

	GABRIEL DOSPINESCU École Normale Supérieure, Paris, France. EMail: gdospi2002@yahoo.com	-	Blundon's Inequality G. Dospinescu, M. Lascu, C. Pohoata and M. Tetiva vol. 9, iss. 4, art. 100, 2008 Title Page Contents	
	MIRCEA LASCU GIL Publishing House, Zalău, Romania. EMail: gil1993@zalau.astral.ro	-		
	COSMIN POHOATA 13 Pridvorului Street, Bucharest 010014, Romania. EMail: pohoata_cosmin2000@yahoo.com			
	MARIAN TETIVA "Gheorghe Roșca Codreanu" High-School, Bârlad 731183, Romania.		44	++
Received:	EMail: rianamro@yahoo.com 05 August, 2008		Page 1 of 6 Go Back	
Accepted: Communicated by:	11 October, 2008 K.B. Stolarsky		Full Screen	
2000 AMS Sub. Class.:	Primary 52A40; Secondary 52C05.		Close	
Key words:	Blundon's Inequality, Geometric Inequality, Arithmetic-Geometric Mean Inequality.	journal of inequalities in pure and applied mathematics		
Abstract:	In this note, we give an elementary proof of Blundon's Inequality. We make			

In this note, we give an elementary proof of Blundon's Inequality. We make use of a simple auxiliary result, provable by only using the Arithmetic Mean -Geometric Mean Inequality.

AN ELEMENTARY PROOF OF BLUNDON'S

INEQUALITY

For a given triangle ABC we shall consider that A, B, C denote the magnitudes of its angles, and a, b, c denote the lengths of its corresponding sides. Let R, r and s be the circumradius, the inradius and the semi-perimeter of the triangle, respectively. In addition, we will occasionally make use of the symbols \sum (cyclic sum) and \prod (cyclic product), where

$$\sum f(a) = f(a) + f(b) + f(c), \qquad \prod f(a) = f(a)f(b)f(c).$$

In the AMERICAN MATHEMATICAL MONTHLY, W. J. Blundon [1] asked for the proof of the inequality

$$s \le 2R + (3\sqrt{3} - 4)r$$

which holds in any triangle ABC. The solution given by the editors was in fact a comment made by A. Makowski [3], who refers the reader to [2], where Blundon originally published this inequality, and where he actually proves more, namely that this is the best such inequality in the following sense: if, for the numbers k and h the inequality

$$s \le kR + hr$$

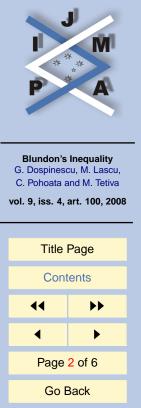
is valid in any triangle, with the equality occurring when the triangle is equilateral, then

$$2R + (3\sqrt{3} - 4)r \le kR + hr$$

In this note we give a new proof of Blundon's inequality by making use of the following preliminary result:

Lemma 1. Any positive real numbers x, y, z such that

$$x + y + z = xyz$$



Full Screen Close

journal of inequalities in pure and applied mathematics satisfy the inequality

$$(x-1)(y-1)(z-1) \le 6\sqrt{3} - 10$$

Proof. Since the numbers are positive, from the given condition it follows immediately that $x < xyz \Leftrightarrow yz > 1$, and similarly xz > 1 and yz > 1, which shows that it is not possible for two of the numbers to be less than or equal to 1 (neither can all the numbers be less than 1). Because if a number is less than 1 and two are greater than 1 the inequality is obviously true (the product from the left-hand side being negative), we still have to consider the case when x > 1, y > 1, z > 1. Then the numbers u = x - 1, v = y - 1 and w = z - 1 are positive and, replacing x = u + 1, y = v + 1, z = w + 1 in the condition from the hypothesis, one gets

uvw + uv + uw + vw = 2.

By the Arithmetic Mean - Geometric Mean inequality

$$uvw + 3\sqrt[3]{u^2v^2w^2} \le uvw + uv + uw + vw = 2$$

and hence for $t = \sqrt[3]{uvw}$ we have

$$t^{3} + 3t^{2} - 2 \le 0 \Leftrightarrow (t+1)(t+1+\sqrt{3})(t+1-\sqrt{3}) \le 0.$$

We conclude that $t \leq \sqrt{3} - 1$ and thus,

$$(x-1)(y-1)(z-1) \le 6\sqrt{3} - 10$$

The equality occurs when $x = y = z = \sqrt{3}$. This proves Lemma 1.

We now proceed to prove Blundon's Inequality.

journal of inequalities in pure and applied mathematics

issn: 1443-5756

 \square

Theorem 2. In any triangle ABC, we have that

$$s \le 2R + (3\sqrt{3} - 4)r$$

The equality occurs if and only if ABC is equilateral.

Proof. According to the well-known formulae

$$\cot \frac{A}{2} = \sqrt{\frac{s(s-a)}{(s-b)(s-c)}}, \quad \cot \frac{B}{2} = \sqrt{\frac{s(s-b)}{(s-c)(s-a)}}, \quad \cot \frac{C}{2} = \sqrt{\frac{s(s-c)}{(s-a)(s-b)}},$$

we deduce that

$$\sum \cot \frac{A}{2} = \prod \cot \frac{A}{2} = \frac{s}{r},$$

and

$$\sum \cot \frac{A}{2} \cot \frac{B}{2} = \sum \frac{s}{s-a} = \frac{4R+r}{r}$$

In this case, by applying Lemma 1 to the positive numbers $x = \cot \frac{A}{2}$, $y = \cot \frac{B}{2}$ and $z = \cot \frac{C}{2}$, it follows that

$$\left(\cot\frac{A}{2} - 1\right)\left(\cot\frac{B}{2} - 1\right)\left(\cot\frac{C}{2} - 1\right) \le 6\sqrt{3} - 10,$$

and therefore

$$2\prod \cot \frac{A}{2} - \left(\sum \cot \frac{A}{2} \cot \frac{B}{2}\right) \le 6\sqrt{3} - 9.$$

This can be rewritten as

$$\frac{2s}{r} - \frac{4R+r}{r} \le 6\sqrt{3} - 9,$$

Blundon's Inequality G. Dospinescu, M. Lascu, C. Pohoata and M. Tetiva vol. 9, iss. 4, art. 100, 2008 **Title Page** Contents 44 ◀ ► Page 4 of 6 Go Back Full Screen Close

journal of inequalities in pure and applied mathematics

and thus

$$s \le 2R + (3\sqrt{3} - 4)r$$

The equality occurs if and only if $\cot \frac{A}{2} = \cot \frac{B}{2} = \cot \frac{C}{2}$, i.e. when the triangle *ABC* is equilateral. This completes the proof of Blundon's Inequality.

G. Dospinescu, M. Lascu, C. Pohoata and M. Tetiva vol. 9, iss. 4, art. 100, 2008 **Title Page** Contents 44 ◀ ► Page 5 of 6 Go Back Full Screen Close

journal of inequalities in pure and applied mathematics

References

- [1] W.J. BLUNDON, Problem E1935, The Amer. Math. Monthly, 73 (1966), 1122.
- [2] W.J. BLUNDON, Inequalities associated with the triangle, *Canad. Math. Bull.*, 8 (1965), 615–626.
- [3] A. MAKOWSKI, Solution of the Problem E1935, *The Amer. Math. Monthly*, **75** (1968), 404.

C. Pohoata and M. Tetiva

vol. 9, iss. 4, art. 100, 2008					
Title	Desig				
Title Page					
Contents					
44	••				
•	•				
Page <mark>6</mark> of 6					
Go Back					
Full Screen					
Close					

journal of inequalities in pure and applied mathematics