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ABSTRACT. We continue the analysis in [F. Hansen, and J. Tomiyama, Differential analysis of
matrix convex functions.Linear Algebra Appl., 420:102–116, 2007] of matrix convex functions
of a fixed order defined in a real interval by differential methods as opposed to the characteriza-
tion in terms of divided differences given by Kraus. We amend and improve some points in the
previously given presentation, and we give a number of simple but important consequences of
matrix convexity of low orders.
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1. I NTRODUCTION

Let f be a real function defined on an intervalI. It is said to ben-convex if

f(λA + (1− λ)B) ≤ λf(A) + (1− λ)f(B) λ ∈ [0, 1]

for arbitrary Hermitiann × n matricesA andB with spectra inI. It is said to ben-concave if
−f is n-convex, and it is said to ben-monotone if

A ≤ B ⇒ f(A) ≤ f(B)

for arbitrary Hermitiann × n matricesA andB with spectra inI. We denote byPn(I) the set
of n-monotone functions defined on an intervalI, and byKn(I) the set ofn-convex functions
defined inI.
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2 FRANK HANSEN AND JUN TOMIYAMA

We analyzed in [3] the structure of the setsKn(I) by differential methods and proved, among
other things, thatKn+1(I) is strictly contained inKn(I) for every natural numbern. We discov-
ered that some improvements of the analysis and presentation is called for, and this is the topic
of the next section. We also noticed that the theory has quite striking applications for monotone
or convex functions of low order, and this is covered in the last section.

2. I MPROVEMENTS AND AMENDMENTS

Definition 2.1. Let f : I → R be a function defined on an open interval. We say thatf is
strictly n-monotone, iff is n-monotone and2n − 1 times continuously differentiable, and the
determinant

det

(
f (i+j−1)(t)

(i + j − 1)!

)n

i,j=1

> 0

for every t ∈ I. Likewise, we say thatf is strictly n-convex, iff is n-convex and2n times
continuously differentiable, and the determinant

det

(
f (i+j)(t)

(i + j)!

)n

i,j=1

> 0

for everyt ∈ I.

By inspecting the proof of [3, Proposition 1.3], we realize that we previously proved the
following slightly stronger result.

Proposition 2.1. Let I be a finite interval, and letm andn be natural numbers withm ≥ 2n.
There exists a strictlyn-concave and strictlyn-monotone polynomialfm : I → R of degreem.
Likewise, there exists a strictlyn-convex and strictlyn-monotone polynomialgm : I → R of
degreem.

The above proposition is proved by introducing a polynomialpm(t) of degreem such that
Mn(pm; t) is positive definite andKn(pm; t) is negative definite fort = 0. The last part of [3,
Theorem 1.2] then directly ensures the existence of anα > 0 such thatpm is n-monotone and
n-concave in(−α, α). It is somewhat misleading, as we did in the paper, to first consider the
definiteness ofMn(pm; t) andKn(pm; t) in a neighborhood of zero.

Remark 1. We would like to give some more detailed comments to the proof of the second part
of [3, Theorem 1.2] (which is independent of the last assertion in the theorem). The statement
is that iff is a real2n times continuously differentiable function defined on an open intervalI,
then the matrix

Kn(f ; t) =

(
f i+j(t)

(i + j)!

)n

i,j=1

is positive semi-definite for eacht ∈ I. We proved that the leading determinants of the matrix
Kn(f ; t) are non-negative for eacht ∈ I. It is well-known that this condition is not sufficient
to insure that the matrix itself is positive semi-definite. In the proof we wave our hands and say
that all principal submatrices ofKn(f ; t) may be obtained as a leading principal submatrix by
first making a suitable joint permutation of the rows and columns in the Kraus matrix. But this
common remedy is unfortunately not working in the present situation. We therefore owe it to
readers to complete the proof correctly.

Proof. Let Dm(Kn(f ; t0)) for somet0 ∈ I denote the leading principal determinant of orderm
of the matrixKn(f ; t0). We may according to Proposition 2.1 choose a matrix convex function
g such that

Dm(Kn(g; t0)) > 0 m = 1, . . . , n.
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The polynomialpm in ε defined by setting

pm(ε) = Dm(Kn(f + εg; t0))

is of degree at mostm, andpm(ε) ≥ 0 for ε ≥ 0. However since the coefficient toεm in pm

is Dm(Kn(g; t0)) > 0, we realize thatpm is not the zero polynomial. Letηm be the smallest
positive root ofpm, then

pm(ε) > 0 0 < ε < ηm.

Settingη = min{η1, . . . , ηn), we obtain

Kn(f + εg; t0) > 0 0 < ε < η.

By letting ε tend to zero, we finally conclude thatKn(f ; t0) is positive semi-definite. �

We state in a remark after [3, Corollary 1.5] that the possible degrees of any polynomial in
the gap between the matrix convex functions of ordern and ordern + 1 defined on a finite
interval are limited to2n and2n + 1. However, this is taken in the context of polynomials of
degree less than or equal to2n + 1 and may be misunderstood. There may well be polynomials
of higher degrees in the gap.

3. SCATTERED OBSERVATIONS

It is well-known for which exponents the functiont → tp is either operator monotone or
operator convex in the positive half-axis. It turns out that the same results apply if we ask for
which exponents the function is2-monotone or2-convex on an open subinterval of the positive
half-axis.

Proposition 3.1. Consider the function

f(t) = tp t ∈ I

defined on any subintervalI of the positive half-axis. Thenf is 2-monotone if and only if
0 ≤ p ≤ 1, and it is2-convex if and only if either1 ≤ p ≤ 2 or −1 ≤ p ≤ 0.

Proof. There is nothing to prove iff is constant or linear, so we may assume thatp 6= 0 and
p 6= 1. In the first case the derivativef ′(t) = ptp−1 should be non-negative sop > 0, and it may
be written [2, Chapter VII Theorem IV] in the form

f ′(t) =
1

c(t)2
t ∈ I

for c(t) = p−1/2t(1−p)/2 and this function is concave only for0 < p ≤ 1. One may alternatively
consider the determinant

det

f ′(t) f ′′(t)
2!

f ′′(t)
2!

f (3)(t)
3!

 = det

 ptp−1 p(p−1)tp−2

2

p(p−1)tp−2

2
p(p−1)(p−2)tp−3

6


= − 1

12
p2(p− 1)(p + 1)t2p−4

and note that the matrix is positive semi-definite only for0 ≤ p ≤ 1.
The second derivative may be written [3, Theorem 2.3] in the form

f ′′(t) = p(p− 1)tp−2 =
1

d(t)3
t ∈ I
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for d(t) = (p(p− 1))−1/3t(2−p)/3, and this function is concave only for−1 ≤ p < 0 or 1 < p ≤
2. One may alternatively consider the determinant

det

 f ′′(t)
2

f (3)(t)
6

f (3)(t)
6

f (4)(t)
24

 = det

 p(p−1)tp−2

2
p(p−1)(p−2)tp−3

6

p(p−1)(p−2)tp−3

6
p(p−1)(p−2)(p−3)tp−4

24


= − 1

144
p2(p− 1)2(p− 2)(p + 1)t2p−6

and note that the matrix is positive semi-definite only for−1 ≤ p ≤ 0 or 1 ≤ p ≤ 2. �

The observation that the functiont → tp is 2-monotone only for0 ≤ p ≤ 1 has appeared in
the literature in different forms, cf. [6, 1.3.9 Proposition] or [4].

It is known that the derivative of an operator monotone function defined on an infinite interval
(α,∞) is completely monotone [2, Page 86]. We give a parallel result for matrix monotone
functions which implies this observation, and extend the analysis to matrix convex functions.

Theorem 3.2.Consider a functionf defined on an interval of the form(α,∞) for some realα.

(1) If f is n-monotone and2n− 1 times continuously differentiable, then

(−1)kf (k+1)(t) ≥ 0 k = 0, 1, . . . , 2n− 2.

Therefore, the functionf and its even derivatives up to order2n− 4 are concave func-
tions, and the odd derivatives up to order2n− 3 are convex functions.

(2) If f is n-convex and2n times continuously differentiable, then

(−1)kf (k+2)(t) ≥ 0 k = 0, 1, . . . , 2n− 2.

Therefore, the functionf and its even derivatives up to order2n−2 are convex functions,
and the odd derivatives up to order2n− 3 are concave functions.

Proof. We may assume thatn ≥ 2. To prove the first assertion we may write [2, Chapter VII
Theorem IV] the derivativef ′ in the form

f ′(t) =
1

c(t)2
,

wherec is a positive concave function. Sincec is defined on an infinite interval it has to be
increasing, thereforef ′ is decreasing and thusf ′′ ≤ 0. Sincef is n-monotone, it follows from
Dobsch’s condition [1] that the odd derivatives satisfy

f (2k+1) ≥ 0 k = 0, 1, . . . , n− 1.

The odd derivativesf (2k+1) are thus convex fork = 0, 1, . . . , n− 2. If the third derivativef (3),
which is a convex function, were strictly increasing at any point, then it would go towards infin-
ity and the second derivative would eventually be positive for larget. However, this contradicts
f ′′ ≤ 0, sof (3) is decreasing and thus the fourth derivativef (4) ≤ 0. This argument may now
be continued to prove the first assertion.

To prove the second assertion we may write [3, Theorem 2.3] the second derivativef ′′ in the
form

f ′′(t) =
1

d(t)3
,

whered is a positive concave function. Sinced is defined on an infinite interval it has to be
increasing, thereforef ′′ is decreasing and thusf (3) ≤ 0. Sincef is n-convex, it follows [3,
Theorem 1.2] that the even derivatives satisfy

f (2k) ≥ 0 k = 1, . . . , n.
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The statement now follows in a similar way as for the first assertion. �

Corollary 3.3. The second derivative of an operator convex function defined on an infinite
interval (α,∞) is completely monotone.

Remark 2. The indefinite integralg(t) =
∫

f(t) dt of a2-monotone functionf is 2-convex.

Proof. The second derivative may be written in the form

g′′(t) = f ′(t) =
1

c(t)2
=

1

(c(t)2/3)3

for some positive concave functionc. Since the functiont→ t2/3 is increasing and concave, we
conclude thatt → c(t)2/3 is concave. The statement then follows from the characterization of
2-convexity. �

It is known in the literature that operator monotone or operator convex functions defined on
the whole real line are either affine or quadratic, and this fact is established by appealing to the
representation theorem of Pick functions. However, the situation is far more general, and the
results only depend on the monotonicity or convexity of two by two matrices.

Theorem 3.4. Let f be a function defined on the whole real line. Iff is 2-monotone then it is
necessarily affine. Iff is 2-convex then it is necessarily quadratic.

Proof. Let (ρn)n=1,2,... be an approximate unit of positive and evenC∞-functions defined on the
real axis, vanishing outside the closed interval[−1, 1]. The convolutionsρn ∗ f are infinitely
many times differentiable, and they are2-monotone iff is 2-monotone and2-convex if f is
2-convex. Sincef is continuousρn ∗ f converge uniformly on any bounded interval tof. We
may therefore assume thatf is four times differentiable.

In the first case, the derivativef ′ may be written [2, Chapter VII Theorem IV] in the form
f ′(t) = c(t)−2 for some positive concave functionc defined on the real line, while in the second
case the second derivativef ′′ may be written [3, Theorem 2.3] in the formf ′′(t) = d(t)−3 for
some positive concave functiond defined on the real line. The assertions now follow since a
positive concave function defined on the whole real line is necessarily constant. �
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