STARLIKENESS CONDITIONS FOR AN INTEGRAL OPERATOR

PRAVATI SAHOO AND SAUMYA SINGH

Department of Mathematics
Banaras Hindu University
Banaras 221 005, India
EMail: pravatis@yahoo.co.in bhu.saumya@gmail.com

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.:

Key words:

Abstract:

30 June, 2009
26 August, 2009
R.N. Mohapatra

30C45, 30D30.
Meromorphic functions; Differential subordination; Starlike functions, Convex functions

Let for fixed $n \in \mathbb{N}, \Sigma_{n}$ denotes the class of function of the following form

$$
f(z)=\frac{1}{z}+\sum_{k=n}^{\infty} a_{k} z^{k}
$$

which are analytic in the punctured open unit disk $\Delta^{*}=\{z \in \mathbb{C}: 0<|z|<$ $1\}$. In the present paper we defined and studied an operator in
$F(z)=\left[\frac{c+1-\mu}{z^{c+1}} \int_{0}^{z}\left(\frac{f(t)}{t}\right)^{\mu} t^{c+\mu} d t\right]^{\frac{1}{\mu}}, \quad$ for $f \in \Sigma_{n}$ and $c+1-\mu>0$.

Integral Operator
Pravati Sahoo and Saumya Singh vol. 10, iss. 3, art. 77, 2009

Title Page
Contents

Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: l443-575b

Contents

1 Introduction 3
2 Main Results

Integral Operator
Pravati Sahoo and Saumya Singh vol. 10, iss. 3, art. 77, 2009

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 2 of 14	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b
© 2007 Victoria University. All rights reserved.

1. Introduction

Let $\mathcal{H}(\Delta)=\mathcal{H}$ denote the class of analytic functions in Δ, where $\Delta=\{z \in \mathbb{C}$: $|z|<1\}$. For a fixed positive integer n and $a \in \mathbb{C}$, let

$$
\mathcal{H}[a, n]=\left\{f(z) \in \mathcal{H}: f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\cdots\right\},
$$

with $\mathcal{H}_{0}=\mathcal{H}[0,1]$. Let \mathcal{A}_{n} be the class of analytic functions defined on the unit disc with the normalized conditions $f(0)=0=f^{\prime}(0)-1$, that is $f \in \mathcal{A}_{n}$ has the form

$$
\begin{equation*}
f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k}, \quad(z \in \Delta \text { and } n \in \mathbb{N}) \tag{1.1}
\end{equation*}
$$

Let $\mathcal{A}_{1}=\mathcal{A}$ and let \mathcal{S} be the class of all functions $f \in \mathcal{A}$ which are univalent in Δ.
A function $f \in \mathcal{A}$ is said to be in \mathcal{S}^{*} iff $f(\Delta)$ is a starlike domain with respect to the origin. Let for $0 \leq \alpha<1$,

$$
\mathcal{S}^{*}(\alpha)=\left\{f \in \mathcal{A}: \operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>\alpha, z \in \Delta\right\}
$$

be the class of all starlike functions of order α. So $\mathcal{S}^{*}(0) \equiv \mathcal{S}^{*}$. We denote $\mathcal{S}_{n}^{*}(\alpha) \equiv$ $\mathcal{S}^{*}(\alpha) \bigcap \mathcal{A}_{n}$ for $n \in \mathbb{N}$.

A function $f \in \mathcal{A}$ is said to be in \mathcal{C} iff $f(\Delta)$ is a convex domain. Let for $0 \leq \alpha<$ 1,

$$
\mathcal{C}(\alpha)=\left\{f \in \mathcal{A}: \operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f(z)}\right)>\alpha, z \in \Delta\right\}
$$

be the class of convex functions of order α. So $\mathcal{C}(0) \equiv \mathcal{C}$.

Integral Operator
Pravati Sahoo and Saumya Singh vol. 10, iss. 3, art. 77, 2009

Title Page
Contents

Page 3 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Let for fixed $n \in \mathbb{N}, \Sigma_{n}$ denote the class of meromorphic functions of the following form

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{k=n}^{\infty} a_{k} z^{k} \tag{1.2}
\end{equation*}
$$

which are analytic in the punctured open unit disk $\Delta^{*}=\{z: z \in \mathbb{C}$ and $0<|z|<$ $1\}=\Delta-\{0\}$. Let $\Sigma_{0}=\Sigma$.

A function $f \in \Sigma$ is said to be meromorphically starlike of order α in Δ^{*} if it satisfies the condition

$$
-\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, \quad\left(0 \leq \alpha<1 ; z \in \Delta^{*}\right)
$$

We denote by $\Sigma^{*}(\alpha)$, the subclass of Σ consisting of all meromorphically starlike functions of order α in Δ^{*} and $\Sigma_{n}^{*}(\alpha) \equiv \Sigma^{*}(\alpha) \bigcap \Sigma_{n}$ for $n \in \mathbb{N}$.

We say that $f(z)$ is subordinate to $g(z)$ and $f \prec g$ in Δ or $f(z) \prec g(z)(z \in \Delta)$ if there exists a Schwarz function $w(z)$, which (by definition) is analytic in Δ with $w(0)=0$ and $|w(z)|<1$, such that $f(z)=g(w(z)), z \in \Delta$. Furthermore, if the function g is univalent in $\Delta, f(z) \prec g(z) \quad(z \in \Delta) \Leftrightarrow f(0)=g(0)$ and $f(\Delta) \subset$ $g(\Delta)$.

In the present paper, for $f(z) \in \Sigma_{n}$, we define and study a generalized operator $I[f]$

$$
\begin{equation*}
I[f]=F(z)=\left[\frac{c+1-\mu}{z^{c+1}} \int_{0}^{z}\left(\frac{f(t)}{t}\right)^{\mu} t^{c+\mu} d t\right]^{\frac{1}{\mu}},\left(c+1-\mu>0, z \in \Delta^{*}\right) \tag{1.3}
\end{equation*}
$$

which is similar to the Alexander transform when $c=\mu=1$ and is similar to Bernardi transformation when $\mu=1$ and $c>0$.

Integral Operator
Pravati Sahoo and Saumya Singh vol. 10, iss. 3, art. 77, 2009

Title Page
Contents

Page 4 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Main Results

For our main results we need the following lemmas.
Lemma 2.1 (Goluzin [5]). If $f \in \mathcal{A}_{n} \bigcap S^{*}$, then

$$
\operatorname{Re}\left[\frac{f(z)}{z}\right]^{\frac{n}{2}}>\frac{1}{2}
$$

This inequality is sharp with extremal function $f(z)=\frac{z}{\left(1-z^{n}\right)^{\frac{2}{n}}}$.
Integral Operator
Pravati Sahoo and Saumya Singh vol. 10, iss. 3, art. 77, 2009

Lemma 2.2 ([9]). Let u and v denote complex variables, $u=\alpha+i \rho$, $v=\sigma+i \delta$ and let $\Psi(u, v)$ be a complex valued function that satisfies the following conditions:
(i) $\Psi(u, v)$ is continuous in a domain $\Omega \subset \mathbb{C}^{2}$;
(ii) $(1,0) \in \Omega$ and $\operatorname{Re}(\Psi(1,0))>0$;
(iii) $\operatorname{Re}(\Psi(i \rho, \sigma)) \leq 0$ whenever $(i \rho, \sigma) \in \Omega, \sigma \leq-\frac{1+\rho^{2}}{2}$ and ρ, σ are real.

If $p(z) \in \mathcal{H}[a, n]$ is a function that is analytic in Δ, such that $\left(p(z), z p^{\prime}(z)\right) \in \Omega$ and $\operatorname{Re}\left(\Psi\left(p(z), z p^{\prime}(z)\right)\right)>0$ hold for all $z \in \Delta$, then $\operatorname{Re} p(z)>0$, when $z \in \Delta$.

Lemma 2.3 ([9, p. 34], [8]). Let $p \in \mathcal{H}[a, n]$
(i) If $\Psi \in \Psi_{n}[\Omega, M, a]$, then

$$
\Psi\left(p(z), z p^{2} p^{\prime \prime}(z) ; z\right) \in \Omega \Rightarrow|p(z)|<M
$$

(ii) If $\Psi \in \Psi_{n}[M, a]$, then

$$
\left|\Psi\left(p(z), z p^{2} p^{\prime \prime}(z) ; z\right)\right|<M \Rightarrow|p(z)|<M
$$

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 5 of 14	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Lemma 2.4 ([6]). Let $h(z)$ be an analytic and convex univalent function in Δ, with $h(0)=a, c \neq 0$ and $\operatorname{Re} c \geq 0$. If $p \in \mathcal{H}[a, n]$ and

$$
p(z)+\frac{z p^{\prime}(z)}{c} \prec h(z)
$$

then

$$
p(z) \prec q(z) \prec h(z),
$$

where

$$
q(z) \prec \frac{c}{n z^{\frac{c}{n}}} \int_{0}^{z} t^{\frac{c}{n}-1} f(t) d t, \quad z \in \Delta .
$$

The function q is convex and the best dominant.
Theorem 2.5. Let $c>0$ and $0<\mu<1$. If $f \in \Sigma_{n}^{*}(\alpha)$ for $0<\alpha<1$, then $\mathrm{I}(f)=F(z) \in \Sigma_{n}^{*}(\beta)$, where

$$
\begin{align*}
\beta= & \beta(\alpha, c, \mu) \tag{2.1}\\
= & \frac{1}{4 \mu}
\end{align*} 2 c+2 \alpha \mu+n+2 .
$$

Proof. Here we have the conditions

$$
\begin{equation*}
0<\alpha<1, \quad 0<\mu<1 \quad \text { and } \quad c>0 \tag{2.2}
\end{equation*}
$$

which will imply that $\beta<1$.
Let $f(z) \in \Sigma_{n}^{*}(\alpha)$. We first show that $F(z)$ defined by (1.3) will become nonzero for $z \in \Delta^{*}$. Again since $f \in \Sigma_{n}^{*}(\alpha)$, we have $f(z) \neq 0$, for $z \in \Delta^{*}$.

Let $g(z)=\frac{1}{(f(z))^{\mu}}$, then a simple computation shows that $g(z) \in S_{n}^{*}(\alpha \mu)$.

Integral Operator

Pravati Sahoo and Saumya Singh vol. 10, iss. 3, art. 77, 2009

Title Page
Contents

Page 6 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

If we define

$$
I_{g}=\left[\frac{g(z)}{z}\right]^{\left\{\frac{1}{1-\alpha \mu}\right\}}
$$

then $I(g) \in S_{n}^{*}$ and by Goluzin's subordination result (by Lemma 2.1), we obtain

$$
\left[\frac{I_{g}}{z}\right]^{\frac{n}{2}} \prec \frac{1}{1+z}
$$

From the relation between I_{g}, g and f we get that

$$
\frac{g(z)}{z} \prec(1+z)^{\frac{2}{n}(\alpha \mu-1)},
$$

which implies

$$
z(f(z))^{\mu} \prec(1+z)^{\frac{2}{n}(1-\alpha \mu)}
$$

and since $0<\alpha \mu<1$, we have $z(f(z))^{\mu} \prec(1+z)^{\frac{2}{n}}$. Combining this with

$$
\min _{|z|=1} \operatorname{Re}(1+z)^{\frac{2}{n}}=0
$$

we deduce that

$$
\begin{equation*}
\operatorname{Re}\left[z(f(z))^{\mu}\right]>0 \tag{2.3}
\end{equation*}
$$

By differentiating (1.3), we obtain

$$
\begin{equation*}
(c+1)(F(z))^{\mu}+z \frac{d}{d z}(F(z))^{\mu}=(c+1-\mu)(f(z))^{\mu} . \tag{2.4}
\end{equation*}
$$

If we let

$$
\begin{equation*}
\frac{P(z)}{z}=(F(z))^{\mu} \tag{2.5}
\end{equation*}
$$

Integral Operator
Pravati Sahoo and Saumya Singh vol. 10, iss. 3, art. 77, 2009

Title Page
Contents

Page 7 of 14
Go Back

Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
then (2.4) becomes

$$
P(z)+\frac{1}{c} z P^{\prime}(z)=\frac{c+1-\mu}{c} z(f(z))^{\mu}
$$

Hence from (2.3) we have

$$
\begin{equation*}
\operatorname{Re} \Psi\left(P(z), z P^{\prime}(z)\right)=\operatorname{Re}\left[P(z)+\frac{z P^{\prime}(z)}{c}\right] \tag{2.6}
\end{equation*}
$$

where $\Psi(r, s)=r+\frac{s}{c}$. To show that $\operatorname{Re} P(z)>0$, condition (iii) of Lemma 2.2
Integral Operator
Pravati Sahoo and Saumya Singh vol. 10, iss. 3, art. 77, 2009

Title Page
Contents
when $\sigma \leq-\frac{n\left(1+\rho^{2}\right)}{2}$, for all $\rho \in \mathbb{R}$. Hence from (2.6) we deduce that $\operatorname{Re} P(z)>0$, which implies that $F(z) \neq 0$ for $z \in \Delta^{*}$.

We next determine β such that $F \in \Sigma_{n}^{*}(\beta)$. Let us define $p(z) \in \mathcal{H}[1, n]$ by

$$
\begin{equation*}
-\frac{z F^{\prime}(z)}{F(z)}=(1-\beta) p(z)+\beta \tag{2.7}
\end{equation*}
$$

By applying (part iii) of Lemma 2.2 again with different Ψ we finish the proof of the theorem. Since $f \in \Sigma_{n}^{*}(\alpha)$, by differentiating (2.4) we easily get

$$
\operatorname{Re} \Psi\left(p(z), z p^{\prime}(z)\right)>0
$$

where

$$
\Psi(r, s)=(1-\beta) r+\beta+\frac{(1-\beta) \sigma}{c+1-\mu \beta-\mu(1-\beta) p(z)}-\alpha
$$ must be satisfied. Since $c>0$, (2.6) implies that

$$
\operatorname{Re} \Psi(i \rho, \sigma)=\operatorname{Re}\left(i \rho+\frac{\sigma}{c}\right) \leq-\frac{n\left(1+\rho^{2}\right)}{2 c} \leq 0
$$

Page 8 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
J

For $\beta \leq \beta(\alpha, c, \mu)$, where $\beta(\alpha, c, \mu)$ is given by (2.1), a simple calculation shows that the admissibility condition (iii) of Lemma 2.2 is satisfied. Hence by Lemma 2.2, we get $\operatorname{Re} p(z)>0$. Using this result in (2.7) together with $\beta<1$ shows that $F(z) \in \Sigma_{n}^{*}(\beta)$.
Theorem 2.6. Let $0<c+1-\mu<1$. If, for $0<\alpha<1$, $f \in \Sigma^{*}(\alpha)$, then $\mathrm{I}(f) \in \Sigma^{*}(\beta)$, where

$$
\begin{align*}
\beta & =\beta(\alpha, \mu, c) \tag{2.8}\\
& =\frac{1}{2 \mu}\left[2 c+2 \alpha \mu+3-\sqrt{[2(c-\alpha \mu)]^{2}+3(3+4 c)-4 \mu(2+\alpha)}\right] .
\end{align*}
$$

The proof is very similar to that of Theorem 2.5.
In the special case when the meromorphic function given in (1.2) has a coefficient $a_{0}=0$, it is possible to obtain a stronger result than (2.8).
Theorem 2.7. Let $c>0,0<\mu<1,0<\alpha<1, f \in \Sigma_{1}^{*}(\alpha)$, then $\mathrm{I}(f) \in \Sigma_{1}^{*}(\beta)$, where

$$
\begin{equation*}
\beta=\beta(\alpha, \mu, c)=\frac{1}{2 \mu}\left[c+\alpha \mu+1-\sqrt{(c-\alpha \mu)^{2}+4(c+1-\mu)}\right] . \tag{2.9}
\end{equation*}
$$

The proof is similar to that of Theorem 2.5.
Corollary 2.8. Let $n \geq 1, c+n+1>0$ and $g(z) \in \mathcal{H}\left[0\right.$, n]. If $\left|\left((g(z))^{\mu}\right)^{\prime}\right| \leq \lambda$ and

$$
\begin{equation*}
\mathcal{F}(z)=\left[\frac{1}{z^{c+1}} \int_{0}^{z}(g(t))^{\mu} t^{c} d t\right]^{\frac{1}{\mu}} \tag{2.10}
\end{equation*}
$$

then

$$
\left|\left((\mathcal{F}(z))^{\mu}\right)^{\prime}\right| \leq \frac{\lambda}{c+n+1}
$$

Integral Operator

Pravati Sahoo and Saumya Singh vol. 10, iss. 3, art. 77, 2009

Title Page
Contents

Page 9 of 14
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proof. From (2.10) we deduce $(c+1)(\mathcal{F}(z))^{\mu}+z\left((\mathcal{F}(z))^{\mu}\right)^{\prime}=g^{\mu}(z)$. If we set $z\left((\mathcal{F}(z))^{\mu}\right)^{\prime}=P(z)$, then $P \in \mathcal{H}[0, n]$ and

$$
(c+1) P(z)+z P^{\prime}(z)=z\left(g^{\mu}(z)\right)^{\prime} \prec \lambda z .
$$

From part(i) of Lemma 2.3, it follows that this differential subordination has the best dominant

$$
P(z) \prec Q(z)=\frac{\lambda z}{c+n+1} .
$$

Hence we have

$$
\left|\left((\mathcal{F}(z))^{\mu}\right)^{\prime}\right| \leq \frac{\lambda}{c+n+1}
$$

Corollary 2.9. Let $c+n+1>0$ and $f \in \Sigma_{n}$ be given as

$$
f(z)=\frac{1}{z}+g(z)
$$

where $n \geq 1$ and $g(z) \in \mathcal{H}[0, n]$. Let \mathcal{F} be defined by

Integral Operator
Pravati Sahoo and Saumya Singh vol. 10, iss. 3, art. 77, 2009

Title Page
Contents

Page 10 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
since from (2.11), we have

$$
\left|z^{2}\left((\mathcal{F}(z))^{\mu}\right)^{\prime}+1\right|=\left|G^{\prime}(z)\right|
$$

Hence from [2], we conclude that $\mathcal{F} \in \Sigma_{n}^{*}$.
Corollary 2.10. Let n be a fixed positive integer and $c>0$. Let q be a convex function in Δ, with $q(0)=1$ and let h be defined by

$$
\begin{equation*}
h(z)=q(z)+\frac{n+1}{c} z q^{\prime}(z) . \tag{2.12}
\end{equation*}
$$

Integral Operator
Pravati Sahoo and Saumya Singh vol. 10, iss. 3, art. 77, 2009

Title Page
Contents

Page 11 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

In particular,

$$
\left|z^{2}\left((f(z))^{\mu}\right)^{\prime}+1\right|<\frac{c+n+1}{c} \Rightarrow\left|z^{2}\left((F(z))^{\mu}\right)^{\prime}+1\right|<1 .
$$

Hence $(F(z))^{\mu}$ is univalent.
Proof. If we take

$$
q(z)=1+\frac{\lambda c z}{c+n+1},
$$

then (2.12) becomes

$$
h(z)=1+\lambda z .
$$

The conclusion of the corollary follows by Corollary 2.10.

Integral Operator

Pravati Sahoo and Saumya Singh vol. 10, iss. 3, art. 77, 2009

Title Page
Contents

Page 12 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] H. AL-AMIRI and P.T. MOCANU, Some simple criteria of starlikeness and convexity for meromorphic functions, Mathematica(Cluj), 37(60) (1995), 1121.
[2] S.K. BAJPAI, A note on a class of meromorphic univalent functions, Rev. Roumine Math. Pures Appl., 22 (1977), 295-297.
[3] P.L. DUREN, Univalent Functions, Springer-Verlag, Berlin-New York, 1983.
[4] G.M. GOEL AND N.S. SOHI, On a class of meromorphic functions, Glasnik Mat. Ser. III, 17(37) (1981), 19-28.
[5] G. GOLUZIN, Some estimates for coefficients of univalent functions (Russian), Mat. Sb., 3(45), 2 (1938), 321-330.
[6] D. J. HALLENBECK AND St. RUSCHWEYH, Subordination by convex functions, Proc. Amer. Math. Soc., 52 (1975), 191-195.
[7] P. T. MOCANU, Starlikeness conditions for meromorphic functions, Proc. Mem. Sect. Sci., Academia Romania, 4(19) (1996), 7-12.
[8] S.S. MILLER AND P.T. MOCANU, Differential Subordinations and univalent functions, Michigan Math. J., 28 (1981), 157-171.
[9] S.S. MILLER AND P.T. MOCANU, Differential Subordinations: Theory and Applications, Monographs and Textbooks in Pure and Appl. Math., Vol. 225, Marcel Dekker, New York, 2000.
[10] P. T. MOCANU and Gr. St. SǍLǍGEAN, Integral operators and meromorphic starlike functions, Mathematica(Cluj)., 32(55), 2 (1990), 147-152.

Integral Operator
Pravati Sahoo and Saumya Singh vol. 10, iss. 3, art. 77, 2009

Title Page
Contents

Page 13 of 14
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
[11] Gr. St. SǍLǍGEAN, Meromorphic starlike univalent functions, Babeş-Bolyai Uni. Fac. Math. Res. Sem., 7 (1986), 261-266.
[12] Gr. St. SǍLǍGEAN, Integral operators and meromorphic functions, Rev. Roumine Math. Pures Appl., 33(1-2) (1988), 135-140.

Integral Operator
Pravati Sahoo and Saumya Singh vol. 10, iss. 3, art. 77, 2009

Title Page
Contents

$\boldsymbol{4}$	
$\mathbf{4}$	
Page 14 of 14	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

