# Journal of Inequalities in Pure and Applied Mathematics

#### **INEQUALITIES FOR WEIGHTED POWER PSEUDO MEANS**



Department of Mathematics Technical University of Cluj-Napoca Str. C.Daicoviciu nr.15 400020 Cluj-Napoca Romania.

EMail: Vasile.Mihesan@math.utcluj.ro



volume 6, issue 3, article 75, 2005.

Received 24 November, 2004; accepted 31 May, 2005.

Communicated by: F. Qi



© 2000 Victoria University ISSN (electronic): 1443-5756 227-04

#### **Abstract**

In this paper we denote by  $m_n^{[r]}$  the following expression, which is closely connected to the weighted power means of order  $r, M_n^{[r]}$ .

Let  $n \ge 2$  be a fixed integer and

$$m_n^{[r]}(\mathbf{x}; \mathbf{p}) = \begin{cases} \left(\frac{P_n}{p_1} x_1^r - \frac{1}{p_1} \sum_{i=2}^n p_i x_i^r\right)^{\frac{1}{r}}, & r \neq 0 \\ x_1^{P_n/p_1} / \prod_{i=2}^n x_i^{p_i/p_1}, & r = 0 \end{cases} \quad (\mathbf{x} \in R_r),$$

where  $P_n = \sum_{i=1}^n p_i$  and  $R_r$  denotes the set of the vectors  $\mathbf{x} = (x_1, x_2, \dots, x_n)$  for which  $x_i > 0$   $(i = 1, 2, \dots, n)$ ,  $\mathbf{p} = (p_1, p_2, \dots, p_n)$ ,  $p_1 > 0$ ,  $p_i \geq 0$   $(i = 1, 2, \dots, n)$  and  $P_n x_1^r > \sum_{i=2}^n p_i x_i^r$ .

Three inequalities are presented for  $m_n^{[r]}$ . The first is a comparison theorem. The second and the third is Rado type inequalities. The proofs show that the above inequalities are consequences of some well-known inequalities for weighted power means.

2000 Mathematics Subject Classification: 26D15, 26E60. Key words: Weighted power pseudo means, Inequalities.

#### **Contents**

| 1   | Introduction                                           | 3 |
|-----|--------------------------------------------------------|---|
| 2   | Comparison Theorem                                     | 6 |
| 3   | Rado Type Inequalities for Weighted Power Pseudo Means | 8 |
| Ref | ferences                                               |   |



#### Inequalities for Weighted Power Pseudo Means

Vasile Mihesan

Title Page

Contents









Go Back

Close

Quit

Page 2 of 13

#### 1. Introduction

Let  $\mathbf{y} = (y_1, y_2, \dots, y_n)$  and  $\mathbf{q} = (q_1, q_2, \dots, q_n)$  be positive *n*-tuples, then the arithmetic and geometric means of  $\mathbf{y}$  with weights  $\mathbf{q}$  are defined by

$$A_n(\mathbf{y}; \mathbf{q}) = \frac{1}{Q_n} \sum_{i=1}^n q_i y_i \quad \text{and} \quad G_n(\mathbf{y}; \mathbf{q}) = \left(\prod_{i=1}^n y_i^{q_i}\right)^{\frac{1}{Q_n}},$$
where  $Q_n = \sum_{i=1}^n q_i$ .

If r is a real number, then the r-th power means of y with weights q,  $M_n^{[r]}(\mathbf{y}; \mathbf{q})$  is defined by

(1.1) 
$$M_n^{[r]}(\mathbf{y}; \mathbf{q}) = \begin{cases} \left(\frac{1}{Q_n} \sum_{i=1}^n q_i y_i^r\right)^{\frac{1}{r}}, & r \neq 0; \\ \left(\prod_{i=1}^n y_i^{q_i}\right)^{\frac{1}{Q_n}}, & r = 0. \end{cases}$$

If  $r, s \in \mathbb{R}$ ,  $r \leq s$  then [11]

$$(1.2) M_n^{[r]}(\mathbf{y}; \mathbf{q}) \le M_n^{[s]}(\mathbf{y}, \mathbf{q})$$

is valid for all positive real numbers  $y_i$  and  $q_i$   $(i=1,2,\ldots,n)$ . For r=0 and s=1 we obtain the classical inequality between the weighted arithmetic and geometric means

(1.3) 
$$G_n = G_n(\mathbf{y}; \mathbf{q}) = \prod_{i=1}^n y_i^{q_i/Q_n} \le \frac{1}{Q_n} \sum_{i=1}^n q_i y_i = A_n(\mathbf{y}, \mathbf{q}) = A_n.$$



## Inequalities for Weighted Power Pseudo Means

Vasile Mihesan

Title Page

Contents









Go Back Close

Quit

Page 3 of 13

In this paper we denote by  $m_n^{[r]}(\mathbf{y}; \mathbf{q})$  the following expression which is closely connected to  $M_n^{[r]}(\mathbf{y}; \mathbf{q})$ .

Let  $n \ge 2$  be an integer (considered fixed throughout the paper) and define

(1.4) 
$$m_n^{[r]}(\mathbf{x}; \mathbf{p}) = \begin{cases} \left(\frac{P_n}{p_1} x_1^r - \frac{1}{p_1} \sum_{i=2}^n p_i x_i^r\right)^{\frac{1}{r}}, & r \neq 0 \\ x_1^{P_n/p_1} / \prod_{i=2}^n x_i^{p_i/p_1}, & r = 0 \end{cases}$$
  $(\mathbf{x} \in R_r)$ 

where  $P_n = \sum_{i=1}^n p_i$  and  $R_r$  denotes the set of the vectors  $\mathbf{x} = (x_1, x_2, \dots, x_n)$  for which  $x_i > 0$   $(i = 1, 2, \dots, n)$ ,  $\mathbf{p} = (p_1, p_2, \dots, p_n)$ ,  $p_1 > 0$ ,  $p_i \geq 0$   $(i = 2, 3, \dots, n)$  and  $P_n x_1^r > \sum_{i=2}^n p_i x_i^r$ .

Although there is no general agreement in literature about what constitutes a mean value most authors consider the intermediate property as the main feature. Since  $m_n^{[r]}(\mathbf{x};\mathbf{p})$  do not satisfy this condition, this means that the double inequalities

$$\min_{1 \le i \le n} x_i \le m_n^{[r]}(\mathbf{x}; \mathbf{p}) \le \max_{1 \le i \le n} x_i$$

are not true for all positive  $x_i$ , we call  $m_n^{[r]}$  the weighted power pseudo means of order r.

For r=1 we obtain by (1.4) the pseudo arithmetic means  $a_n(\mathbf{x}, \mathbf{p})$  for r=0 the pseudo geometric means,  $g_n(\mathbf{x}, \mathbf{p})$ , see [2]. In 1990, H. Alzer [2] published the following companion of inequality (1.3):

$$(1.5) a_n(\mathbf{x}; \mathbf{p}) \le g_n(\mathbf{x}; \mathbf{p}).$$



## Inequalities for Weighted Power Pseudo Means

Vasile Mihesan

Title Page

Contents









Go Back

Close

Quit

Page 4 of 13

For the special case  $p_1 = p_2 = \cdots = p_n$  the inequality (1.5) was proved by S. Iwamoto, R.J. Tomkins and C.L. Wang [6].

Rado and Popoviciu type inequalities for pseudo arithmetic and geometric means were given in [2], [9], [10].

We note that inequality (1.5) is an example of a so called reverse inequality. One of the first reverse inequalities was published by J. Aczél [1] who proved the following intriguing variant of the Cauchy-Schwarz inequality:

If  $x_i$  and  $y_i$   $(i=1,2,\ldots,n)$  are real numbers with  $x_1^2>\sum_{i=2}^n x_i^2$  and  $y_1^2>\sum_{i=2}^n y_i^2$ , then

(1.6) 
$$\left(x_1y_1 - \sum_{i=2}^n x_iy_i\right)^2 \ge \left(x_1^2 - \sum_{i=2}^n x_i^2\right) \left(y_1^2 - \sum_{i=2}^n y_i^2\right).$$

Further interesting reverse inequalities were given in [3], [5], [6], [7], [8], [11], [12].

The aim of this paper is to prove a comparison theorem and Rado type inequalities for the weighted power pseudo means.



## Inequalities for Weighted Power Pseudo Means

Vasile Mihesan

Title Page

Contents









Go Back

Close

Quit

Page 5 of 13

#### 2. Comparison Theorem

Our first result is a comparison theorem for the weighted power pseudo means.

**Theorem 2.1.** If  $0 \le r \le s$ ,  $x \in R_s$  then  $x \in R_r$  and

(2.1) 
$$m_n^{[s]}(\mathbf{x}, \mathbf{p}) \le m_n^{[r]}(\mathbf{x}, \mathbf{p}).$$

If  $r \leq s \leq 0$ ,  $x \in R_r$  then  $x \in R_s$  and

(2.2) 
$$m_n^{[s]}(\mathbf{x};\mathbf{p}) \le m_n^{[r]}(\mathbf{x};\mathbf{p}).$$

If r < 0 < s then  $R_r \cap R_s = \emptyset$ , hence  $m_n^{[r]}(\mathbf{x}, \mathbf{p})$ ,  $m_n^{[s]}(\mathbf{x}, \mathbf{p})$  cannot both be defined, they are not comparable.

*Proof.* To prove (2.1) let  $a = m_n^{[s]}(\mathbf{x}, \mathbf{p}) > 0$ , then we obtain by (1.4) and (1.2)

$$x_1 = \left(\frac{p_1 a^s + \sum_{i=2}^n p_i x_i^s}{P_n}\right)^{\frac{1}{s}} \ge \left(\frac{p_1 a^r + \sum_{i=2}^n p_i x_i^r}{P_n}\right)^{\frac{1}{r}},$$

hence

$$\frac{P_n}{p_1}x_1^r - \frac{\sum_{i=2}^n p_i x_i^r}{p_1} \ge a^r > 0$$

which shows that  $\mathbf{x} \in R_r$ . Taking the r th root, we obtain (2.1).

To prove (2.2) let  $b = m_n^{[r]}(\mathbf{x}, \mathbf{p}) > 0$ , then we obtain by (1.4) and (1.2),

$$x_1 = \left(\frac{p_1 b^r + \sum_{i=2}^n p_i x_i^r}{P_n}\right)^{\frac{1}{r}} \le \left(\frac{p_1 b^s + \sum_{i=2}^n p_i x_i^b}{P_n}\right)^{\frac{1}{s}}.$$



## Inequalities for Weighted Power Pseudo Means

Vasile Mihesan

Title Page

Contents









Go Back

Close

Quit

Page 6 of 13

J. Ineq. Pure and Appl. Math. 6(3) Art. 75, 2005 http://jipam.vu.edu.au Hence

$$x_1^s \ge \frac{p_1 b^s + \sum_{i=2}^n p_i x_i^s}{P_n}$$

and

$$\frac{P_n}{p_1}x_1^s - \frac{\sum_{i=2}^n p_i x_i^s}{p_1} \ge b^s > 0,$$

which shows that  $\mathbf{x} \in R_s$ . Taking the (-s) th root, we obtain (2.2).

If r < 0 < s we infer for n = 2,  $p_1 = p_2$  that  $x_1, x_2 > 0$ ,  $x_1^r > x_2^r$ ,  $x_1^s > x_2^s$  hence  $x_1 < x_2$  and  $x_1 > x_2$ , which is impossible.



# Inequalities for Weighted Power Pseudo Means

Vasile Mihesan

Title Page

Contents

Go Back

Close

Quit

Page 7 of 13

# 3. Rado Type Inequalities for Weighted Power Pseudo Means

The well-known extension of the arithmetic mean-geometric mean inequality (1.3) is the following inequality of Rado [11]:

$$(3.1) Q_n(A_n(\mathbf{y}; \mathbf{q}) - G_n(\mathbf{y}; \mathbf{q})) \ge Q_{n-1}(A_{n-1}(\mathbf{y}; \mathbf{q}) - G_{n-1}(\mathbf{y}; \mathbf{q})).$$

The next proposition provides an analog of the Rado inequality (3.1) for pseudo arithmetic and geometric means [2].

**Proposition 3.1.** For all positive real numbers  $x_i$   $(i = 1, 2, ..., n; n \ge 2)$  we have

(3.2) 
$$g_n(\mathbf{x},\mathbf{p}) - a_n(\mathbf{x};\mathbf{p}) \ge g_{n-1}(\mathbf{x};\mathbf{p}) - a_{n-1}(\mathbf{x};\mathbf{p}).$$

The most obvious extension is to allow the means in the Rado inequality to have different weights [4]

$$Q_n A_n(\mathbf{y}; \mathbf{q}) - \frac{q_n}{p_n} P_n G_n(\mathbf{y}; \mathbf{p}) \ge Q_{n-1} A_{n-1}(\mathbf{y}; \mathbf{q}) - \frac{q_n}{p_n} P_{n-1} G_{n-1}(\mathbf{y}; \mathbf{p}).$$

Using this inequality we obtain the following generalization of the inequality (3.2) [10].

**Proposition 3.2.** For all positive real numbers  $x_i$   $(i = 1, 2, ..., n; n \ge 2)$  we have

(3.3) 
$$g_n(\mathbf{x};\mathbf{p}) - a_n(\mathbf{x};\mathbf{q}) \ge g_{n-1}(\mathbf{x};\mathbf{p}) - a_{n-1}(\mathbf{x};\mathbf{q}).$$



## Inequalities for Weighted Power Pseudo Means

Vasile Mihesan

Title Page

Contents





Go Back

Close

Quit

Page 8 of 13

J. Ineq. Pure and Appl. Math. 6(3) Art. 75, 2005 http://jipam.vu.edu.au An extension of the Rado inequality for weighted power means is the following inequality [4]: If  $r, s, t \in \mathbb{R}$  such that  $r/t \le 1$  and  $s/t \ge 1$  then

$$(3.4) P_n\left(\left(M_n^{[s]}(\mathbf{y}; \mathbf{p})\right)^t - \left(M_n^{[r]}(\mathbf{y}; \mathbf{p})\right)^t\right)$$

$$\geq P_{n-1}\left(\left(M_{n-1}^{[s]}(\mathbf{y}; \mathbf{p})\right)^t - \left(M_{n-1}^{[r]}(\mathbf{y}, \mathbf{p})\right)^t\right).$$

Using inequality (3.4) we obtain generalizations of the inequality of Rado type (3.2) for the weighted power pseudo means.

**Theorem 3.3.** If  $r \leq 1$ ,  $x \in R_r$  and  $x_1^r \leq x_n^r$  then

(3.5) 
$$m_n^{[r]}(\mathbf{x},\mathbf{p}) - a_n(\mathbf{x},\mathbf{p}) \ge m_{n-1}^{[r]}(\mathbf{x},\mathbf{p}) - a_{n-1}(\mathbf{x},\mathbf{p}).$$

If  $s \ge 1$ ,  $\mathbf{x} \in R_s$  and  $x_1 \le x_n$  then

(3.6) 
$$a_n(\mathbf{x},\mathbf{p}) - m_n^{[s]}(\mathbf{x},\mathbf{p}) \ge a_{n-1}(\mathbf{x},\mathbf{p}) - m_{n-1}^{[s]}(\mathbf{x},\mathbf{p}).$$

*Proof.* To prove (3.5) we put in (3.4) s = t = 1 and we obtain for  $r \le 1$  the inequality:

(3.7) 
$$P_n(A_n(\mathbf{y}; \mathbf{p}) - M_n^{[r]}(\mathbf{y}; \mathbf{p})) \ge P_{n-1}(A_{n-1}(\mathbf{y}; \mathbf{p}) - M_{n-1}^{[r]}(\mathbf{y}; \mathbf{p})).$$

If we set in (3.7)  $y_1 = m_n^{[r]}(\mathbf{x}, \mathbf{p}), y_i = x_i \ (i = 2, 3, ..., n)$  then we have:

$$P_n\left(A_n(\mathbf{y};\mathbf{p}) - M_n^{[r]}(\mathbf{y};\mathbf{p})\right) = p_1\left(m_n^{[r]}(\mathbf{x};\mathbf{p}) - a_n(\mathbf{x};\mathbf{p})\right),$$



#### Inequalities for Weighted Power Pseudo Means

Vasile Mihesan

Title Page

Contents









Close

Quit

Page 9 of 13

which leads to inequality (3.5). We observe that for  $r \leq 1$ ,  $\mathbf{x} \in R_r$  and  $x_1^r \leq x_n^r$  we have

$$0 < P_n x_1^r - \sum_{i=2}^n p_i x_i^r \le P_{n-1} x_1^r - \sum_{i=2}^{n-1} p_i x_i^r$$

and  $m_{n-1}^{[r]}(\mathbf{x}, \mathbf{p})$  exist.

To prove (3.6) we set in (3.4) r=t=1 and we obtain for  $s\geq 1$  the inequality

(3.8) 
$$P_n\left(M_n^{(s)}(\mathbf{y}; \mathbf{p}) - A_n(\mathbf{y}; \mathbf{p})\right) \ge P_{n-1}\left(M_{n-1}^{[s]}(\mathbf{y}; \mathbf{p}) - A_{n-1}(\mathbf{y}; \mathbf{p})\right).$$

If we put in (3.8)  $y_1 = m_n^{[s]}(\mathbf{x}, \mathbf{p}), y_i = x_i \ (i = 2, 3, ..., n)$  then we have

$$P_n\left(M_n^{[s]}(\mathbf{y};\mathbf{p}) - A_n(\mathbf{y};\mathbf{p})\right) = p_1\left(a_n(\mathbf{x};\mathbf{p}) - m_n^{[s]}(\mathbf{x};\mathbf{p})\right),$$

which leads to inequality (3.6). For  $\mathbf{s} \geq 1$ ,  $x \in R_s$  and  $x_1 \leq x_n$ ,  $m_{n-1}^{[s]}(\mathbf{x}; \mathbf{p})$  exist.

**Theorem 3.4.** If  $0 < r \le s$ ,  $x \in R_s$  and  $x_1 \le x_n$  then

(3.9) 
$$\left( m_n^{[r]}(\mathbf{x}; \mathbf{p}) \right)^s - \left( m_n^{[s]}(\mathbf{x}; \mathbf{p}) \right)^s \ge \left( m_{n-1}^{[r]}(\mathbf{x}; \mathbf{p}) \right)^s - \left( m_{n-1}^{[s]}(\mathbf{x}; \mathbf{p}) \right)^s$$

and

$$(3.10) \qquad \left(m_n^{[r]}(\mathbf{x};\mathbf{p})\right)^r - \left(m_n^{[s]}(\mathbf{x};\mathbf{p})\right)^r \ge \left(m_{n-1}^{[s]}(\mathbf{x};\mathbf{p})\right)^r - \left(m_{n-1}^{[s]}(\mathbf{x};\mathbf{p})\right)^r.$$



## Inequalities for Weighted Power Pseudo Means

Vasile Mihesan

Title Page

Contents









Close

Quit

Page 10 of 13

*Proof.* To prove (3.9) we put in (3.4) t = s and we obtain for  $0 < r \le s$  the inequality

$$(3.11) P_n \left( \left( M_n^{[s]}(\mathbf{y}; \mathbf{p}) \right)^s - \left( M_n^{[r]}(\mathbf{y}; \mathbf{p}) \right)^s \right)$$

$$\geq P_{n-1} \left( \left( M_{n-1}^{[s]}(\mathbf{y}, \mathbf{p}) \right)^s - \left( M_{n-1}^{[r]}(\mathbf{y}, \mathbf{p}) \right)^s \right).$$

If we set in (3.11)  $y_1 = m_n^{[r]}(\mathbf{x}; \mathbf{p}), y_i = x_i \ (i = 2, 3, ..., n)$  then we have

$$P_n\left(\left(M_n^{[s]}(\mathbf{y};\mathbf{p})\right)^s - \left(M_n^{[r]}(\mathbf{y};\mathbf{p})\right)^s\right) = p_1\left(\left(m_n^{[r]}(\mathbf{x};\mathbf{p})\right)^s - \left(m_n^{[s]}(\mathbf{x};\mathbf{p})\right)^s\right),$$

which leads to inequality (3.9) If  $0 < r \le s$ ,  $\mathbf{x} \in R_s$  then  $\mathbf{x} \in R_r$  and if  $x_1 \le x_n$  then  $m_{n-1}^{[r]}(\mathbf{x}; \mathbf{p})$  exists.

To prove (3.10) we set in (3.4) t = r and we obtain for  $0 < r \le s$  the inequality

$$(3.12) P_n \left( \left( M_n^{[s]}(\mathbf{y}; \mathbf{p}) \right)^r - \left( M_n^{[r]}(\mathbf{y}; \mathbf{p}) \right)^r \right)$$

$$\geq P_{n-1} \left( \left( M_{n-1}^{[s]}(\mathbf{y}; \mathbf{p}) \right)^r - \left( M_{n-1}^{[r]}(\mathbf{y}; \mathbf{p}) \right)^r \right).$$

If we put in (3.12)  $y_1 = m_n^{[s]}(\mathbf{x}, \mathbf{p})y_i = x_i \ (i = 2, 3, ..., n)$  then we have

$$P_n\left(\left(M_n^{[s]}(\mathbf{y};\mathbf{p})\right)^r - \left(M_n^{[r]}(\mathbf{y};\mathbf{p})^r\right)\right) = p_1\left(\left(m_n^{[r]}(\mathbf{x};\mathbf{p})\right)^r - \left(m_n^{[s]}(\mathbf{x};\mathbf{p})\right)^r\right),$$

which leads to inequality (3.10).



## Inequalities for Weighted Power Pseudo Means

Vasile Mihesan

Title Page

Contents









Go Back

Close

Quit

Page 11 of 13

#### References

- [1] J. ACZÉL, Some general methods in the theory of functional equations in one variable. New applications of functional equations (Russian), *Uspehi Mat. Nauk* (N.S.), **11**(3) (69) (1956), 3–58.
- [2] H. ALZER, Inequalities for pseudo arithmetic and geometric means, *International Series of Numerical Mathematics*, Vol. **103**, Birkhauser-Verlag Basel, 1992, 5–16.
- [3] R. BELLMAN, On an inequality concerning an indefinite form, *Amer. Math. Monthly*, **63** (1956), 108–109.
- [4] P.S. BULLEN, D.S. MITRINOVIĆ AND P.M. VASIĆ, *Means and Their Inequalities*, Reidel Publ. Co., Dordrecht, 1988.
- [5] Y.J. CHO, M. MATIĆ AND J. PEČARIĆ, Improvements of some inequalities of Aczél's type, *J. Math. Anal. Appl.*, **256** (2001), 226–240.
- [6] S. IWAMOTO, R.J. TOMKINS AND C.L. WANG, Some theorems on reverse inequalities, *J. Math. Anal. Appl.*, **119** (1986), 282–299.
- [7] L. LOSONCZI, Inequalities for indefinite forms, *J. Math. Anal. Appl.*, **285** (1997),148–156.
- [8] V. MIHEŞAN, Applications of continuous dynamic programing to inverse inequalities, *General Mathematics*, **2**(1994), 53–60.
- [9] V. MIHEŞAN, Popoviciu type inequalities for pseudo arithmetic and geometric means, (in press)



#### Inequalities for Weighted Power Pseudo Means

Vasile Mihesan

Title Page

Contents

Go Back

Close

Quit

Page 12 of 13

J. Ineq. Pure and Appl. Math. 6(3) Art. 75, 2005 http://jipam.vu.edu.au

- [10] V. MIHEŞAN, Rado and Popoviciu type inequalities for pseudo arithmetic and geometric means, (in press)
- [11] D.S. MITRINOVIĆ, Analytic Inequalities, Springer Verlag, New York, 1970.
- [12] X.H. SUN, Aczél-Chebyshev type inequality for positive linear functional, *J. Math. Anal. Appl.*, **245** (2000), 393–403.



# Inequalities for Weighted Power Pseudo Means

Vasile Mihesan

Title Page

Contents





Go Back

Close

Quit

Page 13 of 13