure, Paris, France.
EMail: gdospi2002@yahoo.com
MIRCEA LASCU
GIL Publishing House, Zalău, Romania.
EMail: gil1993@zalau.astral.ro

COSMIN POHOATA

13 Pridvorului Street, Bucharest 010014, Romania.
EMail: pohoata_cosmin2000@yahoo.com
MARIAN TETIVA
"Gheorghe Roşca Codreanu" High-School,
Bârlad 731183, Romania.
EMail: rianamro@yahoo.com
Blundon's Inequality
G. Dospinescu, M. Lascu,
C. Pohoata and M. Tetiva
vol. 9, iss. 4, art. 100, 2008

Title Page
Contents

44

4

Page 1 of 6
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-5756

For a given triangle $A B C$ we shall consider that A, B, C denote the magnitudes of its angles, and a, b, c denote the lengths of its corresponding sides. Let R, r and s be the circumradius, the inradius and the semi-perimeter of the triangle, respectively. In addition, we will occasionally make use of the symbols \sum (cyclic sum) and \prod (cyclic product), where

$$
\sum f(a)=f(a)+f(b)+f(c), \quad \prod f(a)=f(a) f(b) f(c)
$$

In the American Mathematical Monthly, W. J. Blundon [1] asked for the proof of the inequality

$$
s \leq 2 R+(3 \sqrt{3}-4) r
$$

which holds in any triangle $A B C$. The solution given by the editors was in fact a comment made by A. Makowski [3], who refers the reader to [2], where Blundon originally published this inequality, and where he actually proves more, namely that this is the best such inequality in the following sense: if, for the numbers k and h the inequality

$$
s \leq k R+h r
$$

is valid in any triangle, with the equality occurring when the triangle is equilateral, then

$$
2 R+(3 \sqrt{3}-4) r \leq k R+h r .
$$

In this note we give a new proof of Blundon's inequality by making use of the following preliminary result:

Lemma 1. Any positive real numbers x, y, z such that

$$
x+y+z=x y z
$$

Blundon's Inequality
G. Dospinescu, M. Lascu,
C. Pohoata and M. Tetiva
vol. 9, iss. 4, art. 100, 2008

Title Page
Contents

Page 2 of 6
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
(x-1)(y-1)(z-1) \leq 6 \sqrt{3}-10
$$

Proof. Since the numbers are positive, from the given condition it follows immediately that $x<x y z \Leftrightarrow y z>1$, and similarly $x z>1$ and $y z>1$, which shows that it is not possible for two of the numbers to be less than or equal to 1 (neither can all the numbers be less than 1). Because if a number is less than 1 and two are greater than 1 the inequality is obviously true (the product from the left-hand side being negative), we still have to consider the case when $x>1, y>1, z>1$. Then the numbers $u=x-1, v=y-1$ and $w=z-1$ are positive and, replacing $x=u+1$, $y=v+1, z=w+1$ in the condition from the hypothesis, one gets

$$
u v w+u v+u w+v w=2 .
$$

By the Arithmetic Mean - Geometric Mean inequality

$$
u v w+3 \sqrt[3]{u^{2} v^{2} w^{2}} \leq u v w+u v+u w+v w=2
$$

and hence for $t=\sqrt[3]{u v w}$ we have

$$
t^{3}+3 t^{2}-2 \leq 0 \Leftrightarrow(t+1)(t+1+\sqrt{3})(t+1-\sqrt{3}) \leq 0
$$

We conclude that $t \leq \sqrt{3}-1$ and thus,

$$
(x-1)(y-1)(z-1) \leq 6 \sqrt{3}-10 .
$$

The equality occurs when $x=y=z=\sqrt{3}$. This proves Lemma 1 .
We now proceed to prove Blundon's Inequality.

Blundon's Inequality
G. Dospinescu, M. Lascu,
C. Pohoata and M. Tetiva
vol. 9, iss. 4, art. 100, 2008

Title Page
Contents

Page 3 of 6
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Theorem 2. In any triangle $A B C$, we have that

$$
s \leq 2 R+(3 \sqrt{3}-4) r .
$$

The equality occurs if and only if $A B C$ is equilateral.
Proof. According to the well-known formulae
$\cot \frac{A}{2}=\sqrt{\frac{s(s-a)}{(s-b)(s-c)}}, \quad \cot \frac{B}{2}=\sqrt{\frac{s(s-b)}{(s-c)(s-a)}}, \quad \cot \frac{C}{2}=\sqrt{\frac{s(s-c)}{(s-a)(s-b)}}$,
Blundon's Inequality
G. Dospinescu, M. Lascu,
C. Pohoata and M. Tetiva
vol. 9, iss. 4, art. 100, 2008
we deduce that

$$
\sum \cot \frac{A}{2}=\prod \cot \frac{A}{2}=\frac{s}{r}
$$

and

$$
\sum \cot \frac{A}{2} \cot \frac{B}{2}=\sum \frac{s}{s-a}=\frac{4 R+r}{r} .
$$

In this case, by applying Lemma 1 to the positive numbers $x=\cot \frac{A}{2}, y=\cot \frac{B}{2}$ and $z=\cot \frac{C}{2}$, it follows that

$$
\left(\cot \frac{A}{2}-1\right)\left(\cot \frac{B}{2}-1\right)\left(\cot \frac{C}{2}-1\right) \leq 6 \sqrt{3}-10
$$

and therefore

$$
2 \prod \cot \frac{A}{2}-\left(\sum \cot \frac{A}{2} \cot \frac{B}{2}\right) \leq 6 \sqrt{3}-9
$$

This can be rewritten as

$$
\frac{2 s}{r}-\frac{4 R+r}{r} \leq 6 \sqrt{3}-9
$$

Title Page

Contents

Page 4 of 6
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
and thus

$$
s \leq 2 R+(3 \sqrt{3}-4) r .
$$

The equality occurs if and only if $\cot \frac{A}{2}=\cot \frac{B}{2}=\cot \frac{C}{2}$, i.e. when the triangle $A B C$ is equilateral. This completes the proof of Blundon's Inequality.

Blundon's Inequality
G. Dospinescu, M. Lascu,
C. Pohoata and M. Tetiva
vol. 9, iss. 4, art. 100, 2008

Title Page
Contents

journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] W.J. BLUNDON, Problem E1935, The Amer. Math. Monthly, 73 (1966), 1122.
[2] W.J. BLUNDON, Inequalities associated with the triangle, Canad. Math. Bull., 8 (1965), 615-626.
[3] A. MAKOWSKI, Solution of the Problem E1935, The Amer. Math. Monthly, 75 (1968), 404.

Blundon's Inequality
G. Dospinescu, M. Lascu,
C. Pohoata and M. Tetiva
vol. 9, iss. 4, art. 100, 2008

Title Page
Contents

Page 6 of 6
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

