# STARLIKENESS CONDITIONS FOR AN INTEGRAL OPERATOR

|                       | PRAVATI SAHOO AND SAUMYA SINGH<br>Department of Mathematics<br>Banaras Hindu University<br>Banaras 221 005, India |  | Integral Operator<br>Pravati Sahoo and Saumya Sin<br>vol. 10, iss. 3, art. 77, 2009 |       |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------|--|-------------------------------------------------------------------------------------|-------|--|
|                       | EMail: pravatis@yahoo.co.in bhu.saumya@gmail.com                                                                  |  | Title Page                                                                          |       |  |
| Received:             | 30 June, 2009                                                                                                     |  | Contents                                                                            |       |  |
| Accepted:             | 26 August, 2009                                                                                                   |  |                                                                                     |       |  |
| Communicated by:      | R.N. Mohapatra                                                                                                    |  | ••                                                                                  | ••    |  |
| 2000 AMS Sub. Class.: | 30C45, 30D30.                                                                                                     |  | •                                                                                   | ►     |  |
| Key words:            | Meromorphic functions; Differential subordination; Starlike functions, Convex functions                           |  | Page 1                                                                              | of 14 |  |
| Abstract:             | Let for fixed $n \in \mathbb{N}$ , $\Sigma_n$ denotes the class of function of the following form                 |  | Go Back                                                                             |       |  |
|                       | $1  \stackrel{\infty}{\frown}  .$                                                                                 |  | Full S                                                                              | creen |  |

$$f(z) = \frac{1}{z} + \sum_{k=n}^{\infty} a_k z^k,$$

which are analytic in the punctured open unit disk  $\Delta^* = \{z \in \mathbb{C} : 0 < |z| < 1\}$ . In the present paper we defined and studied an operator in

$$F(z) = \left[\frac{c+1-\mu}{z^{c+1}} \int_0^z \left(\frac{f(t)}{t}\right)^{\mu} t^{c+\mu} dt\right]^{\frac{1}{\mu}}, \quad \text{for } f \in \Sigma_n \text{ and } c+1-\mu > 0.$$



© 2007 Victoria University. All rights reserved.

Close

journal of **inequalities** in pure and applied

mathematics issn: 1443-5756

# Contents

- 1 Introduction
- 2 Main Results

3 5



Full Screen

Close

#### journal of **inequalities** in pure and applied mathematics

issn: 1443-5756

© 2007 Victoria University. All rights reserved.

### 1. Introduction

Let  $\mathcal{H}(\Delta) = \mathcal{H}$  denote the class of analytic functions in  $\Delta$ , where  $\Delta = \{z \in \mathbb{C} : |z| < 1\}$ . For a fixed positive integer n and  $a \in \mathbb{C}$ , let

$$\mathcal{H}[a,n] = \{ f(z) \in \mathcal{H} : f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots \},\$$

with  $\mathcal{H}_0 = \mathcal{H}[0, 1]$ . Let  $\mathcal{A}_n$  be the class of analytic functions defined on the unit disc with the normalized conditions f(0) = 0 = f'(0) - 1, that is  $f \in \mathcal{A}_n$  has the form

(1.1) 
$$f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k, \quad (z \in \Delta \text{ and } n \in \mathbb{N}).$$

Let  $A_1 = A$  and let S be the class of all functions  $f \in A$  which are univalent in  $\Delta$ .

A function  $f \in \mathcal{A}$  is said to be in  $\mathcal{S}^*$  iff  $f(\Delta)$  is a starlike domain with respect to the origin. Let for  $0 \le \alpha < 1$ ,

$$\mathcal{S}^*(\alpha) = \left\{ f \in \mathcal{A} : \operatorname{Re} \frac{zf'(z)}{f(z)} > \alpha, z \in \Delta \right\}$$

be the class of all starlike functions of order  $\alpha$ . So  $\mathcal{S}^*(0) \equiv \mathcal{S}^*$ . We denote  $\mathcal{S}^*_n(\alpha) \equiv \mathcal{S}^*(\alpha) \bigcap \mathcal{A}_n$  for  $n \in \mathbb{N}$ .

A function  $f \in \mathcal{A}$  is said to be in  $\mathcal{C}$  iff  $f(\Delta)$  is a convex domain. Let for  $0 \leq \alpha < 1$ ,

$$\mathcal{C}(\alpha) = \left\{ f \in \mathcal{A} : \operatorname{Re}\left(1 + \frac{zf''(z)}{f(z)}\right) > \alpha, z \in \Delta \right\}$$

be the class of convex functions of order  $\alpha$ . So  $\mathcal{C}(0) \equiv \mathcal{C}$ .



| Integral Operator |                                |                 |    |  |  |
|-------------------|--------------------------------|-----------------|----|--|--|
| Pr                | Pravati Sahoo and Saumya Singh |                 |    |  |  |
|                   | vol. 10, iss. 3                | , art. 77, 2009 |    |  |  |
|                   |                                |                 | _  |  |  |
|                   |                                |                 |    |  |  |
|                   | Title Page                     |                 |    |  |  |
|                   | Contents                       |                 |    |  |  |
|                   | 44                             | ••              |    |  |  |
|                   | •                              | ►               |    |  |  |
|                   | Page 3 of 14                   |                 |    |  |  |
|                   | Go Back                        |                 |    |  |  |
|                   | Full Screen                    |                 |    |  |  |
|                   | Close                          |                 |    |  |  |
| jc                | ournal of i                    | nequalitie      | əs |  |  |

# in pure and applied mathematics

Let for fixed  $n \in \mathbb{N},$   $\Sigma_n$  denote the class of meromorphic functions of the following form

(1.2) 
$$f(z) = \frac{1}{z} + \sum_{k=n}^{\infty} a_k z^k,$$

which are analytic in the punctured open unit disk  $\Delta^* = \{z : z \in \mathbb{C} \text{ and } 0 < |z| < 1\} = \Delta - \{0\}$ . Let  $\Sigma_0 = \Sigma$ .

A function  $f \in \Sigma$  is said to be meromorphically starlike of order  $\alpha$  in  $\Delta^*$  if it satisfies the condition

$$-\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha, \quad (0 \le \alpha < 1; z \in \Delta^*).$$

We denote by  $\Sigma^*(\alpha)$ , the subclass of  $\Sigma$  consisting of all meromorphically starlike functions of order  $\alpha$  in  $\Delta^*$  and  $\Sigma^*_n(\alpha) \equiv \Sigma^*(\alpha) \bigcap \Sigma_n$  for  $n \in \mathbb{N}$ .

We say that f(z) is subordinate to g(z) and  $f \prec g$  in  $\Delta$  or  $f(z) \prec g(z)$   $(z \in \Delta)$ if there exists a Schwarz function w(z), which (by definition) is analytic in  $\Delta$  with w(0) = 0 and |w(z)| < 1, such that  $f(z) = g(w(z)), z \in \Delta$ . Furthermore, if the function g is univalent in  $\Delta$ ,  $f(z) \prec g(z)$   $(z \in \Delta) \Leftrightarrow f(0) = g(0)$  and  $f(\Delta) \subset g(\Delta)$ .

In the present paper, for  $f(z) \in \Sigma_n$ , we define and study a generalized operator I[f]

(1.3) 
$$I[f] = F(z) = \left[\frac{c+1-\mu}{z^{c+1}} \int_0^z \left(\frac{f(t)}{t}\right)^\mu t^{c+\mu} dt\right]^{\frac{1}{\mu}}, \ (c+1-\mu>0, \ z \in \Delta^*),$$

which is similar to the Alexander transform when  $c = \mu = 1$  and is similar to Bernardi transformation when  $\mu = 1$  and c > 0.



Page 4 of 14 Page 4 of 14 Go Back Full Screen Close journal of inequalities in pure and applied mathematics issn: 1443-5755

### 2. Main Results

For our main results we need the following lemmas.

Lemma 2.1 (Goluzin [5]). If  $f \in A_n \bigcap S^*$ , then

 $\operatorname{Re}\left[\frac{f(z)}{z}\right]^{\frac{n}{2}} > \frac{1}{2}.$ 

This inequality is sharp with extremal function  $f(z) = \frac{z}{(1-z^n)^{\frac{2}{n}}}$ .

**Lemma 2.2 ([9]).** Let u and v denote complex variables,  $u = \alpha + i\rho$ ,  $v = \sigma + i\delta$ and let  $\Psi(u, v)$  be a complex valued function that satisfies the following conditions:

- (i)  $\Psi(u, v)$  is continuous in a domain  $\Omega \subset \mathbb{C}^2$ ;
- (*ii*)  $(1,0) \in \Omega$  and  $\operatorname{Re}(\Psi(1,0)) > 0$ ;

(iii)  $\operatorname{Re}(\Psi(i\rho,\sigma)) \leq 0$  whenever  $(i\rho,\sigma) \in \Omega$ ,  $\sigma \leq -\frac{1+\rho^2}{2}$  and  $\rho$ ,  $\sigma$  are real.

If  $p(z) \in \mathcal{H}[a, n]$  is a function that is analytic in  $\Delta$ , such that  $(p(z), zp'(z)) \in \Omega$  and  $\operatorname{Re}(\Psi(p(z), zp'(z))) > 0$  hold for all  $z \in \Delta$ , then  $\operatorname{Re} p(z) > 0$ , when  $z \in \Delta$ .

**Lemma 2.3 ([9, p. 34], [8]).** Let  $p \in \mathcal{H}[a, n]$ 

(i) If  $\Psi \in \Psi_n[\Omega, M, a]$ , then

 $\Psi(p(z), zp'^2 p''(z); z) \in \Omega \Rightarrow |p(z)| < M.$ 

(ii) If  $\Psi \in \Psi_n[M, a]$ , then

 $|\Psi(p(z), zp'^2 p''(z); z)| < M \Rightarrow |p(z)| < M.$ 



| Title Page                          |           |  |  |
|-------------------------------------|-----------|--|--|
| Contents                            |           |  |  |
| 44                                  | ••        |  |  |
| ◀                                   | ►         |  |  |
| Page <mark>5</mark> of 14           |           |  |  |
| Go Back                             |           |  |  |
| Full Screen                         |           |  |  |
| Close                               |           |  |  |
| ournal of i<br>pure and<br>nathemat | d applied |  |  |

**Lemma 2.4 ([6]).** Let h(z) be an analytic and convex univalent function in  $\Delta$ , with  $h(0) = a, c \neq 0$  and  $\operatorname{Re} c \geq 0$ . If  $p \in \mathcal{H}[a, n]$  and

$$p(z) + \frac{zp'(z)}{c} \prec h(z),$$

then

$$p(z) \prec q(z) \prec h(z)$$

where

$$q(z) \prec \frac{c}{nz^{\frac{c}{n}}} \int_0^z t^{\frac{c}{n}-1} f(t) dt, \quad z \in \Delta.$$

The function q is convex and the best dominant.

**Theorem 2.5.** Let c > 0 and  $0 < \mu < 1$ . If  $f \in \Sigma_n^*(\alpha)$  for  $0 < \alpha < 1$ , then  $I(f) = F(z) \in \Sigma_n^*(\beta)$ , where

(2.1) 
$$\beta = \beta(\alpha, c, \mu) = \frac{1}{4\mu} \Big[ 2c + 2\alpha\mu + n + 2 \\ -\sqrt{[4(c - \alpha\mu)]^2 + (n + 2)(n + 2 + 4c + 4\mu\alpha) - 16\alpha - 8\mu n} \Big]$$

*Proof.* Here we have the conditions

(2.2) 
$$0 < \alpha < 1, \ 0 < \mu < 1 \text{ and } c > 0,$$

which will imply that  $\beta < 1$ .

Let  $f(z) \in \Sigma_n^*(\alpha)$ . We first show that F(z) defined by (1.3) will become nonzero for  $z \in \Delta^*$ . Again since  $f \in \Sigma_n^*(\alpha)$ , we have  $f(z) \neq 0$ , for  $z \in \Delta^*$ . Let  $g(z) = \frac{1}{(f(z))^{\mu}}$ , then a simple computation shows that  $g(z) \in S_n^*(\alpha\mu)$ .



in pure and applied mathematics

If we define

$$I_g = \left[\frac{g(z)}{z}\right]^{\left\{\frac{1}{1-\alpha\mu}\right\}},$$

then  $I(g) \in S_n^*$  and by Goluzin's subordination result (by Lemma 2.1), we obtain

$$\left[\frac{I_g}{z}\right]^{\frac{n}{2}} \prec \frac{1}{1+z}.$$

From the relation between  $I_q$ , g and f we get that

$$\frac{g(z)}{z} \prec (1+z)^{\frac{2}{n}(\alpha\mu-1)},$$

which implies

$$z(f(z))^{\mu} \prec (1+z)^{\frac{2}{n}(1-\alpha\mu)}$$

and since  $0 < \alpha \mu < 1$ , we have  $z(f(z))^{\mu} \prec (1+z)^{\frac{2}{n}}$ . Combining this with

$$\min_{|z|=1} \operatorname{Re}(1+z)^{\frac{2}{n}} = 0,$$

we deduce that

$$\operatorname{Re}[z(f(z))^{\mu}] > 0.$$

By differentiating (1.3), we obtain

(2.4) 
$$(c+1)(F(z))^{\mu} + z\frac{d}{dz}(F(z))^{\mu} = (c+1-\mu)(f(z))^{\mu}.$$

If we let

(2.5) 
$$\frac{P(z)}{z} = (F(z))^{\mu},$$





#### journal of inequalities in pure and applied mathematics

then (2.4) becomes

$$P(z) + \frac{1}{c}zP'(z) = \frac{c+1-\mu}{c}z(f(z))^{\mu}.$$

Hence from (2.3) we have

(2.6) 
$$\operatorname{Re}\Psi(P(z), zP'(z)) = \operatorname{Re}\left[P(z) + \frac{zP'(z)}{c}\right],$$

where  $\Psi(r,s) = r + \frac{s}{c}$ . To show that  $\operatorname{Re} P(z) > 0$ , condition (iii) of Lemma 2.2 must be satisfied. Since c > 0, (2.6) implies that

$$\operatorname{Re}\Psi(i\rho,\sigma) = \operatorname{Re}\left(i\rho + \frac{\sigma}{c}\right) \le -\frac{n(1+\rho^2)}{2c} \le 0,$$

when  $\sigma \leq -\frac{n(1+\rho^2)}{2}$ , for all  $\rho \in \mathbb{R}$ . Hence from (2.6) we deduce that  $\operatorname{Re} P(z) > 0$ , which implies that  $F(z) \neq 0$  for  $z \in \Delta^*$ .

We next determine  $\beta$  such that  $F \in \Sigma_n^*(\beta)$ . Let us define  $p(z) \in \mathcal{H}[1, n]$  by

(2.7) 
$$-\frac{zF'(z)}{F(z)} = (1-\beta)p(z) + \beta.$$

By applying (part iii) of Lemma 2.2 again with different  $\Psi$  we finish the proof of the theorem. Since  $f \in \Sigma_n^*(\alpha)$ , by differentiating (2.4) we easily get

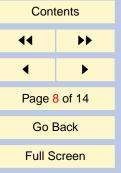
 $\operatorname{Re}\Psi(p(z), zp'(z)) > 0,$ 

where

$$\Psi(r,s) = (1-\beta)r + \beta + \frac{(1-\beta)\sigma}{c+1-\mu\beta - \mu(1-\beta)p(z)} - \alpha.$$



Integral Operator Pravati Sahoo and Saumya Singh vol. 10, iss. 3, art. 77, 2009 Title Page Contents



Close

#### journal of inequalities in pure and applied mathematics

For  $\beta \leq \beta(\alpha, c, \mu)$ , where  $\beta(\alpha, c, \mu)$  is given by (2.1), a simple calculation shows that the admissibility condition (iii) of Lemma 2.2 is satisfied. Hence by Lemma 2.2, we get  $\operatorname{Re} p(z) > 0$ . Using this result in (2.7) together with  $\beta < 1$  shows that  $F(z) \in \Sigma_n^*(\beta)$ .

**Theorem 2.6.** Let  $0 < c + 1 - \mu < 1$ . If, for  $0 < \alpha < 1$ ,  $f \in \Sigma^*(\alpha)$ , then  $I(f) \in \Sigma^*(\beta)$ , where

(2.8) 
$$\beta = \beta(\alpha, \mu, c) = \frac{1}{2\mu} \left[ 2c + 2\alpha\mu + 3 - \sqrt{[2(c - \alpha\mu)]^2 + 3(3 + 4c) - 4\mu(2 + \alpha)} \right].$$

The proof is very similar to that of Theorem 2.5.

In the special case when the meromorphic function given in (1.2) has a coefficient  $a_0 = 0$ , it is possible to obtain a stronger result than (2.8).

**Theorem 2.7.** Let c > 0,  $0 < \mu < 1$ ,  $0 < \alpha < 1$ ,  $f \in \Sigma_1^*(\alpha)$ , then  $I(f) \in \Sigma_1^*(\beta)$ , where

(2.9) 
$$\beta = \beta(\alpha, \mu, c) = \frac{1}{2\mu} \left[ c + \alpha \mu + 1 - \sqrt{(c - \alpha \mu)^2 + 4(c + 1 - \mu)} \right].$$

The proof is similar to that of Theorem 2.5.

**Corollary 2.8.** Let  $n \ge 1$ , c + n + 1 > 0 and  $g(z) \in \mathcal{H}[0, n]$ . If  $|((g(z))^{\mu})'| \le \lambda$  and

(2.10) 
$$\mathcal{F}(z) = \left[\frac{1}{z^{c+1}} \int_0^z (g(t))^{\mu} t^c dt\right]^{\frac{1}{\mu}},$$

then

$$\left( \left( \mathcal{F}(z) \right)^{\mu} \right)' | \le \frac{\lambda}{c+n+1}.$$



#### journal of inequalities in pure and applied mathematics

*Proof.* From (2.10) we deduce  $(c+1)(\mathcal{F}(z))^{\mu} + z((\mathcal{F}(z))^{\mu})' = g^{\mu}(z)$ . If we set  $z((\mathcal{F}(z))^{\mu})' = P(z)$ , then  $P \in \mathcal{H}[0, n]$  and

 $(c+1)P(z) + zP'(z) = z(g^{\mu}(z))' \prec \lambda z.$ 

From part(i) of Lemma 2.3, it follows that this differential subordination has the best dominant

$$P(z) \prec Q(z) = \frac{\lambda z}{c+n+1}$$

Hence we have

$$|((\mathcal{F}(z))^{\mu})'| \le \frac{\lambda}{c+n+1}.$$

**Corollary 2.9.** Let c + n + 1 > 0 and  $f \in \Sigma_n$  be given as

$$f(z) = \frac{1}{z} + g(z),$$

where  $n \ge 1$  and  $g(z) \in \mathcal{H}[0, n]$ . Let  $\mathcal{F}$  be defined by

(2.11) 
$$\mathcal{F}(z) \equiv \frac{1}{z} + G(z) = \frac{1}{z} + \left[\frac{1}{z^{c+1}} \int_0^z (g(t))^{\mu} t^c dt\right]^{\frac{1}{\mu}}.$$

Then

$$|((g(z))^{\mu})'| \le \frac{n(c+n+1)}{\sqrt{n^2+1}}.$$

*Proof.* From Corollary 2.8 we obtain

$$|((G(z))^{\mu})'| \le \frac{n}{\sqrt{n^2+1}},$$



 $\square$ 

# in pure and applied mathematics

since from (2.11), we have

$$|z^{2} \left( (\mathcal{F}(z))^{\mu} \right)' + 1| = |G'(z)|.$$

Hence from [2], we conclude that  $\mathcal{F} \in \Sigma_n^*$ .

**Corollary 2.10.** Let n be a fixed positive integer and c > 0. Let q be a convex function in  $\Delta$ , with q(0) = 1 and let h be defined by

(2.12) 
$$h(z) = q(z) + \frac{n+1}{c} z q'(z).$$

If  $f \in \Sigma_n$  and F(z) is given by (1.3), then

$$-\frac{c+1-\mu}{c}z^2\left((f(z))^{\mu}\right)' \prec h(z) \Rightarrow -z^2\left((F(z))^{\mu}\right)' \prec q(z),$$

and this result is sharp.

*Proof.* From the definition of h(z), it is a convex function. If we obtain

 $p(z) = -z^2 (F^{\mu}(z))',$ 

then  $p \in \mathcal{H}[1, n+1]$  and from (2.3), we get

$$p(z) + \frac{1}{c}zp'(z) = -\frac{c+1-\mu}{c}z^2\left((f(z))^{\mu}\right)' \prec h(z).$$

The conclusion of the corollary follows by Lemma 2.4.

**Corollary 2.11.** Let  $n \ge 1$  and c > 0. Let  $f \in \Sigma_n$  and let F(z) given by (1.3). If  $\lambda > 0$ , then

$$|z^{2}((f(z))^{\mu})' + 1| < \lambda \Rightarrow |z^{2}((F(z))^{\mu})' + 1| < \frac{\lambda c}{c + n + 1}.$$



mathematics

In particular,

$$|z^2((f(z))^{\mu})' + 1| < \frac{c+n+1}{c} \Rightarrow |z^2((F(z))^{\mu})' + 1| < 1.$$

Hence  $(F(z))^{\mu}$  is univalent.

*Proof.* If we take

$$q(z) = 1 + \frac{\lambda cz}{c+n+1},$$

then (2.12) becomes

$$h(z) = 1 + \lambda z.$$

The conclusion of the corollary follows by Corollary 2.10.



Integral Operator Pravati Sahoo and Saumya Singh vol. 10, iss. 3, art. 77, 2009

| Title Page    |            |  |  |
|---------------|------------|--|--|
| Cont          | ents       |  |  |
| 44            | ••         |  |  |
| •             | ►          |  |  |
| Page 12 of 14 |            |  |  |
| Go Back       |            |  |  |
| Full Screen   |            |  |  |
| Close         |            |  |  |
| ournal of i   | nequalitie |  |  |

#### journal of inequalities in pure and applied mathematics

## References

- H. AL-AMIRI AND P.T. MOCANU, Some simple criteria of starlikeness and convexity for meromorphic functions, *Mathematica(Cluj)*, **37**(60) (1995), 11– 21.
- [2] S.K. BAJPAI, A note on a class of meromorphic univalent functions, *Rev. Roumine Math. Pures Appl.*, **22** (1977), 295–297.
- [3] P.L. DUREN, Univalent Functions, Springer-Verlag, Berlin-New York, 1983.
- [4] G.M. GOEL AND N.S. SOHI, On a class of meromorphic functions, *Glasnik Mat. Ser. III*, 17(37) (1981), 19–28.
- [5] G. GOLUZIN, Some estimates for coefficients of univalent functions (Russian), *Mat. Sb.*, 3(45), 2 (1938), 321–330.
- [6] D. J. HALLENBECK AND St. RUSCHWEYH, Subordination by convex functions, Proc. Amer. Math. Soc., 52 (1975), 191–195.
- [7] P. T. MOCANU, Starlikeness conditions for meromorphic functions, *Proc. Mem. Sect. Sci., Academia Romania*, **4**(19) (1996), 7–12.
- [8] S.S. MILLER AND P.T. MOCANU, Differential Subordinations and univalent functions, *Michigan Math. J.*, 28 (1981), 157–171.
- [9] S.S. MILLER AND P.T. MOCANU, Differential Subordinations: Theory and Applications, Monographs and Textbooks in Pure and Appl. Math., Vol. 225, Marcel Dekker, New York, 2000.
- [10] P. T. MOCANU AND Gr. St. SÅLÅGEAN, Integral operators and meromorphic starlike functions, *Mathematica*(*Cluj*)., **32**(55), 2 (1990), 147–152.



| Integral Operator<br>Pravati Sahoo and Saumya Singh<br>vol. 10, iss. 3, art. 77, 2009 |               |    |  |  |
|---------------------------------------------------------------------------------------|---------------|----|--|--|
|                                                                                       | Title Page    |    |  |  |
|                                                                                       | Contents      |    |  |  |
|                                                                                       | 44            | •• |  |  |
|                                                                                       | •             | Þ  |  |  |
|                                                                                       | Page 13 of 14 |    |  |  |
|                                                                                       | Go Back       |    |  |  |
|                                                                                       | Full Screen   |    |  |  |
|                                                                                       | Close         |    |  |  |

#### journal of inequalities in pure and applied mathematics

- [11] Gr. St. SĂLĂGEAN, Meromorphic starlike univalent functions, Babeş-Bolyai Uni. Fac. Math. Res. Sem., 7 (1986), 261–266.
- [12] Gr. St. SĂLĂGEAN, Integral operators and meromorphic functions, *Rev. Roumine Math. Pures Appl.*, **33**(1-2) (1988), 135–140.

