Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 6, Issue 3, Article 75, 2005

INEQUALITIES FOR WEIGHTED POWER PSEUDO MEANS

VASILE MIHEŞAN

Department of Mathematics, Technical University of Cluj-Napoca Str. C.Daicoviciu nr. 15
400020 CluJ-NAPOCA
Romania
Vasile.Mihesan@math.utcluj.ro

Received 24 November, 2004; accepted 31 May, 2005
Communicated by F. Qi

AbSTRACT. In this paper we denote by $m_{n}^{[r]}$ the following expression, which is closely connected to the weighted power means of order $r, M_{n}^{[r]}$.

Let $n \geq 2$ be a fixed integer and

$$
m_{n}^{[r]}(\mathbf{x} ; \mathbf{p})=\left\{\begin{array}{ll}
\left(\frac{P_{n}}{p_{1}} x_{1}^{r}-\frac{1}{p_{1}} \sum_{i=2}^{n} p_{i} x_{i}^{r}\right)^{\frac{1}{r}}, & r \neq 0 \\
x_{1}^{P_{n} / p_{1}} / \prod_{i=2}^{n} x_{i}^{p_{i} / p_{1}}, & r=0
\end{array} \quad\left(\mathbf{x} \in R_{r}\right)\right.
$$

where $P_{n}=\sum_{i=1}^{n} p_{i}$ and R_{r} denotes the set of the vectors $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ for which $x_{i}>0(i=1,2, \ldots, n), \mathbf{p}=\left(p_{1}, p_{2}, \ldots, p_{n}\right), p_{1}>0, p_{i} \geq 0(i=1,2, \ldots, n)$ and $P_{n} x_{1}^{r}>$ $\sum_{i=2}^{n} p_{i} x_{i}^{r}$.

Three inequalities are presented for $m_{n}^{[r]}$. The first is a comparison theorem. The second and the third is Rado type inequalities. The proofs show that the above inequalities are consequences of some well-known inequalities for weighted power means.

Key words and phrases: Weighted power pseudo means, Inequalities.

2000 Mathematics Subject Classification. 26D15, 26E60.

1. Introduction

Let $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ and $\mathbf{q}=\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ be positive n-tuples, then the arithmetic and geometric means of \mathbf{y} with weights q are defined by

$$
A_{n}(\mathbf{y} ; \mathbf{q})=\frac{1}{Q_{n}} \sum_{i=1}^{n} q_{i} y_{i} \quad \text { and } \quad G_{n}(\mathbf{y} ; \mathbf{q})=\left(\prod_{i=1}^{n} y_{i}^{q_{i}}\right)^{\frac{1}{Q_{n}}}, \quad \text { where } \quad Q_{n}=\sum_{i=1}^{n} q_{i}
$$

[^0]If r is a real number, then the r-th power means of \mathbf{y} with weights $\mathbf{q}, M_{n}^{[r]}(\mathbf{y} ; \mathbf{q})$ is defined by

$$
M_{n}^{[r]}(\mathbf{y} ; \mathbf{q})= \begin{cases}\left(\frac{1}{Q_{n}} \sum_{i=1}^{n} q_{i} y_{i}^{r}\right)^{\frac{1}{r}}, & r \neq 0 \tag{1.1}\\ \left(\prod_{i=1}^{n} y_{i}^{q_{i}}\right)^{\frac{1}{Q_{n}}}, & r=0\end{cases}
$$

If $r, s \in \mathbb{R}, r \leq s$ then [11]

$$
\begin{equation*}
M_{n}^{[r]}(\mathbf{y} ; \mathbf{q}) \leq M_{n}^{[s]}(\mathbf{y}, \mathbf{q}) \tag{1.2}
\end{equation*}
$$

is valid for all positive real numbers y_{i} and $q_{i}(i=1,2, \ldots, n)$. For $r=0$ and $s=1$ we obtain the clasical inequality between the weighted arithmetic and geometric means

$$
\begin{equation*}
G_{n}=G_{n}(\mathbf{y} ; \mathbf{q})=\prod_{i=1}^{n} y_{i}^{q_{i} / Q_{n}} \leq \frac{1}{Q_{n}} \sum_{i=1}^{n} q_{i} y_{i}=A_{n}(\mathbf{y}, \mathbf{q})=A_{n} \tag{1.3}
\end{equation*}
$$

In this paper we denote by $m_{n}^{[r]}(\mathbf{y} ; \mathbf{q})$ the following expression which is closely connected to $M_{n}^{[r]}(\mathbf{y} ; \mathbf{q})$.

Let $n \geq 2$ be an integer (considered fixed throughout the paper) and define

$$
m_{n}^{[r]}(\mathbf{x} ; \mathbf{p})=\left\{\begin{array}{lll}
\left(\frac{P_{n}}{p_{1}} x_{1}^{r}-\frac{1}{p_{1}} \sum_{i=2}^{n} p_{i} x_{i}^{r}\right)^{\frac{1}{r}}, & r \neq 0 \tag{1.4}\\
x_{1}^{P_{n} / p_{1}} / \prod_{i=2}^{n} x_{i}^{p_{i} / p_{1}}, & r=0 & \left(\mathbf{x} \in R_{r}\right)
\end{array}\right.
$$

where $P_{n}=\sum_{i=1}^{n} p_{i}$ and R_{r} denotes the set of the vectors $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ for which $x_{i}>0$ $(i=1,2, \ldots, n), \mathbf{p}=\left(p_{1}, p_{2}, \ldots, p_{n}\right), p_{1}>0, p_{i} \geq 0(i=2,3, \ldots, n)$ and $P_{n} x_{1}^{r}>\sum_{i=2}^{n} p_{i} x_{i}^{r}$.

Although there is no general agreement in literature about what constitutes a mean value most authors consider the intermediate property as the main feature. Since $m_{n}^{[r]}(\mathbf{x} ; \mathbf{p})$ do not satisfy this condition, this means that the double inequalities

$$
\min _{1 \leq i \leq n} x_{i} \leq m_{n}^{[r]}(\mathbf{x} ; \mathbf{p}) \leq \max _{1 \leq i \leq n} x_{i}
$$

are not true for all positive x_{i}, we call $m_{n}^{[r]}$ the weighted power pseudo means of order r.
For $r=1$ we obtain by (1.4) the pseudo arithmetic means $a_{n}(\mathbf{x}, \mathbf{p})$ for $r=0$ the pseudo geometric means, $g_{n}(\mathbf{x}, \mathbf{p})$, see [2]. In 1990, H. Alzer [2] published the following companion of inequality (1.3):

$$
\begin{equation*}
a_{n}(\mathbf{x} ; \mathbf{p}) \leq g_{n}(\mathbf{x} ; \mathbf{p}) \tag{1.5}
\end{equation*}
$$

For the special case $p_{1}=p_{2}=\cdots=p_{n}$ the inequality (1.5) was proved by S. Iwamoto, R.J. Tomkins and C.L. Wang [6].

Rado and Popoviciu type inequalities for pseudo arithmetic and geometric means were given in [2], [9], [10].

We note that inequality $(\overline{1.5})$ is an example of a so called reverse inequality. One of the first reverse inequalities was published by J. Aczél [1] who proved the following intriguing variant of the Cauchy-Schwarz inequality:

If x_{i} and $y_{i}(i=1,2, \ldots, n)$ are real numbers with $x_{1}^{2}>\sum_{i=2}^{n} x_{i}^{2}$ and $y_{1}^{2}>\sum_{i=2}^{n} y_{i}^{2}$, then

$$
\begin{equation*}
\left(x_{1} y_{1}-\sum_{i=2}^{n} x_{i} y_{i}\right)^{2} \geq\left(x_{1}^{2}-\sum_{i=2}^{n} x_{i}^{2}\right)\left(y_{1}^{2}-\sum_{i=2}^{n} y_{i}^{2}\right) . \tag{1.6}
\end{equation*}
$$

Further interesting reverse inequalities were given in [3], [5], [6], [7], [8], [11], [12].
The aim of this paper is to prove a comparison theorem and Rado type inequalities for the weighted power pseudo means.

2. Comparison Theorem

Our first result is a comparison theorem for the weighted power pseudo means.
Theorem 2.1. If $0 \leq r \leq s, \mathrm{x} \in R_{s}$ then $\mathrm{x} \in R_{r}$ and

$$
\begin{equation*}
m_{n}^{[s]}(\mathrm{x}, \mathrm{p}) \leq m_{n}^{[r]}(\mathrm{x}, \mathrm{p}) \tag{2.1}
\end{equation*}
$$

If $r \leq s \leq 0, \mathrm{x} \in R_{r}$ then $\mathrm{x} \in R_{s}$ and

$$
\begin{equation*}
m_{n}^{[s]}(\mathrm{x} ; \mathrm{p}) \leq m_{n}^{[r]}(\mathrm{x} ; \mathrm{p}) . \tag{2.2}
\end{equation*}
$$

If $r<0<s$ then $R_{r} \cap R_{s}=\emptyset$, hence $m_{n}^{[r]}(\mathrm{x}, \mathrm{p}), m_{n}^{[s]}(\mathrm{x}, \mathrm{p})$ cannot both be defined, they are not comparable.

Proof. To prove 2.1 let $a=m_{n}^{[s]}(\mathbf{x}, \mathbf{p})>0$, then we obtain by 1.4 and 1.2

$$
x_{1}=\left(\frac{p_{1} a^{s}+\sum_{i=2}^{n} p_{i} x_{i}^{s}}{P_{n}}\right)^{\frac{1}{s}} \geq\left(\frac{p_{1} a^{r}+\sum_{i=2}^{n} p_{i} x_{i}^{r}}{P_{n}}\right)^{\frac{1}{r}}
$$

hence

$$
\frac{P_{n}}{p_{1}} x_{1}^{r}-\frac{\sum_{i=2}^{n} p_{i} x_{i}^{r}}{p_{1}} \geq a^{r}>0
$$

which shows that $\mathbf{x} \in R_{r}$. Taking the r th root, we obtain (2.1).
To prove 2.2 let $b=m_{n}^{[r]}(\mathbf{x}, \mathbf{p})>0$, then we obtain by 1.4 and 1.2,

$$
x_{1}=\left(\frac{p_{1} b^{r}+\sum_{i=2}^{n} p_{i} x_{i}^{r}}{P_{n}}\right)^{\frac{1}{r}} \leq\left(\frac{p_{1} b^{s}+\sum_{i=2}^{n} p_{i} x_{i}^{b}}{P_{n}}\right)^{\frac{1}{s}} .
$$

Hence

$$
x_{1}^{s} \geq \frac{p_{1} b^{s}+\sum_{i=2}^{n} p_{i} x_{i}^{s}}{P_{n}}
$$

and

$$
\frac{P_{n}}{p_{1}} x_{1}^{s}-\frac{\sum_{i=2}^{n} p_{i} x_{i}^{s}}{p_{1}} \geq b^{s}>0
$$

which shows that $\mathrm{x} \in R_{s}$. Taking the $(-s)$ th root, we obtain (2.2).
If $r<0<s$ we infer for $n=2, p_{1}=p_{2}$ that $x_{1}, x_{2}>0, x_{1}^{r}>x_{2}^{r}, x_{1}^{s}>x_{2}^{s}$ hence $x_{1}<x_{2}$ and $x_{1}>x_{2}$, which is impossible.

3. Rado Type Inequalities for Weighted Power Pseudo Means

The well-known extension of the arithmetic mean-geometric mean inequality (1.3) is the following inequality of Rado [11]:

$$
\begin{equation*}
Q_{n}\left(A_{n}(\mathbf{y} ; \mathbf{q})-G_{n}(\mathbf{y} ; \mathbf{q})\right) \geq Q_{n-1}\left(A_{n-1}(\mathbf{y} ; \mathbf{q})-G_{n-1}(\mathbf{y} ; \mathbf{q})\right) \tag{3.1}
\end{equation*}
$$

The next proposition provides an analog of the Rado inequality (3.1) for pseudo arithmetic and geometric means [2].

Proposition 3.1. For all positive real numbers $x_{i}(i=1,2, \ldots, n ; n \geq 2)$ we have

$$
\begin{equation*}
g_{n}(\mathrm{x}, \mathrm{p})-a_{n}(\mathrm{x} ; \mathrm{p}) \geq g_{n-1}(\mathrm{x} ; \mathrm{p})-a_{n-1}(\mathrm{x} ; \mathrm{p}) . \tag{3.2}
\end{equation*}
$$

The most obvious extension is to allow the means in the Rado inequality to have different weights [4]

$$
Q_{n} A_{n}(\mathbf{y} ; \mathbf{q})-\frac{q_{n}}{p_{n}} P_{n} G_{n}(\mathbf{y} ; \mathbf{p}) \geq Q_{n-1} A_{n-1}(\mathbf{y} ; \mathbf{q})-\frac{q_{n}}{p_{n}} P_{n-1} G_{n-1}(\mathbf{y} ; \mathbf{p})
$$

Using this inequality we obtain the following generalization of the inequality (3.2) [10].
Proposition 3.2. For all positive real numbers $x_{i}(i=1,2, \ldots, n ; n \geq 2)$ we have

$$
\begin{equation*}
g_{n}(\mathrm{x} ; \mathrm{p})-a_{n}(\mathrm{x} ; \mathrm{q}) \geq g_{n-1}(\mathrm{x} ; \mathrm{p})-a_{n-1}(\mathrm{x} ; \mathrm{q}) . \tag{3.3}
\end{equation*}
$$

An extension of the Rado inequality for weighted power means is the following inequality [4]: If $r, s, t \in \mathbb{R}$ such that $r / t \leq 1$ and $s / t \geq 1$ then

$$
\begin{equation*}
P_{n}\left(\left(M_{n}^{[s]}(\mathbf{y} ; \mathbf{p})\right)^{t}-\left(M_{n}^{[r]}(\mathbf{y} ; \mathbf{p})\right)^{t}\right) \geq P_{n-1}\left(\left(M_{n-1}^{[s]}(\mathbf{y} ; \mathbf{p})\right)^{t}-\left(M_{n-1}^{[r]}(\mathbf{y}, \mathbf{p})\right)^{t}\right) \tag{3.4}
\end{equation*}
$$

Using inequality (3.4) we obtain generalizations of the inequality of Rado type (3.2) for the weighted power pseudo means.

Theorem 3.3. If $r \leq 1, \mathrm{x} \in R_{r}$ and $x_{1}^{r} \leq x_{n}^{r}$ then

$$
\begin{equation*}
m_{n}^{[r]}(\mathrm{x}, \mathrm{p})-a_{n}(\mathrm{x}, \mathrm{p}) \geq m_{n-1}^{[r]}(\mathrm{x}, \mathrm{p})-a_{n-1}(\mathrm{x}, \mathrm{p}) \tag{3.5}
\end{equation*}
$$

If $s \geq 1, \mathrm{x} \in R_{s}$ and $x_{1} \leq x_{n}$ then

$$
\begin{equation*}
a_{n}(\mathrm{x}, \mathrm{p})-m_{n}^{[s]}(\mathrm{x}, \mathrm{p}) \geq a_{n-1}(\mathrm{x}, \mathrm{p})-m_{n-1}^{[s]}(\mathrm{x}, \mathrm{p}) \tag{3.6}
\end{equation*}
$$

Proof. To prove (3.5) we put in (3.4) $s=t=1$ and we obtain for $r \leq 1$ the inequality:

$$
\begin{equation*}
P_{n}\left(A_{n}(\mathbf{y} ; \mathbf{p})-M_{n}^{[r]}(\mathbf{y} ; \mathbf{p})\right) \geq P_{n-1}\left(A_{n-1}(\mathbf{y} ; \mathbf{p})-M_{n-1}^{[r]}(\mathbf{y} ; \mathbf{p})\right) . \tag{3.7}
\end{equation*}
$$

If we set in 3.7) $y_{1}=m_{n}^{[r]}(\mathbf{x}, \mathbf{p}), y_{i}=x_{i}(i=2,3, \ldots, n)$ then we have:

$$
P_{n}\left(A_{n}(\mathbf{y} ; \mathbf{p})-M_{n}^{[r]}(\mathbf{y} ; \mathbf{p})\right)=p_{1}\left(m_{n}^{[r]}(\mathbf{x} ; \mathbf{p})-a_{n}(\mathbf{x} ; \mathbf{p})\right),
$$

which leads to inequality (3.5). We observe that for $r \leq 1, \mathbf{x} \in R_{r}$ and $x_{1}^{r} \leq x_{n}^{r}$ we have

$$
0<P_{n} x_{1}^{r}-\sum_{i=2}^{n} p_{i} x_{i}^{r} \leq P_{n-1} x_{1}^{r}-\sum_{i=2}^{n-1} p_{i} x_{i}^{r}
$$

and $m_{n-1}^{[r]}(\mathbf{x}, \mathbf{p})$ exist.
To prove (3.6) we set in (3.4) $r=t=1$ and we obtain for $s \geq 1$ the inequality

$$
\begin{equation*}
P_{n}\left(M_{n}^{(s)}(\mathbf{y} ; \mathbf{p})-A_{n}(\mathbf{y} ; \mathbf{p})\right) \geq P_{n-1}\left(M_{n-1}^{[s]}(\mathbf{y} ; \mathbf{p})-A_{n-1}(\mathbf{y} ; \mathbf{p})\right) . \tag{3.8}
\end{equation*}
$$

If we put in (3.8) $y_{1}=m_{n}^{[s]}(\mathbf{x}, \mathbf{p}), y_{i}=x_{i}(i=2,3, \ldots, n)$ then we have

$$
P_{n}\left(M_{n}^{[s]}(\mathbf{y} ; \mathbf{p})-A_{n}(\mathbf{y} ; \mathbf{p})\right)=p_{1}\left(a_{n}(\mathbf{x} ; \mathbf{p})-m_{n}^{[s]}(\mathbf{x} ; \mathbf{p})\right),
$$

which leads to inequality 3.6. For $\mathbf{s} \geq 1, x \in R_{s}$ and $x_{1} \leq x_{n}, m_{n-1}^{[s]}(\mathbf{x} ; \mathbf{p})$ exist.
Theorem 3.4. If $0<r \leq s, \mathrm{x} \in R_{s}$ and $x_{1} \leq x_{n}$ then

$$
\begin{equation*}
\left(m_{n}^{[r]}(\mathrm{x} ; \mathrm{p})\right)^{s}-\left(m_{n}^{[s]}(\mathrm{x} ; \mathrm{p})\right)^{s} \geq\left(m_{n-1}^{[r]}(\mathrm{x} ; \mathrm{p})\right)^{s}-\left(m_{n-1}^{[s]}(\mathrm{x} ; \mathrm{p})\right)^{s} \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(m_{n}^{[r]}(\mathrm{x} ; \mathrm{p})\right)^{r}-\left(m_{n}^{[s]}(\mathrm{x} ; \mathrm{p})\right)^{r} \geq\left(m_{n-1}^{[s]}(\mathrm{x} ; \mathrm{p})\right)^{r}-\left(m_{n-1}^{[s]}(\mathrm{x} ; \mathrm{p})\right)^{r} \tag{3.10}
\end{equation*}
$$

Proof. To prove (3.9) we put in (3.4) $t=s$ and we obtain for $0<r \leq s$ the inequality

$$
\begin{equation*}
P_{n}\left(\left(M_{n}^{[s]}(\mathbf{y} ; \mathbf{p})\right)^{s}-\left(M_{n}^{[r]}(\mathbf{y} ; \mathbf{p})\right)^{s}\right) \geq P_{n-1}\left(\left(M_{n-1}^{[s]}(\mathbf{y}, \mathbf{p})\right)^{s}-\left(M_{n-1}^{[r]}(\mathbf{y}, \mathbf{p})\right)^{s}\right) \tag{3.11}
\end{equation*}
$$

If we set in $3.11 y_{1}=m_{n}^{[r]}(\mathbf{x} ; \mathbf{p}), y_{i}=x_{i}(i=2,3, \ldots, n)$ then we have

$$
P_{n}\left(\left(M_{n}^{[s]}(\mathbf{y} ; \mathbf{p})\right)^{s}-\left(M_{n}^{[r]}(\mathbf{y} ; \mathbf{p})\right)^{s}\right)=p_{1}\left(\left(m_{n}^{[r]}(\mathbf{x} ; \mathbf{p})\right)^{s}-\left(m_{n}^{[s]}(\mathbf{x} ; \mathbf{p})\right)^{s}\right),
$$

which leads to inequality $\sqrt{3.9}$ If $0<r \leq s, \mathbf{x} \in R_{s}$ then $\mathbf{x} \in R_{r}$ and if $x_{1} \leq x_{n}$ then $m_{n-1}^{[r]}(\mathbf{x} ; \mathbf{p})$ exists.
To prove (3.10) we set in (3.4) $t=r$ and we obtain for $0<r \leq s$ the inequality

$$
\begin{equation*}
P_{n}\left(\left(M_{n}^{[s]}(\mathbf{y} ; \mathbf{p})\right)^{r}-\left(M_{n}^{[r]}(\mathbf{y} ; \mathbf{p})\right)^{r}\right) \geq P_{n-1}\left(\left(M_{n-1}^{[s]}(\mathbf{y} ; \mathbf{p})\right)^{r}-\left(M_{n-1}^{[r]}(\mathbf{y} ; \mathbf{p})\right)^{r}\right) \tag{3.12}
\end{equation*}
$$

If we put in $3.12 y_{1}=m_{n}^{[s]}(\mathbf{x}, \mathbf{p}) y_{i}=x_{i}(i=2,3, \ldots, n)$ then we have

$$
P_{n}\left(\left(M_{n}^{[s]}(\mathbf{y} ; \mathbf{p})\right)^{r}-\left(M_{n}^{[r]}(\mathbf{y} ; \mathbf{p})^{r}\right)\right)=p_{1}\left(\left(m_{n}^{[r]}(\mathbf{x} ; \mathbf{p})\right)^{r}-\left(m_{n}^{[s]}(\mathbf{x} ; \mathbf{p})\right)^{r}\right),
$$

which leads to inequality (3.10).

References

[1] J. ACZÉL, Some general methods in the theory of functional equations in one variable.New applications of functional equations (Russian), Uspehi Mat. Nauk (N.S.), 11(3) (69) (1956), 3-58.
[2] H. ALZER, Inequalities for pseudo arithmetic and geometric means, International Series of Nu merical Mathematics, Vol. 103, Birkhauser-Verlag Basel, 1992, 5-16.
[3] R. BELLMAN, On an inequality concerning an indefinite form, Amer. Math. Monthly, 63 (1956), 108-109.
[4] P.S. BULLEN, D.S. MITRINOVIĆ and P.M. VASIĆ, Means and Their Inequalities, Reidel Publ. Co., Dordrecht, 1988.
[5] Y.J. CHO, M. MATIĆ AND J. PEČARIĆ, Improvements of some inequalities of Aczél's type, J. Math. Anal. Appl., 256 (2001), 226-240.
[6] S. IWAMOTO, R.J. TOMKINS and C.L. WANG, Some theorems on reverse inequalities, J. Math. Anal. Appl., 119 (1986), 282-299.
[7] L. LOSONCZI, Inequalities for indefinite forms, J. Math. Anal. Appl., 285 (1997),148-156.
[8] V. MIHEŞAN, Applications of continuous dynamic programing to inverse inequalities, General Mathematics, 2(1994), 53-60.
[9] V. MIHEŞAN, Popoviciu type inequalities for pseudo arithmetic and geometric means, (in press)
[10] V. MIHEŞAN, Rado and Popoviciu type inequalities for pseudo arithmetic and geometric means, (in press)
[11] D.S. MITRINOVIĆ, Analytic Inequalities, Springer Verlag, New York, 1970.
[12] X.H. SUN, Aczél-Chebyshev type inequality for positive linear functional, J. Math. Anal. Appl., 245 (2000), 393-403.

[^0]: ISSN (electronic): 1443-5756
 (c) 2005 Victoria University. All rights reserved.

 227-04

