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ABSTRACT. We continue the analysis in [F. Hansen, and J. Tomiyama, Differential analysis of
matrix convex functionsLinear Algebra Appl.420:102—-116, 2007] of matrix convex functions

of a fixed order defined in a real interval by differential methods as opposed to the characteriza-
tion in terms of divided differences given by Kraus. We amend and improve some points in the
previously given presentation, and we give a number of simple but important consequences of
matrix convexity of low orders.
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1. INTRODUCTION
Let f be a real function defined on an intervallt is said to ben-convex if
fOAA+ (1 —=XN)B) < Af(A)+ (1 =N f(B) A€ [0,1]
for arbitrary Hermitiam x n matricesA and B with spectra in/. It is said to ben-concave if
— f isn-convex, and it is said to be-monotone if
A<B = [f(A)<[(B)

for arbitrary Hermitianm x n matricesA and B with spectra in/. We denote byP, (/) the set
of n-monotone functions defined on an intervabnd by K, (I) the set ofn-convex functions
defined in/.
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We analyzed in[3] the structure of the séfs(/) by differential methods and proved, among
other things, thak,, (1) is strictly contained i, (1) for every natural numbet. We discov-
ered that some improvements of the analysis and presentation is called for, and this is the topic
of the next section. We also noticed that the theory has quite striking applications for monotone
or convex functions of low order, and this is covered in the last section.

2. IMPROVEMENTS AND AMENDMENTS

Definition 2.1. Let f: I — R be a function defined on an open interval. We say tha
strictly n-monotone, iff is n-monotone an@n — 1 times continuously differentiable, and the

determinant ) .
1TI]— t
o (L220)
((+7—D -
for everyt € I. Likewise, we say thay is strictly n-convex, if f is n-convex andn times
continuously differentiable, and the determinant

det (w)n >0
(Z +])! ij=1

for everyt € I.

By inspecting the proof of [3, Proposition 1.3], we realize that we previously proved the
following slightly stronger result.

Proposition 2.1. Let I be a finite interval, and let» andn» be natural numbers witln > 2n.
There exists a strictlyi-concave and strictly.-monotone polynomiaf,,,: I — R of degreem.
Likewise, there exists a strictly-convex and strictly:-monotone polynomiaj,,: I — R of
degreem.

The above proposition is proved by introducing a polynomijalt) of degreem such that
M, (pm;t) is positive definite and<,(p,,;t) is negative definite fot = 0. The last part of([3,
Theorem 1.2] then directly ensures the existence af an0 such thap,, is n-monotone and
n-concave in(—a, «v). It is somewhat misleading, as we did in the paper, to first consider the
definiteness of\,, (p.; t) and K,,(p,,,; t) in @ neighborhood of zero.

Remark 1. We would like to give some more detailed comments to the proof of the second part
of [3, Theorem 1.2] (which is independent of the last assertion in the theorem). The statement
is that if f is a real2n times continuously differentiable function defined on an open intdrval
then the matrix o

) )"

w0 = (3

is positive semi-definite for eache I. We proved that the leading determinants of the matrix
K, (f;t) are non-negative for eaghe I. It is well-known that this condition is not sufficient

to insure that the matrix itself is positive semi-definite. In the proof we wave our hands and say
that all principal submatrices df,(f;t) may be obtained as a leading principal submatrix by
first making a suitable joint permutation of the rows and columns in the Kraus matrix. But this
common remedy is unfortunately not working in the present situation. We therefore owe it to
readers to complete the proof correctly.

3,7=1

Proof. Let D,,, (K, (f;to)) for somet, € I denote the leading principal determinant of order
of the matrixX,(f;ty). We may according to Propositipn .1 choose a matrix convex function
g such that

D, (K,(g; to)) >0 m=1,...,n.
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The polynomial,, in € defined by setting

pm(€) = Dy (K (f + €95 to))

is of degree at most, andp,,(¢) > 0 for e > 0. However since the coefficient " in p,,
is D, (K, (g; to)) > 0, we realize thap,, is not the zero polynomial. Let,, be the smallest
positive root ofp,,, then

pm(e) >0 0<e<nnm.
Settingn = min{n,,...,n,), we obtain

K,(f +¢€g;t)) >0 0<e<n.
By letting e tend to zero, we finally conclude that,(f; ¢,) is positive semi-definite. O

We state in a remark after|[3, Corollary 1.5] that the possible degrees of any polynomial in
the gap between the matrix convex functions of ordeand ordern + 1 defined on a finite
interval are limited t@n and2n + 1. However, this is taken in the context of polynomials of
degree less than or equalZo + 1 and may be misunderstood. There may well be polynomials
of higher degrees in the gap.

3. SCATTERED OBSERVATIONS

It is well-known for which exponents the functian— t? is either operator monotone or
operator convex in the positive half-axis. It turns out that the same results apply if we ask for
which exponents the function &monotone o2-convex on an open subinterval of the positive
half-axis.

Proposition 3.1. Consider the function

ft) =1 tel
defined on any subintervdl of the positive half-axis. Thefi is 2-monotone if and only if
0 <p<1,anditis2-convex if and only if eithet < p <2or—-1 <p <0.

Proof. There is nothing to prove if is constant or linear, so we may assume that 0 and
p # 1. In the first case the derivativé(t) = pt?~! should be non-negative $o> 0, and it may
be written [2, Chapter VII Theorem V] in the form

1

f/(t)zc(w tG]

for c(t) = p~1/2t1=P)/2 and this function is concave only for< p < 1. One may alternatively
consider the determinant

7 _ _92
oy 1 ot e
det = det ‘
@) O plp—1)tP~2  p(p—1)(p—2)tP~3
2! 3! 2 6
1 _
= _ﬁpz(p —1D(p+ 1)t

and note that the matrix is positive semi-definite only(fer p < 1.
The second derivative may be writtén [3, Theorem 2.3] in the form

[ =pp -1t = % tel

d(t)
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ford(t) = (p(p — 1))~'/3+2-P)/3 and this function is concave only ferl <p <0orl <p <
2. One may alternatively consider the determinant

F O ASA 1)) p(p—1)tP—2 p(p—1)(p—2)tP—3
2 6 6
det = det
fOwm W@ plp—D)(p—2)t*~3  p(p—1)(p—2)(p—3)tP—*
6 24 6 24
1 2 2 2p—6
=——p*p—1>%p—-2 1)t%
P -2)p+1)
and note that the matrix is positive semi-definite onlyfdr<p < 0orl1 <p < 2. O

The observation that the functian— ¢? is 2-monotone only fof) < p < 1 has appeared in
the literature in different forms, cf. [6, 1.3.9 Proposition]/ar [4].

Itis known that the derivative of an operator monotone function defined on an infinite interval
(v, 0) is completely monotone [2, Page 86]. We give a parallel result for matrix monotone
functions which implies this observation, and extend the analysis to matrix convex functions.

Theorem 3.2. Consider a functiorf defined on an interval of the forfa, co) for some reak.
(1) If fisn-monotone an@n — 1 times continuously differentiable, then

(—DFf* D@y >0 k=0,1,...,2n—2.

Therefore, the functiori and its even derivatives up to ordern — 4 are concave func-
tions, and the odd derivatives up to ordsr — 3 are convex functions.
(2) If fisn-convex an@n times continuously differentiable, then

(=DF @)y >0  k=0,1,...,2n—2.

Therefore, the functiofi and its even derivatives up to ord®i—2 are convex functions,
and the odd derivatives up to ord2n — 3 are concave functions.

Proof. We may assume that > 2. To prove the first assertion we may write [2, Chapter VII
Theorem [V] the derivativeg’ in the form
1

£ =

wherec is a positive concave function. Sineds defined on an infinite interval it has to be
increasing, therefor¢’ is decreasing and thy&' < 0. Sincef is n-monotone, it follows from
Dobsch’s condition[1] that the odd derivatives satisfy

fEHY >0 k=0,1,...,n— 1.

The odd derivativeg ?*+1) are thus convex fok = 0,1, ...,n — 2. If the third derivativef®,
which is a convex function, were strictly increasing at any point, then it would go towards infin-
ity and the second derivative would eventually be positive for largdowever, this contradicts
f" <0, so0f® is decreasing and thus the fourth derivatfi® < 0. This argument may now
be continued to prove the first assertion.

To prove the second assertion we may wiile [3, Theorem 2.3] the second derf/aitivine
form

1
1
t) = ——
whered is a positive concave function. Sindes defined on an infinite interval it has to be
increasing, therefor¢” is decreasing and thug® < 0. Since f is n-convex, it follows [3,

Theorem 1.2] that the even derivatives satisfy
e >0  k=1,...,n
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The statement now follows in a similar way as for the first assertion. O

Corollary 3.3. The second derivative of an operator convex function defined on an infinite
interval («, o) is completely monotone.

Remark 2. The indefinite integraj(¢) = | f(¢) dt of a2-monotone functiory is 2-convex.

Proof. The second derivative may be written in the form

/1 / 1 1
SO =10 = = e

for some positive concave functienSince the function — t*/? is increasing and concave, we
conclude that — ¢(t)?/3 is concave. The statement then follows from the characterization of
2-convexity. O

It is known in the literature that operator monotone or operator convex functions defined on
the whole real line are either affine or quadratic, and this fact is established by appealing to the
representation theorem of Pick functions. However, the situation is far more general, and the
results only depend on the monotonicity or convexity of two by two matrices.

Theorem 3.4.Let f be a function defined on the whole real line.flfs 2-monotone then it is
necessarily affine. If is 2-convex then it is necessarily quadratic.

Proof. Let (p,,),—1,2,.. be anapproximate unit of positive and eveti-functions defined on the
real axis, vanishing outside the closed interjval, 1]. The convolutionsg,, x f are infinitely
many times differentiable, and they aanonotone iff is 2-monotone an@-convex if f is
2-convex. Sincef is continuous,, * f converge uniformly on any bounded interval toWe
may therefore assume thais four times differentiable.

In the first case, the derivativ€ may be written([2, Chapter VII Theorem IV] in the form
f'(t) = c(t)~2 for some positive concave functierdefined on the real line, while in the second
case the second derivatiy¢ may be written[[3, Theorem 2.3] in the forfif (¢) = d(t)~3 for
some positive concave functiehdefined on the real line. The assertions now follow since a
positive concave function defined on the whole real line is necessarily constant. O
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