

STARLIKENESS CONDITIONS FOR AN INTEGRAL OPERATOR

PRAVATI SAHOO AND SAUMYA SINGH

DEPARTMENT OF MATHEMATICS BANARAS HINDU UNIVERSITY BANARAS 221 005, INDIA pravatis@yahoo.co.in

bhu.saumya@gmail.com

Received 30 June, 2009; accepted 26 August, 2009 Communicated by R.N. Mohapatra

ABSTRACT. Let for fixed $n \in \mathbb{N}, \Sigma_n$ denotes the class of function of the following form

$$f(z) = \frac{1}{z} + \sum_{k=n}^{\infty} a_k z^k,$$

which are analytic in the punctured open unit disk $\Delta^* = \{z \in \mathbb{C} : 0 < |z| < 1\}$. In the present paper we defined and studied an operator in

 $F(z) = \left[\frac{c+1-\mu}{z^{c+1}} \int_0^z \left(\frac{f(t)}{t}\right)^{\mu} t^{c+\mu} dt\right]^{\frac{1}{\mu}}, \quad \text{for } f \in \Sigma_n \text{ and } c+1-\mu > 0.$

Key words and phrases: Meromorphic functions; Differential subordination; Starlike functions, Convex functions.

2000 Mathematics Subject Classification. 30C45, 30D30.

1. INTRODUCTION

Let $\mathcal{H}(\Delta) = \mathcal{H}$ denote the class of analytic functions in Δ , where $\Delta = \{z \in \mathbb{C} : |z| < 1\}$. For a fixed positive integer n and $a \in \mathbb{C}$, let

$$\mathcal{H}[a,n] = \{ f(z) \in \mathcal{H} : f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots \},\$$

with $\mathcal{H}_0 = \mathcal{H}[0, 1]$. Let \mathcal{A}_n be the class of analytic functions defined on the unit disc with the normalized conditions f(0) = 0 = f'(0) - 1, that is $f \in \mathcal{A}_n$ has the form

(1.1)
$$f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k, \quad (z \in \Delta \text{ and } n \in \mathbb{N}).$$

Let $\mathcal{A}_1 = \mathcal{A}$ and let \mathcal{S} be the class of all functions $f \in \mathcal{A}$ which are univalent in Δ .

²²¹⁻⁰⁹

A function $f \in A$ is said to be in S^* iff $f(\Delta)$ is a starlike domain with respect to the origin. Let for $0 \le \alpha < 1$,

$$\mathcal{S}^*(\alpha) = \left\{ f \in \mathcal{A} : \operatorname{Re} \frac{zf'(z)}{f(z)} > \alpha, z \in \Delta \right\}$$

be the class of all starlike functions of order α . So $\mathcal{S}^*(0) \equiv \mathcal{S}^*$. We denote $\mathcal{S}^*_n(\alpha) \equiv \mathcal{S}^*(\alpha) \bigcap \mathcal{A}_n$ for $n \in \mathbb{N}$.

A function $f \in \mathcal{A}$ is said to be in \mathcal{C} iff $f(\Delta)$ is a convex domain. Let for $0 \leq \alpha < 1$,

$$\mathcal{C}(\alpha) = \left\{ f \in \mathcal{A} : \operatorname{Re}\left(1 + \frac{zf''(z)}{f(z)}\right) > \alpha, z \in \Delta \right\}$$

be the class of convex functions of order α . So $\mathcal{C}(0) \equiv \mathcal{C}$.

Let for fixed $n \in \mathbb{N}$, Σ_n denote the class of meromorphic functions of the following form

(1.2)
$$f(z) = \frac{1}{z} + \sum_{k=n}^{\infty} a_k z^k$$

which are analytic in the punctured open unit disk $\Delta^* = \{z : z \in \mathbb{C} \text{ and } 0 < |z| < 1\} = \Delta - \{0\}$. Let $\Sigma_0 = \Sigma$.

A function $f \in \Sigma$ is said to be meromorphically starlike of order α in Δ^* if it satisfies the condition

$$-\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha, \quad (0 \le \alpha < 1; z \in \Delta^*).$$

We denote by $\Sigma^*(\alpha)$, the subclass of Σ consisting of all meromorphically starlike functions of order α in Δ^* and $\Sigma^*_n(\alpha) \equiv \Sigma^*(\alpha) \bigcap \Sigma_n$ for $n \in \mathbb{N}$.

We say that f(z) is subordinate to g(z) and $f \prec g$ in Δ or $f(z) \prec g(z)$ ($z \in \Delta$) if there exists a Schwarz function w(z), which (by definition) is analytic in Δ with w(0) = 0 and |w(z)| < 1, such that $f(z) = g(w(z)), z \in \Delta$. Furthermore, if the function g is univalent in Δ , $f(z) \prec g(z)$ ($z \in \Delta$) $\Leftrightarrow f(0) = g(0)$ and $f(\Delta) \subset g(\Delta)$.

In the present paper, for $f(z) \in \Sigma_n$, we define and study a generalized operator I[f]

(1.3)
$$I[f] = F(z) = \left[\frac{c+1-\mu}{z^{c+1}} \int_0^z \left(\frac{f(t)}{t}\right)^\mu t^{c+\mu} dt\right]^{\frac{1}{\mu}}, \quad (c+1-\mu>0, \ z\in\Delta^*),$$

which is similar to the Alexander transform when $c = \mu = 1$ and is similar to Bernardi transformation when $\mu = 1$ and c > 0.

2. MAIN RESULTS

For our main results we need the following lemmas.

Lemma 2.1 (Goluzin [5]). If $f \in \mathcal{A}_n \bigcap S^*$, then

$$\operatorname{Re}\left[\frac{f(z)}{z}\right]^{\frac{n}{2}} > \frac{1}{2}.$$

This inequality is sharp with extremal function $f(z) = \frac{z}{(1-z^n)^{\frac{2}{n}}}$.

Lemma 2.2 ([9]). Let u and v denote complex variables, $u = \alpha + i\rho$, $v = \sigma + i\delta$ and let $\Psi(u, v)$ be a complex valued function that satisfies the following conditions:

- (i) $\Psi(u, v)$ is continuous in a domain $\Omega \subset \mathbb{C}^2$;
- (ii) $(1,0) \in \Omega$ and $\operatorname{Re}(\Psi(1,0)) > 0$;
- (iii) $\operatorname{Re}(\Psi(i\rho,\sigma)) \leq 0$ whenever $(i\rho,\sigma) \in \Omega$, $\sigma \leq -\frac{1+\rho^2}{2}$ and ρ , σ are real.

If $p(z) \in \mathcal{H}[a,n]$ is a function that is analytic in Δ , such that $(p(z), zp'(z)) \in \Omega$ and $\operatorname{Re}(\Psi(p(z), zp'(z))) > 0$ hold for all $z \in \Delta$, then $\operatorname{Re} p(z) > 0$, when $z \in \Delta$.

Lemma 2.3 ([9, p. 34], [8]). Let $p \in \mathcal{H}[a, n]$

(i) If $\Psi \in \Psi_n[\Omega, M, a]$, then

$$\Psi(p(z), zp'^2 p''(z); z) \in \Omega \Rightarrow |p(z)| < M.$$

(ii) If $\Psi \in \Psi_n[M, a]$, then

$$|\Psi(p(z), zp'^2 p''(z); z)| < M \Rightarrow |p(z)| < M.$$

Lemma 2.4 ([6]). Let h(z) be an analytic and convex univalent function in Δ , with h(0) = a, $c \neq 0$ and $\operatorname{Re} c \geq 0$. If $p \in \mathcal{H}[a, n]$ and

$$p(z) + \frac{zp'(z)}{c} \prec h(z)$$

then

$$p(z) \prec q(z) \prec h(z),$$

where

$$q(z) \prec \frac{c}{nz^{\frac{c}{n}}} \int_0^z t^{\frac{c}{n}-1} f(t) dt, \quad z \in \Delta.$$

The function q is convex and the best dominant.

Theorem 2.5. Let c > 0 and $0 < \mu < 1$. If $f \in \Sigma_n^*(\alpha)$ for $0 < \alpha < 1$, then $I(f) = F(z) \in \Sigma_n^*(\beta)$, where

(2.1)
$$\beta = \beta(\alpha, c, \mu) = \frac{1}{4\mu} \Big[2c + 2\alpha\mu + n + 2 - \sqrt{[4(c - \alpha\mu)]^2 + (n + 2)(n + 2 + 4c + 4\mu\alpha) - 16\alpha - 8\mu n} \Big].$$

Proof. Here we have the conditions

(2.2)
$$0 < \alpha < 1, \ 0 < \mu < 1 \text{ and } c > 0,$$

which will imply that $\beta < 1$.

Let $f(z) \in \Sigma_n^*(\alpha)$. We first show that F(z) defined by (1.3) will become nonzero for $z \in \Delta^*$. Again since $f \in \Sigma_n^*(\alpha)$, we have $f(z) \neq 0$, for $z \in \Delta^*$. Let $g(z) = \frac{1}{(f(z))^{\mu}}$, then a simple computation shows that $g(z) \in S_n^*(\alpha \mu)$.

If we define

$$I_g = \left[\frac{g(z)}{z}\right]^{\left\{\frac{1}{1-\alpha\mu}\right\}},$$

then $I(g) \in S_n^*$ and by Goluzin's subordination result (by Lemma 2.1), we obtain

$$\left[\frac{I_g}{z}\right]^{\frac{n}{2}} \prec \frac{1}{1+z}.$$

From the relation between I_g , g and f we get that

$$\frac{g(z)}{z} \prec (1+z)^{\frac{2}{n}(\alpha\mu-1)},$$

which implies

$$z(f(z))^{\mu} \prec (1+z)^{\frac{2}{n}(1-\alpha\mu)}$$

and since $0 < \alpha \mu < 1$, we have $z(f(z))^{\mu} \prec (1+z)^{\frac{2}{n}}$. Combining this with

$$\min_{|z|=1} \operatorname{Re}(1+z)^{\frac{z}{n}} = 0$$

we deduce that

$$\operatorname{Re}[z(f(z))^{\mu}] > 0.$$

By differentiating (1.3), we obtain

(2.4)
$$(c+1)(F(z))^{\mu} + z\frac{d}{dz}(F(z))^{\mu} = (c+1-\mu)(f(z))^{\mu}.$$

If we let

(2.5)
$$\frac{P(z)}{z} = (F(z))^{\mu}$$

then (2.4) becomes

$$P(z) + \frac{1}{c}zP'(z) = \frac{c+1-\mu}{c}z(f(z))^{\mu}.$$

Hence from (2.3) we have

(2.6)
$$\operatorname{Re}\Psi(P(z), zP'(z)) = \operatorname{Re}\left[P(z) + \frac{zP'(z)}{c}\right]$$

where $\Psi(r,s) = r + \frac{s}{c}$. To show that $\operatorname{Re} P(z) > 0$, condition (iii) of Lemma 2.2 must be satisfied. Since c > 0, (2.6) implies that

$$\operatorname{Re}\Psi(i\rho,\sigma) = \operatorname{Re}\left(i\rho + \frac{\sigma}{c}\right) \le -\frac{n(1+\rho^2)}{2c} \le 0$$

when $\sigma \leq -\frac{n(1+\rho^2)}{2}$, for all $\rho \in \mathbb{R}$. Hence from (2.6) we deduce that $\operatorname{Re} P(z) > 0$, which implies that $F(z) \neq 0$ for $z \in \Delta^*$.

We next determine β such that $F \in \Sigma_n^*(\beta)$. Let us define $p(z) \in \mathcal{H}[1,n]$ by

(2.7)
$$-\frac{zF'(z)}{F(z)} = (1-\beta)p(z) + \beta.$$

By applying (part iii) of Lemma 2.2 again with different Ψ we finish the proof of the theorem. Since $f \in \Sigma_n^*(\alpha)$, by differentiating (2.4) we easily get

$$\operatorname{Re}\Psi(p(z), zp'(z)) > 0,$$

where

$$\Psi(r,s) = (1-\beta)r + \beta + \frac{(1-\beta)\sigma}{c+1-\mu\beta-\mu(1-\beta)p(z)} - \alpha$$

For $\beta \leq \beta(\alpha, c, \mu)$, where $\beta(\alpha, c, \mu)$ is given by (2.1), a simple calculation shows that the admissibility condition (iii) of Lemma 2.2 is satisfied. Hence by Lemma 2.2, we get $\operatorname{Re} p(z) > 0$. Using this result in (2.7) together with $\beta < 1$ shows that $F(z) \in \Sigma_n^*(\beta)$.

Theorem 2.6. Let
$$0 < c+1-\mu < 1$$
. If, for $0 < \alpha < 1$, $f \in \Sigma^*(\alpha)$, then $I(f) \in \Sigma^*(\beta)$, where

(2.8)
$$\beta = \beta(\alpha, \mu, c) = \frac{1}{2\mu} \left[2c + 2\alpha\mu + 3 - \sqrt{[2(c - \alpha\mu)]^2 + 3(3 + 4c) - 4\mu(2 + \alpha)} \right].$$

The proof is very similar to that of Theorem 2.5.

In the special case when the meromorphic function given in (1.2) has a coefficient $a_0 = 0$, it is possible to obtain a stronger result than (2.8).

Theorem 2.7. Let c > 0, $0 < \mu < 1$, $0 < \alpha < 1$, $f \in \Sigma_1^*(\alpha)$, then $I(f) \in \Sigma_1^*(\beta)$, where

(2.9)
$$\beta = \beta(\alpha, \mu, c) = \frac{1}{2\mu} \left[c + \alpha \mu + 1 - \sqrt{(c - \alpha \mu)^2 + 4(c + 1 - \mu)} \right].$$

The proof is similar to that of Theorem 2.5.

Corollary 2.8. Let $n \ge 1$, c + n + 1 > 0 and $g(z) \in \mathcal{H}[0, n]$. If $|((g(z))^{\mu})'| \le \lambda$ and

(2.10)
$$\mathcal{F}(z) = \left[\frac{1}{z^{c+1}} \int_0^z (g(t))^{\mu} t^c dt\right]^{\frac{1}{\mu}},$$

then

$$|((\mathcal{F}(z))^{\mu})'| \leq \frac{\lambda}{c+n+1}.$$

Proof. From (2.10) we deduce $(c+1)(\mathcal{F}(z))^{\mu} + z ((\mathcal{F}(z))^{\mu})' = g^{\mu}(z)$. If we set $z ((\mathcal{F}(z))^{\mu})' = P(z)$, then $P \in \mathcal{H}[0, n]$ and

$$(c+1)P(z) + zP'(z) = z(g^{\mu}(z))' \prec \lambda z.$$

From part(i) of Lemma 2.3, it follows that this differential subordination has the best dominant

$$P(z) \prec Q(z) = \frac{\lambda z}{c+n+1}.$$

Hence we have

$$\left(\left(\mathcal{F}(z)\right)^{\mu}\right)' \leq \frac{\lambda}{c+n+1}.$$

Corollary 2.9. Let c + n + 1 > 0 and $f \in \Sigma_n$ be given as

$$f(z) = \frac{1}{z} + g(z),$$

where $n \ge 1$ and $g(z) \in \mathcal{H}[0, n]$. Let \mathcal{F} be defined by

(2.11)
$$\mathcal{F}(z) \equiv \frac{1}{z} + G(z) = \frac{1}{z} + \left[\frac{1}{z^{c+1}} \int_0^z (g(t))^{\mu} t^c dt\right]^{\frac{1}{\mu}}.$$

Then

$$((g(z))^{\mu})' | \le \frac{n(c+n+1)}{\sqrt{n^2+1}}.$$

Proof. From Corollary 2.8 we obtain

$$|((G(z))^{\mu})'| \le \frac{n}{\sqrt{n^2+1}},$$

 $|z^{2} \left((\mathcal{F}(z))^{\mu} \right)' + 1| = |G'(z)|.$

since from (2.11), we have

Hence from [2], we conclude that
$$\mathcal{F} \in \Sigma_n^*$$
.

Corollary 2.10. Let n be a fixed positive integer and c > 0. Let q be a convex function in Δ , with q(0) = 1 and let h be defined by

(2.12)
$$h(z) = q(z) + \frac{n+1}{c} z q'(z).$$

If
$$f \in \Sigma_n$$
 and $F(z)$ is given by (1.3), then

$$-\frac{c+1-\mu}{c}z^2\left((f(z))^{\mu}\right)' \prec h(z) \Rightarrow -z^2\left((F(z))^{\mu}\right)' \prec q(z)$$

and this result is sharp.

Proof. From the definition of h(z), it is a convex function. If we obtain

$$p(z) = -z^2 (F^{\mu}(z))',$$

then $p \in \mathcal{H}[1, n+1]$ and from (2.3), we get

$$p(z) + \frac{1}{c}zp'(z) = -\frac{c+1-\mu}{c}z^2\left((f(z))^{\mu}\right)' \prec h(z)$$

The conclusion of the corollary follows by Lemma 2.4.

Corollary 2.11. Let $n \ge 1$ and c > 0. Let $f \in \Sigma_n$ and let F(z) given by (1.3). If $\lambda > 0$, then

$$|z^{2}((f(z))^{\mu})' + 1| < \lambda \Rightarrow |z^{2}((F(z))^{\mu})' + 1| < \frac{\lambda c}{c + n + 1}.$$

In particular,

$$|z^{2}((f(z))^{\mu})'+1| < \frac{c+n+1}{c} \Rightarrow |z^{2}((F(z))^{\mu})'+1| < 1.$$

Hence $(F(z))^{\mu}$ is univalent.

Proof. If we take

$$q(z) = 1 + \frac{\lambda cz}{c+n+1}$$

then (2.12) becomes

$$h(z) = 1 + \lambda z.$$

The conclusion of the corollary follows by Corollary 2.10.

REFERENCES

- [1] H. AL-AMIRI AND P.T. MOCANU, Some simple criteria of starlikeness and convexity for meromorphic functions, *Mathematica*(*Cluj*), **37**(60) (1995), 11–21.
- [2] S.K. BAJPAI, A note on a class of meromorphic univalent functions, *Rev. Roumine Math. Pures Appl.*, 22 (1977), 295–297.
- [3] P.L. DUREN, Univalent Functions, Springer-Verlag, Berlin-New York, 1983.
- [4] G.M. GOEL AND N.S. SOHI, On a class of meromorphic functions, *Glasnik Mat. Ser. III*, 17(37) (1981), 19–28.
- [5] G. GOLUZIN, Some estimates for coefficients of univalent functions (Russian), *Mat. Sb.*, 3(45), 2 (1938), 321–330.
- [6] D. J. HALLENBECK AND St. RUSCHWEYH, Subordination by convex functions, Proc. Amer. Math. Soc., 52 (1975), 191–195.
- [7] P. T. MOCANU, Starlikeness conditions for meromorphic functions, *Proc. Mem. Sect. Sci., Academia Romania*, **4**(19) (1996), 7–12.
- [8] S.S. MILLER AND P.T. MOCANU, Differential Subordinations and univalent functions, *Michigan Math. J.*, 28 (1981), 157–171.
- [9] S.S. MILLER AND P.T. MOCANU, *Differential Subordinations: Theory and Applications, Mono*graphs and Textbooks in Pure and Appl. Math., Vol. 225, Marcel Dekker, New York, 2000.
- [10] P. T. MOCANU AND Gr. St. SÅLÅGEAN, Integral operators and meromorphic starlike functions, *Mathematica*(*Cluj*)., **32**(55), 2 (1990), 147–152.
- [11] Gr. St. SÅLÅGEAN, Meromorphic starlike univalent functions, Babeş-Bolyai Uni. Fac. Math. Res. Sem., 7 (1986), 261–266.
- [12] Gr. St. SĂLĂGEAN, Integral operators and meromorphic functions, *Rev. Roumine Math. Pures Appl.*, 33(1-2) (1988), 135–140.

6