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Abstract: We continue the analysis in [F. Hansen, and J. Tomiyama, Differential analysis
of matrix convex functions.Linear Algebra Appl., 420:102–116, 2007] of matrix
convex functions of a fixed order defined in a real interval by differential methods
as opposed to the characterization in terms of divided differences given by Kraus.
We amend and improve some points in the previously given presentation, and we
give a number of simple but important consequences of matrix convexity of low
orders.
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1. Introduction

Let f be a real function defined on an intervalI. It is said to ben-convex if

f(λA + (1− λ)B) ≤ λf(A) + (1− λ)f(B) λ ∈ [0, 1]

for arbitrary Hermitiann × n matricesA andB with spectra inI. It is said to be
n-concave if−f is n-convex, and it is said to ben-monotone if

A ≤ B ⇒ f(A) ≤ f(B)

for arbitrary Hermitiann × n matricesA andB with spectra inI. We denote by
Pn(I) the set ofn-monotone functions defined on an intervalI, and byKn(I) the
set ofn-convex functions defined inI.

We analyzed in [3] the structure of the setsKn(I) by differential methods and
proved, among other things, thatKn+1(I) is strictly contained inKn(I) for every
natural numbern. We discovered that some improvements of the analysis and pre-
sentation is called for, and this is the topic of the next section. We also noticed that
the theory has quite striking applications for monotone or convex functions of low
order, and this is covered in the last section.

http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au


Matrix Convex Functions

Frank Hansen and Jun Tomiyama

vol. 10, iss. 2, art. 32, 2009

Title Page

Contents

JJ II

J I

Page 4 of 12

Go Back

Full Screen

Close

2. Improvements and Amendments

Definition 2.1. Let f : I → R be a function defined on an open interval. We say
that f is strictly n-monotone, iff is n-monotone and2n − 1 times continuously
differentiable, and the determinant

det

(
f (i+j−1)(t)

(i + j − 1)!

)n

i,j=1

> 0

for everyt ∈ I. Likewise, we say thatf is strictlyn-convex, iff is n-convex and2n
times continuously differentiable, and the determinant

det

(
f (i+j)(t)

(i + j)!

)n

i,j=1

> 0

for everyt ∈ I.

By inspecting the proof of [3, Proposition 1.3], we realize that we previously
proved the following slightly stronger result.

Proposition 2.2. Let I be a finite interval, and letm and n be natural numbers
with m ≥ 2n. There exists a strictlyn-concave and strictlyn-monotone polynomial
fm : I → R of degreem. Likewise, there exists a strictlyn-convex and strictlyn-
monotone polynomialgm : I → R of degreem.

The above proposition is proved by introducing a polynomialpm(t) of degreem
such thatMn(pm; t) is positive definite andKn(pm; t) is negative definite fort = 0.
The last part of [3, Theorem 1.2] then directly ensures the existence of anα > 0
such thatpm is n-monotone andn-concave in(−α, α). It is somewhat misleading,
as we did in the paper, to first consider the definiteness ofMn(pm; t) andKn(pm; t)
in a neighborhood of zero.
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Remark1. We would like to give some more detailed comments to the proof of the
second part of [3, Theorem 1.2] (which is independent of the last assertion in the
theorem). The statement is that iff is a real2n times continuously differentiable
function defined on an open intervalI, then the matrix

Kn(f ; t) =

(
f i+j(t)

(i + j)!

)n

i,j=1

is positive semi-definite for eacht ∈ I. We proved that the leading determinants
of the matrixKn(f ; t) are non-negative for eacht ∈ I. It is well-known that this
condition is not sufficient to insure that the matrix itself is positive semi-definite.
In the proof we wave our hands and say that all principal submatrices ofKn(f ; t)
may be obtained as a leading principal submatrix by first making a suitable joint
permutation of the rows and columns in the Kraus matrix. But this common remedy
is unfortunately not working in the present situation. We therefore owe it to readers
to complete the proof correctly.

Proof. Let Dm(Kn(f ; t0)) for somet0 ∈ I denote the leading principal determinant
of orderm of the matrixKn(f ; t0). We may according to Proposition2.2 choose a
matrix convex functiong such that

Dm(Kn(g; t0)) > 0 m = 1, . . . , n.

The polynomialpm in ε defined by setting

pm(ε) = Dm(Kn(f + εg; t0))

is of degree at mostm, andpm(ε) ≥ 0 for ε ≥ 0. However since the coefficient to
εm in pm is Dm(Kn(g; t0)) > 0, we realize thatpm is not the zero polynomial. Let
ηm be the smallest positive root ofpm, then

pm(ε) > 0 0 < ε < ηm.
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Settingη = min{η1, . . . , ηn), we obtain

Kn(f + εg; t0) > 0 0 < ε < η.

By lettingε tend to zero, we finally conclude thatKn(f ; t0) is positive semi-definite.

We state in a remark after [3, Corollary 1.5] that the possible degrees of any
polynomial in the gap between the matrix convex functions of ordern and order
n+ 1 defined on a finite interval are limited to2n and2n+1. However, this is taken
in the context of polynomials of degree less than or equal to2n + 1 and may be
misunderstood. There may well be polynomials of higher degrees in the gap.
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3. Scattered Observations

It is well-known for which exponents the functiont→ tp is either operator monotone
or operator convex in the positive half-axis. It turns out that the same results apply
if we ask for which exponents the function is2-monotone or2-convex on an open
subinterval of the positive half-axis.

Proposition 3.1. Consider the function

f(t) = tp t ∈ I

defined on any subintervalI of the positive half-axis. Thenf is 2-monotone if and
only if 0 ≤ p ≤ 1, and it is2-convex if and only if either1 ≤ p ≤ 2 or −1 ≤ p ≤ 0.

Proof. There is nothing to prove iff is constant or linear, so we may assume that
p 6= 0 andp 6= 1. In the first case the derivativef ′(t) = ptp−1 should be non-negative
sop > 0, and it may be written [2, Chapter VII Theorem IV] in the form

f ′(t) =
1

c(t)2
t ∈ I

for c(t) = p−1/2t(1−p)/2 and this function is concave only for0 < p ≤ 1. One may
alternatively consider the determinant

det

f ′(t) f ′′(t)
2!

f ′′(t)
2!

f (3)(t)
3!

 = det

 ptp−1 p(p−1)tp−2

2

p(p−1)tp−2

2
p(p−1)(p−2)tp−3

6


= − 1

12
p2(p− 1)(p + 1)t2p−4

and note that the matrix is positive semi-definite only for0 ≤ p ≤ 1.
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The second derivative may be written [3, Theorem 2.3] in the form

f ′′(t) = p(p− 1)tp−2 =
1

d(t)3
t ∈ I

for d(t) = (p(p− 1))−1/3t(2−p)/3, and this function is concave only for−1 ≤ p < 0
or 1 < p ≤ 2. One may alternatively consider the determinant

det

 f ′′(t)
2

f (3)(t)
6

f (3)(t)
6

f (4)(t)
24

 = det

 p(p−1)tp−2

2
p(p−1)(p−2)tp−3

6

p(p−1)(p−2)tp−3

6
p(p−1)(p−2)(p−3)tp−4

24


= − 1

144
p2(p− 1)2(p− 2)(p + 1)t2p−6

and note that the matrix is positive semi-definite only for−1 ≤ p ≤ 0 or 1 ≤ p
≤ 2.

The observation that the functiont → tp is 2-monotone only for0 ≤ p ≤ 1 has
appeared in the literature in different forms, cf. [6, 1.3.9 Proposition] or [4].

It is known that the derivative of an operator monotone function defined on an
infinite interval (α,∞) is completely monotone [2, Page 86]. We give a parallel
result for matrix monotone functions which implies this observation, and extend the
analysis to matrix convex functions.

Theorem 3.2. Consider a functionf defined on an interval of the form(α,∞) for
some realα.

1. If f is n-monotone and2n− 1 times continuously differentiable, then

(−1)kf (k+1)(t) ≥ 0 k = 0, 1, . . . , 2n− 2.

Therefore, the functionf and its even derivatives up to order2n−4 are concave
functions, and the odd derivatives up to order2n− 3 are convex functions.
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2. If f is n-convex and2n times continuously differentiable, then

(−1)kf (k+2)(t) ≥ 0 k = 0, 1, . . . , 2n− 2.

Therefore, the functionf and its even derivatives up to order2n−2 are convex
functions, and the odd derivatives up to order2n− 3 are concave functions.

Proof. We may assume thatn ≥ 2. To prove the first assertion we may write [2,
Chapter VII Theorem IV] the derivativef ′ in the form

f ′(t) =
1

c(t)2
,

wherec is a positive concave function. Sincec is defined on an infinite interval it has
to be increasing, thereforef ′ is decreasing and thusf ′′ ≤ 0. Sincef is n-monotone,
it follows from Dobsch’s condition [1] that the odd derivatives satisfy

f (2k+1) ≥ 0 k = 0, 1, . . . , n− 1.

The odd derivativesf (2k+1) are thus convex fork = 0, 1, . . . , n − 2. If the third
derivativef (3), which is a convex function, were strictly increasing at any point, then
it would go towards infinity and the second derivative would eventually be positive
for large t. However, this contradictsf ′′ ≤ 0, so f (3) is decreasing and thus the
fourth derivativef (4) ≤ 0. This argument may now be continued to prove the first
assertion.

To prove the second assertion we may write [3, Theorem 2.3] the second deriva-
tive f ′′ in the form

f ′′(t) =
1

d(t)3
,

whered is a positive concave function. Sinced is defined on an infinite interval it has
to be increasing, thereforef ′′ is decreasing and thusf (3) ≤ 0. Sincef is n-convex,
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it follows [3, Theorem 1.2] that the even derivatives satisfy

f (2k) ≥ 0 k = 1, . . . , n.

The statement now follows in a similar way as for the first assertion.

Corollary 3.3. The second derivative of an operator convex function defined on an
infinite interval(α,∞) is completely monotone.

Remark2. The indefinite integralg(t) =
∫

f(t) dt of a 2-monotone functionf is
2-convex.

Proof. The second derivative may be written in the form

g′′(t) = f ′(t) =
1

c(t)2
=

1

(c(t)2/3)3

for some positive concave functionc. Since the functiont → t2/3 is increasing and
concave, we conclude thatt → c(t)2/3 is concave. The statement then follows from
the characterization of2-convexity.

It is known in the literature that operator monotone or operator convex functions
defined on the whole real line are either affine or quadratic, and this fact is estab-
lished by appealing to the representation theorem of Pick functions. However, the
situation is far more general, and the results only depend on the monotonicity or
convexity of two by two matrices.

Theorem 3.4.Letf be a function defined on the whole real line. Iff is 2-monotone
then it is necessarily affine. Iff is 2-convex then it is necessarily quadratic.
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Proof. Let (ρn)n=1,2,... be an approximate unit of positive and evenC∞-functions
defined on the real axis, vanishing outside the closed interval[−1, 1]. The convolu-
tionsρn ∗ f are infinitely many times differentiable, and they are2-monotone iff is
2-monotone and2-convex iff is 2-convex. Sincef is continuousρn ∗ f converge
uniformly on any bounded interval tof. We may therefore assume thatf is four
times differentiable.

In the first case, the derivativef ′ may be written [2, Chapter VII Theorem IV]
in the formf ′(t) = c(t)−2 for some positive concave functionc defined on the real
line, while in the second case the second derivativef ′′ may be written [3, Theorem
2.3] in the formf ′′(t) = d(t)−3 for some positive concave functiond defined on the
real line. The assertions now follow since a positive concave function defined on the
whole real line is necessarily constant.
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