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ABSTRACT. We establish connections between invariant means and set ideals. As an applica-
tion, we obtain a necessary and sufficient condition for the separation almost everywhere of two
functions by an additive function. We also derive the stability results for Cauchy’s functional
equation.
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1. I NTRODUCTION

Let M be an invariant mean on the spaceB(S,R) of all real bounded functions on a semi-
groupS. We say that the subsetA of S is a zero set forM if M(χA) = 0, whereχA denotes the
characteristic function of a setA. Zero sets for an invariant meanM are regarded as small sets.
On the other hand, in literature we can find the axiomatic definition of a family, named set ideal,
of a small subset of a semigroupS. In the first part we study connections between families of
zero sets and set ideals. As a consequence, we obtain, for every set idealJ of subsets ofS the
existence of such an invariant meanM on B(S,R) for which elements ofJ are zero sets for
M .

In the second part of this paper we consider some functional inequalities. We give a neces-
sary and sufficient condition for the existence of an additive function which separates almost
everywhere two functions. As an application of our result, we derive a generalization of the
Gajda-Kominek theorem on a separation of subadditive and superadditive functionals by an
additive function. We also give stability properties of the Cauchy functional equation.

2. I NVARIANT M EANS AND SET I DEALS

In this section we assume that(S, +) is a semigroup.
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2 ROMAN BADORA

Definition 2.1. A non-empty familyJ of subsets ofS will be called aproper set idealif

(2.1) S 6∈ J ;

(2.2) A, B ∈ J =⇒ A ∪B ∈ J ;

(2.3) A ∈ J ∧B ⊂ A =⇒ B ∈ J .

Moreover, if the setaA = {x ∈ S : a + x ∈ A} belongs to the familyJ whenevera ∈ S and
A ∈ J then the set idealJ is calledproper left quasi-invariant(in short p.l.q.i.). Analogously,
the set idealJ is said to beproper right quasi-invariant(p.r.q.i.) if the setAa = {x ∈ S :
x + a ∈ A} belongs to the familyJ whenevera ∈ S andA ∈ J . In the case where the set
ideal satisfies both these conditions we shall call itproper quasi-invariant(p.q.i.).

The sets belonging to the set ideal are regarded as, in a sense, small sets (see Kuczma [13]).
For example, ifS is a second category subsemigroup of a topological groupG then the family
of all first category subsets ofS is a p.q.i. ideal. IfG is a locally compact topological group
equipped with the left or right Haar measureµ and if S is a subsemigroup ofG with positive
measureµ then the family of all subsets ofS which have zero measureµ is a p.q.i. ideal. Also,
if S is a normed space (dim S ≥ 1) then the family of all bounded subsets ofS is p.q.i. ideal.

LetJ be a set ideal of subsets ofS. For a real functionf onS we defineJf to be the family
of all setsA ∈ J such thatf is bounded on the complement ofA. A real functionf on S
is calledJ -essentially boundedif and only if the familyJf is non-empty. The space of all
J -essentially bounded functions onS will be denoted byBJ (S,R).

For every elementf of the spaceBJ (S,R) the real numbers

(2.4) J − essinf
x∈S

f(x) = sup
A∈Jf

inf
x∈S\A

f(x),

(2.5) J − esssup
x∈S

f(x) = inf
A∈Jf

sup
x∈S\A

f(x)

are correctly defined and are referred to as theJ -essential infimumand theJ -essential supre-
mumof the functionf , respectively.

Definition 2.2. A linear functionalM on the spaceB(S,R) is called aleft (right) invariant
meanif and only if

(2.6) inf
x∈S

f(x) ≤ M(f) ≤ sup
x∈S

f(x);

(2.7) M(af) = M(f) (M(fa) = M(f))

for all f ∈ B(S,R) anda ∈ S, whereaf andfa are the left and right translates off defined by

af(x) = f(a + x), fa(x) = f(x + a), x ∈ S.

A semigroupS which admits a left (right) invariant mean onB(S,R) will be termedleft (right)
amenable. If on the spaceB(S,R) there exists a real linear functional which is simultaneously
a left and right invariant mean then we say thatS is two-sided amenableor justamenable.

One can prove that every Abelian semigroup is amenable. For the theory of amenability see,
for example, Greenleaf [12].

J. Inequal. Pure and Appl. Math., 6(1) Art. 18, 2005 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


INVARIANT MEANS, SET IDEALS AND SEPARATION THEOREMS 3

Remark 2.1. In this paper, in the proofs of our theorems we restrict ourselves to the "left-
hand side versions". The proofs of the "right-hand side versions" and "two-sided versions" are
literally the same.

Let us start with the following observation.

Theorem 2.2. If S is a semigroup andM is a left (right) invariant mean onB(S,R) then
µM : 2S → R defined by the following formulae

(2.8) µM(A) = M(χA), A ⊂ S,

whereχA denotes the characteristic function of a setA, is an additive normed measure defined
on the family of all subsets ofS invariant with respect to the left (right) translations.

Proof. From (2.6) it follows immediately thatµM(∅) = 0. The linearity ofM shows thatµM is
additive:

µM(A) + µM(B) = M(χA) + M(χB) = M(χA∪B) = µM(A ∪B),

for all A, B ⊂ S, A ∩B = ∅. The left invariance ofM implies the left invariance ofµM :

µM(aA) = M(χaA) = M(χA) = µM(A),

for all A ⊂ S anda ∈ S. Finally, from (2.6) we infer thatµM(S) = M(χS) = 1. �

If M is an left (right) invariant mean onB(S,R) then byJM we denote the family of all
subsets ofS which have zero measureµM ,

(2.9) JM = {A ⊂ S : µM(A) = M(χA) = 0}.

Theorem 2.3. If S is a semigroup andM is a left (right) invariant mean onB(S,R) then the
familyJM is a proper left (right) quasi-invariant ideal of subsets ofS.

Proof. By (2.6),µM(S) = 1. Hence,S 6∈ JM .
Next we choose arbitraryf, g ∈ B(S,R) such thatf ≤ g. The additivity ofM and (2.6)

yields
0 ≤ M(g − f) = M(g)−M(f).

So, we get the monotonicity ofM :

(2.10) f, g ∈ B(S,R) ∧ f ≤ g =⇒ M(f) ≤ M(g).

Therefore, ifA ∈ JM andB ⊂ A then

0 ≤ M(χB) ≤ M(χA) = 0,

which means thatB ∈ JM and forA, B ∈ JM we have

0 ≤ M(χA∪B) ≤ M(χA + χB) = M(χA) + M(χB) = 0,

whenceA∪B ∈ JM . Moreover, forA ∈ JM anda ∈ S, by the left invariance ofM we obtain

0 ≤ M(χaA) = M(χA) = 0,

which implies thataA ∈ JM and the proof is finished. �

Hence, the familyJM of all zero sets for every invariant meanM forms a proper set ideal
of subsets ofS. The following question arises: it is true that for every proper set idealJ of
subsets ofS there exists an invariant meanM onB(S,R) for which elements ofJ are zero sets
(J ⊂ JM )? To answer to this question first we quote the following theorem which was proved
using Silverman’s extension theorem by Gajda in [9].
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4 ROMAN BADORA

Theorem 2.4. If (S, +) is a left (right) amenable semigroup andJ is a p.l.q.i. (p.r.q.i.) ideal
of subsets ofS, then there exists a real linear functionalMJ on the spaceBJ (S,R) such that

(2.11) J − essinf
x∈S

f(x) ≤ MJ (f) ≤ J − esssup
x∈S

f(x)

and

(2.12) MJ (af) = MJ (f) (MJ (fa) = MJ (f)),

for all f ∈ BJ (S,R) and alla ∈ S.

We can find an elementary and short proof of this fact in [1] (see also [3]).

Remark 2.5. We already know that for every p.l.q.i. (p.r.q.i.) idealJ of subsets of the
left (right) amenable semigroupS there exists a left (right) invariant meanMJ on the space
BJ (S,R). Of course, the restriction ofMJ to the spaceB(S,R) is a left (right) invariant mean
on this space. Moreover, by (2.11) we have

MJ (χA) = 0, A ∈ J ,

which means that for every p.l.q.i. (p.r.q.i.) idealJ of subsets of the left (right) amenable
semigroupS there exists a left (right) invariant meanM (M = MJ |B(S,R)) on the spaceB(S,R)
such that

(2.13) J ⊂ JM .

As simple applications of our observation we obtain the following known facts.

Example 2.1.Let (Z, +) be a group of integers and letN denote the set of positive integers. The
family J of all subsetsA of Z for which there existsK ∈ Z such thatA ⊂ {k ∈ Z : k ≥ K}
forms a p.q.i. ideal of subsets ofZ. Hence, there exists an additive normed measureµ (µ = µM ,
for some invariant meanM ) defined on the family of all subsets ofZ invariant with respect to
translations such that

µ(N) = 0.

Analogously, if(S, +) = (R, +) andA ∈ J iff there existsK ∈ R such thatA ⊂ {x ∈ R :
x ≥ K} thenJ is a p.q.i. ideal of subsets ofR and there exists an additive normed measureµ
defined on the family of all subsets ofR invariant with respect to translations such that

µ((a, +∞) = 0,

for all a ∈ R.

Now we formulate the theorem which generalized Cabello Sánchez’s Lemma 6 from [6].

Theorem 2.6. LetJ be a p.l.q.i. (p.r.q.i.) ideal of subsets of a semigroupS. If the set idealJ
satisfies the following condition

for every elementA of the set idealJ there exists an elementa of S

such that A ∩a A = ∅(A ∩ Aa = ∅),(2.14)

then

J ⊂ JM ,

for every left (right) invariant meanM on the spaceB(S,R).
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INVARIANT MEANS, SET IDEALS AND SEPARATION THEOREMS 5

Proof. Let A ∈ J be fixed and letM be a left invariant mean on the spaceB(S,R). Suppose
to the contrary that

M(χA) 6= 0.

PuttingA0 = A andf0 = χA0 , by our hypothesis and condition (2.6) we have

0 = inf
x∈S

f0(x) < M(f0) ≤ sup
x∈S

f0(x) = 1.

Now, letf1 be the real function onS defined byf1 = f0 +a0 f0, where the elementa0 ∈ S is
associated with the setA0 by condition (2.14). Then the setA1 = A0∪a0 A0 is inJ . Moreover,
applying the properties of the left invariant mean we have

M(f1) = M(f0 +a0 f0) = M(f0) + M(a0f0) = M(f0) + M(f0) = 2M(f0)

and
0 = inf

x∈S
f1(x) < M(f1) ≤ sup

x∈S
f1(x) = 1.

Next, letf2 = f1 +a1 f1, where the elementa1 ∈ S is associated with the setA1 by condition
(2.14). ThenA2 = A1 ∪a1 A1 ∈ J and

M(f2) = M(f1 +a1 f1) = 2M(f1) = 22M(f0),

0 = inf
x∈S

f2(x) < M(f2) ≤ sup
x∈S

f2(x) = 1.

Inductively we construct the sequence of real functionsfn onS such that

0 = inf
x∈S

fn(x) < M(fn) = 2nM(f0) ≤ sup
x∈S

f2(x) = 1, n ∈ N

which is false. Hence,M(f0) = M(χA) = 0, which means thatA ∈ JM and thus ends the
proof. �

Remark 2.7. Observe that the familyJb of all bounded sets of a normed spaceS (dim S ≥ 1)
yields an example of a p.q.i. ideal of subsets ofS fulfilling condition (2.14). Therefore,

Jb ⊂ JM ,

for every invariant meanM onB(S,R). Moreover, the familyJf of all finite subsets ofS also
forms a p.q.i. ideal of subsets ofS andJf  Jb. Hence

Jf  Jb ⊂ JM

for every invariant meanM onB(S,R) which shows that in (2.13) we have only inclusion. This
answers the question posed by Zs. Páles on the equality in (2.13).

Finally, to summarize the results just obtained, we note the following.

Remark 2.8. Let S be a left amenable semigroup and letA be a subset ofS.
If

a1A ∪a2 A ∪ . . . ∪an A 6= S,

for all a1, a2, . . . , an ∈ S andn ∈ N, then the setA generates a p.l.q.i. ideal of subsets of
S. Hence, using Remark 2.5, the setA is a zero set for some invariant meanM on the space
B(S,R) (A ∈ JM ).

If there existn ∈ N anda1, a2, . . . , an ∈ S such that

a1A ∪a2 A ∪ . . . ∪an A = S,
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6 ROMAN BADORA

then for every invariant meanM on the spaceB(S,R) we have

1 = M(χS) = M(χa1A ∪a2 A ∪ . . . ∪an A)

≤ M(χa1A + χa2A + . . . + χa1A)

= M(χa1A) + M(χa2A) + . . . + M(χa1A)

= nM(χA),

which means thatA 6∈ JM .
The "right-hand side version" of this observation is analogous to the one presented above.

3. SEPARATION THEOREMS

Let S be a semigroup and letJ be a proper ideal of subsets ofS. Then we say that a given
condition is satisfiedJ -almost everywhere onS (written J -a.e. onS) if there exists a set
A ∈ J such that the condition in question is satisfied for everyx ∈ S \ A.

Moreover, the symbolΩ(J ) will stand for the family of all setsN ⊂ S×S with the property
that

N [x] = {y ∈ S : (x, y) ∈ N} ∈ J J − a.e. onG.

The familyΩ(J ) forms a proper ideal of subsets ofS × S (see Kuczma [13]).
We are now in a position to formulate and prove the main result of this section which is the

"almost everywhere version" of the result proved by Páles in [14] (see also [4]).

Theorem 3.1.Let (S, +) be a left (right) amenable semigroup, letJ be a p.l.q.i. (p.r.q.i.) ideal
of subsets ofS and letp, q : S → R . Then there exists a mapa : S → R such that

(3.1) a(x + y) = a(x) + a(y) Ω(J )− a.e. onS × S

and

(3.2) p(x) ≤ a(x) ≤ q(x) J − a.e. onS

if and only if there exists a functionϕ : S → R such that

(3.3) p(x) ≤ ϕ(x + y)− ϕ(y) ≤ q(x) Ω(J )− a.e. onS × S.

Proof. Assume thata satisfies (3.1) and (3.2) and letϕ = a. Condition (3.1) implies that there
exists a setM ∈ Ω(J ) such that

(3.4) ϕ(x + y)− ϕ(y) = a(x + y)− a(y) = a(x), (x, y) ∈ S2 \M.

Now, chooseU ∈ J such thatM [x] ∈ J , for all x ∈ S \U . Next, by (3.2) we get the existence
of a setV ∈ J such that

(3.5) p(x) ≤ a(x) ≤ q(x), x ∈ S \ V.

By W we denote the set of all pairs(x, y) ∈ S2 such that

p(x) ≤ ϕ(x + y)− ϕ(y) ≤ q(x)

do not hold. Putting (3.4) and (3.5) together, we infer thatW [x] ⊆ M [x] ∈ J , for all x ∈
S \ (U ∪ V ), which impliesW ∈ Ω(J ). So, the functionϕ satisfies (3.3).

Assume that (3.3) is valid with a certain functionϕ : S → R. Then there exists a set
M ∈ Ω(J ) such that

p(x) ≤ ϕ(x + y)− ϕ(y) ≤ q(x), (x, y) ∈ S2 \M.

SinceM ∈ Ω(J ), one can find a setU ∈ J such thatM [x] ∈ J , for all x ∈ S \U . Now, given
an elementx ∈ S \ U we have

(3.6) p(x) ≤ ϕ(x + y)− ϕ(y) ≤ q(x), y ∈ S \M [x]
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INVARIANT MEANS, SET IDEALS AND SEPARATION THEOREMS 7

which means that for any fixedx ∈ S \ U the function

S 3 y −→ ϕ(x + y)− ϕ(y) ∈ R
belongs to the spaceBJ (S,R).

Let MJ represent a left invariant mean on the spaceBJ (S,R), whose existence results from
Theorem 2.4. The functiona : S → R is defined by the formula

a(x) =

{
MJ

y (ϕ(x + y)− ϕ(y)), for x ∈ S \ U

0, for x ∈ U ,

where the subscripty indicates that the meanMJ is applied to a function of the variabley.
If we chooseu, v ∈ S \U in such a manner thatu+v ∈ S \U too, then by the left invariance

and linearity ofMJ , we get

a(u) + a(v) = MJ
y (ϕ(u + y)− ϕ(y)) + MJ

y (ϕ(v + y)− ϕ(y))

= MJ
y (ϕ(u + v + y)− ϕ(v + y)) + MJ

y (ϕ(v + y)− ϕ(y))

= MJ
y (ϕ(u + v + y)− ϕ(y)) = a(u + v).

This means thata(u + v) = a(u) + a(v), for all (u, v) ∈ S2 \W , where

W = (U × S) ∪ (S × U) ∪ {(u, v) ∈ S2 : u + v ∈ U}.
It is clear thatW ∈ Ω(J ) and we get (3.1). Moreover, condition (2.11) jointly with the defini-
tion of a and (3.6) implies (3.2) and completes the proof. �

For groups we have the following.

Corollary 3.2. Let (S, +) be a left (right) amenable group, letJ be a p.l.q.i. (p.r.q.i.) ideal of
subsets ofS and letp, q : S → R. Then there exists an additive functionA : S → R such that

(3.7) p(x) ≤ A(x) ≤ q(x) J − a.e. onS

if and only if there exists a functionϕ : S → R such that

(3.8) p(x) ≤ ϕ(x + y)− ϕ(y) ≤ q(x) Ω(J )− a.e. onS × S.

Proof. The proof of this theorem is a consequence of our previous result and the Cabello
Sánchez theorem ([6, Theorem 8]) which is a version of the celebrated theorem of de Bruijn (see
[5]) and its generalization given by Ger (see [10]) and which shows that for a mapa : S → R
fulfilling (3.1) there exists an additive functionA : S → R such that

a(x) = A(x) J − a.e. onS.

�

As a consequence of this fact we obtain the following (see Gajda, Kominek [8] and Cabello
Sánchez [6]).

Theorem 3.3. Let (S, +) be an Abelian group and letJ be a p.l.q.i. (p.r.q.i.) ideal of subsets
of S. If f, g : S → R satisfy

f(x + y) ≤ f(x) + f(y) Ω(J )− a.e. onS × S

g(x + y) ≥ g(x) + g(y) Ω(J )− a.e. onS × S

and
g(x) ≤ f(x) J − a.e. onS

then there exists an additive functionA : S → R such that

g(x) ≤ a(x) ≤ f(x) J − a.e. onS.
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8 ROMAN BADORA

Proof. Assume thatU1, V1 ∈ J satisfy: forx ∈ S \ U1

f(x + y) ≤ f(x) + f(y), y ∈ S \ V1

and letU2, V2 ∈ J satisfy: forx ∈ S \ U2

g(x + y) ≥ g(x) + g(y), y ∈ S \ V2.

Moreover, letU0 be such that

g(x) ≤ f(x), x ∈ S \ U0.

Then, forx ∈ S \ U , whereU = U0 ∪ U1 ∪ U2 and fory ∈ S \ (V1 ∪ V2 ∪ U0 ∪x U0) we have

f(x + y)− g(y) ≥ g(x + y)− g(y) ≥ g(x).

Hence, one can define a functionϕ : S → R by ϕ(x) = 0, if x ∈ U and forx ∈ S \ U by

ϕ(x) = essinf
t∈S

(xf − g)(t).

Suppose thatx andx + y are inS \ U . Then, as in [6], we can show that

g(x) ≤ ϕ(x + y)− ϕ(y) ≤ f(x).

Now, takingN = (U × S) ∪ {(x, y) ∈ S2 : x + y ∈ U} we observe thatN ∈ Ω(J ) which
means thatϕ satisfies condition (3.8) and an appeal to Corollary 3.2 completes the proof.�

The next application concerns the stability problem for Cauchy’s functional equation. On
account of similarity we restrict our considerations to the "Ger-additive" functions.

Theorem 3.4.Let (S, +) be a left (right) amenable semigroup,J be a p.l.q.i. (p.r.q.i.) ideal of
subsets ofS and letρ : S → R. Moreover, letf : S → R be a function such that for a certain
setN ∈ Ω(J ), the inequality

|f(x + y)− f(x)− f(y)| ≤ ρ(x)

(|f(x + y)− f(x)− f(y)| ≤ ρ(y))

holds whenever(x, y) ∈ S × S \N . Then there exists a mapa : S → R such that

(3.9) a(x + y) = a(x) + a(y) Ω(J )− a.e. onS × S

and

(3.10) |f(x)− a(x)| ≤ ρ(x) J − a.e. onS.

Proof. The functionsp = f − ρ, q = f + ρ andϕ = f satisfy condition (3.3). Theorem 3.1
yields a mapa fulfilling (3.9) and (3.10), and the proof is complete. �

For groups we have the following result.

Corollary 3.5. Let (S, +) be a left (right) amenable group,J be a p.l.q.i. (p.r.q.i.) ideal of
subsets ofS and letρ : S → R . Moreover, letf : S → R be a function such that for a certain
setN ∈ Ω(J ), the inequality

|f(x + y)− f(x)− f(y)| ≤ ρ(x)

(|f(x + y)− f(x)− f(y)| ≤ ρ(y))

holds whenever(x, y) ∈ S × S \N . Then there exists an additive mapA : S → R such that

|f(x)− A(x)| ≤ ρ(x) J − a.e. onS.

Remark 3.6. The vector-valued versions of the above results can be obtained using the tech-
niques presented in [4], [6] or [2].
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