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ABSTRACT. We establish connections between invariant means and set ideals. As an applica-
tion, we obtain a necessary and sufficient condition for the separation almost everywhere of two
functions by an additive function. We also derive the stability results for Cauchy’s functional
equation.
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1. INTRODUCTION

Let M be an invariant mean on the spaBéeS, R) of all real bounded functions on a semi-
groupS. We say that the subsdtof S is a zero set fod/ if M (y4) = 0, wherey 4 denotes the
characteristic function of a set. Zero sets for an invariant mead are regarded as small sets.

On the other hand, in literature we can find the axiomatic definition of a family, named set ideal,
of a small subset of a semigrowp In the first part we study connections between families of
zero sets and set ideals. As a consequence, we obtain, for every segf idesilibsets of the
existence of such an invariant meahon B(S,R) for which elements of7 are zero sets for

M.

In the second part of this paper we consider some functional inequalities. We give a neces-
sary and sufficient condition for the existence of an additive function which separates almost
everywhere two functions. As an application of our result, we derive a generalization of the
Gajda-Kominek theorem on a separation of subadditive and superadditive functionals by an
additive function. We also give stability properties of the Cauchy functional equation.

2. INVARIANT MEANS AND SET IDEALS

In this section we assume thet, +) is a semigroup.
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2 ROMAN BADORA

Definition 2.1. A non-empty family7 of subsets of' will be called aproper set ideaif

(2.1) SeT;
(2.2) ABeJ = AUBeJ;
(2.3) Ae JNBCA= BeJ.

Moreover, if the sefA = {z € S : a + x € A} belongs to the family7 whenever € S and
A € J then the set idea’ is calledproper left quasi-invariangin short p.l.g.i.). Analogously,
the set ideal7 is said to beproper right quasi-invarian{p.r.q.i.) if the set4d, = {z € S :

x + a € A} belongs to the family7 whenevers € S andA € J. In the case where the set
ideal satisfies both these conditions we shall cadtaiper quasi-invarian{p.q.i.).

The sets belonging to the set ideal are regarded as, in a sense, small sets (see Kuczma [13]).
For example, ifS' is a second category subsemigroup of a topological gtotpen the family
of all first category subsets ¢f is a p.q.i. ideal. IfG is a locally compact topological group
equipped with the left or right Haar measyrexnd if S' is a subsemigroup af with positive
measure: then the family of all subsets of which have zero measuyeis a p.q.i. ideal. Also,
if S'is a normed spacelim S > 1) then the family of all bounded subsets®fs p.q.i. ideal.

Let 7 be a set ideal of subsets §f For a real functiory on .S we defineJ; to be the family
of all setsA € 7 such thatf is bounded on the complement df A real functionf on S
is called 7-essentially bounded and only if the family 7; is non-empty. The space of all
J-essentially bounded functions shwill be denoted byB7 (S, R).

For every elemenf of the spaceéB” (S, R) the real numbers

2.4 — esgnf = inf

(2.4) J —essuf f(x) sup xég\Af(fC),

(2.5) J —essup f(z) = inf sup f(z)
z€s A€Tr zes\A

are correctly defined and are referred to asghessential infimunand the7-essential supre-
mumof the functionf, respectively.

Definition 2.2. A linear functional M/ on the spacd3(S,R) is called aleft (right) invariant
meanif and only if

(2.6) inf f(z) < M(f) < Sggf(w);
(2.7) M(.f) = M(f) (M(fa)=M(f))

forall f € B(S,R) anda € S, where, f and f, are the left and right translates pidefined by

of (@) = fla+2), fuz)=flx+a), ze€b.

A semigroupS which admits a left (right) invariant mean @S, R) will be termedeft (right)
amenableIf on the spacd3(S, R) there exists a real linear functional which is simultaneously
a left and right invariant mean then we say thas two-sided amenabler justamenable

One can prove that every Abelian semigroup is amenable. For the theory of amenability see,
for example, Greenleaf [12].
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Remark 2.1. In this paper, in the proofs of our theorems we restrict ourselves to the "left-
hand side versions". The proofs of the "right-hand side versions" and "two-sided versions" are
literally the same.

Let us start with the following observation.

Theorem 2.2.If S is a semigroup andV/ is a left (right) invariant mean orB(S,R) then
par : 2° — R defined by the following formulae

(2.8) pa(A) = M(xa), ACS,

wherey 4 denotes the characteristic function of a ggtis an additive normed measure defined
on the family of all subsets ¢f invariant with respect to the left (right) translations.

Proof. From (2.6) it follows immediately that,, () = 0. The linearity ofA/ shows thajty, is
additive:

par(A) + pn (B) = M(xa) + M(xp) = M(xaup) = pu(AU B),
forall A, B ¢ S, An B = (. The left invariance of\/ implies the left invariance qf ,;:
par(aA) = M(x,a) = M(xa) = pa(A),
forall A C S anda € S. Finally, from (2.6) we infer that,, (S) = M(xs) = 1. O

If M is an left (right) invariant mean oB (S, R) then by 7,, we denote the family of all
subsets of which have zero measurg,,

Theorem 2.3.1f S is a semigroup and/ is a left (right) invariant mean o3(S, R) then the
family 7, is a proper left (right) quasi-invariant ideal of subsetssf

Proof. By (2.6), . (S) = 1. Hence,S & Ju.
Next we choose arbitrary, ¢ € B(S,R) such thatf < g. The additivity of A/ and [2.6)
yields

0<M(g—[)=M(g) - M(f).
So, we get the monotonicity G/ :

(2.10) fr9€ BISR)A f < g= M(f) < M(g).
Therefore, IfA € Jy, andB C A then
0< M(xp) < M(xa) =0,
which means thab € 7,; and forA, B € 7,; we have
0 < M(xaus) < M(xa+xB) = M(xa) + M(xs) =0,
whenceAU B € Jy,. Moreover, forA € 7y, anda € S, by the left invariance o/ we obtain
0 < M(x,a) =M(xa) =0,
which implies that, A € 7, and the proof is finished. O

Hence, the family7,, of all zero sets for every invariant meair forms a proper set ideal
of subsets ofS. The following question arises: it is true that for every proper set igeaf
subsets of there exists an invariant meat on B(S, R) for which elements of/ are zero sets
(J < Ju)? To answer to this question first we quote the following theorem which was proved
using Silverman’s extension theorem by Gajda.in [9].
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Theorem 2.4.1f (S, +) is a left (right) amenable semigroup agdis a p.l.g.i. (p.r.q.i.) ideal
of subsets of, then there exists a real linear function®l” on the space3” (S, R) such that

(2.11) J — essf f(x) < M7(f) < 7 — essup f(x)
and
(2.12) M7 (of) = M7(f) (M7 (fa) = M7(f)),

forall f € B7(S,R)andalla € S.
We can find an elementary and short proof of this factin [1] (see &lso [3]).

Remark 2.5. We already know that for every p.l.q.i. (p.r.q.i.) idedl of subsets of the
left (right) amenable semigroug there exists a left (right) invariant mead” on the space
B7(S,R). Of course, the restriction df/ to the spacé3(S, R) is a left (right) invariant mean
on this space. Moreover, by (2]11) we have

M7(xa)=0, Ae€J,

which means that for every p.l.g.i. (p.r.q.i.) idedl of subsets of the left (right) amenable
semigroups there exists a left (right) invariant meaii (M = MY | p(sr)) on the spacé (S, R)
such that

(2.13) J C Ju.
As simple applications of our observation we obtain the following known facts.

Example 2.1.Let (Z, +) be a group of integers and [§tdenote the set of positive integers. The
family 7 of all subsetsA of Z for which there existd{ € Z suchthatdA Cc {k € Z : k > K}
forms a p.q.i. ideal of subsets Bf Hence, there exists an additive normed meaguyye= :,,,

for some invariant mean/) defined on the family of all subsets @finvariant with respect to
translations such that

n(N) = 0.

Analogously, if(S,+) = (R, +) and A € [J iff there existsK" € R such thatd C {z € R :
x > K} thenJ is a p.q.i. ideal of subsets & and there exists an additive normed meagure
defined on the family of all subsets Bfinvariant with respect to translations such that

p((a, +00) =0,
forall a € R.
Now we formulate the theorem which generalized Cabello Sanchez’s Lemma 6 from [6].

Theorem 2.6.Let 7 be a p.l.q.i. (p.r.q.i.) ideal of subsets of a semigraudf the set ideal”
satisfies the following condition

for every elementl of the set ideaythere exists an elemeatof S
(2.14) suchthatAn, A=0(AN A, =0),

then
j C jMv
for every left (right) invariant meai/ on the space3(S, R).
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Proof. Let A € 7 be fixed and let\/ be a left invariant mean on the spaBéS, R). Suppose
to the contrary that

M(xa) # 0.
PuttingA, = A and f, = x,, by our hypothesis and condition (2.6) we have

0= ifelgfo(ﬂf) < M(fo) < sup Jolz) = 1.

Now, let f; be the real function o defined byf, = fy +., fo, Where the element, € S is
associated with the sef, by condition (2.1§). Then the sdt = A, U,, Aq isin J. Moreover,
applying the properties of the left invariant mean we have

M(f1) = M(fo +ay fo) = M(fo) + M(ayfo) = M(fo) + M(fo) =2M(fo)
and
0= inf fi(w) < M(f1) <sup fiz) = 1.

zeS
Next, let fo = f1 +., f1, Where the element; € S is associated with the se; by condition
(2.14). Thend, = A, U, A, € J and

M(fa) = M(fi+a, f1) = 2M(f1) = 2°M(fo),
0= ;Telgfz(x) < M(f2) <sup fo(z) = 1.

zeS
Inductively we construct the sequence of real functignen S such that

0= ;Iégfn(x) < M(fn)=2"M(fo) < sggfg(ac) =1, neN

which is false. Hence)M (f,) = M(xa) = 0, which means thatl € 7, and thus ends the
proof. O

Remark 2.7. Observe that the family, of all bounded sets of a normed spatélim S > 1)
yields an example of a p.q.i. ideal of subsetsdtilfilling condition (2.14). Therefore,

%CjMa

for every invariant mea/ on B(S,R). Moreover, the family7; of all finite subsets of also
forms a p.q.i. ideal of subsets Sfand7; & J,. Hence

Jr & Ty CIm

for every invariant mean/ on B(.S, R) which shows that i (2.13) we have only inclusion. This
answers the question posed by Zs. Pales on the equality in (2.13).

Finally, to summarize the results just obtained, we note the following.

Remark 2.8. Let S be a left amenable semigroup andebe a subset of.
If

WwAUL AU Uy, A£S,

for all a;,as,...,a, € S andn € N, then the setd generates a p.l.q.i. ideal of subsets of
S. Hence, using Remafk 2.5, the skis a zero set for some invariant meafon the space
B(S,R) (A € Tu).

If there existn € N andaq, as, ..., a, € S such that
AU, AU U, A= S,
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then for every invariant meal on the spacé (S, R) we have
1= M(xs) = M(XayAUay AU ... U,, A)
< M(Xay A+ Xax A+ oo+ Xa, A)
= M(Xay A) + M(Xa, A) + ... + M(Xa, A)
= nM(xA),

which means thatl & 7).
The "right-hand side version" of this observation is analogous to the one presented above.

3. SEPARATION THEOREMS

Let S be a semigroup and letf be a proper ideal of subsets 8f Then we say that a given
condition is satisfieq7-almost everywhere of (written [7-a.e. onYS) if there exists a set
A € J such that the condition in question is satisfied for every S \ A.

Moreover, the symbdl(7) will stand for the family of all setsv C S x S with the property
that

Niz]={ye S:(z,y) e N} € J J —a.e. onG.

The familyQ(.7) forms a proper ideal of subsets $fx S (see Kuczma [13]).

We are now in a position to formulate and prove the main result of this section which is the
"almost everywhere version" of the result proved by Péles in [14] (seelalso [4]).

Theorem 3.1.Let (S, +) be a left (right) amenable semigroup, [&tbe a p.l.q.i. (p.r.q.i.) ideal
of subsets of and letp, ¢ : S — R . Then there exists a map: S — R such that

(3.1) alx +y) =a(x)+aly) UT)—aeonsS xS
and

(3.2) p(z) <alx) <qlx) J —a.e.onS

if and only if there exists a functiop: S — R such that

(3.3) p(@) < (@ +y) —(y) < q(z) AJT) —a.e.onS x 5.

Proof. Assume that satisfies[(3]1) and (3.2) and lgt= a. Condition [3.1) implies that there
exists a sefl/ € Q(J) such that
(3.4) plz+y) —ply) =alz+y) —aly) = alz), (z,y) €S\ M.

Now, choosé/ € 7 such thatM/[z] € 7, forallz € S\ U. Next, by [3.2) we get the existence
of a setV € J such that

(3.5) p(z) < alz) <qx), € S\V.
By W we denote the set of all paifs, y) € S? such that
p(r) < p(r +y) —e(y) < q(z)
do not hold. Putting[(3]4) andl (3.5) together, we infer tHat:] C Mz] € J, forall z €
S\ (U U V), whichimpliesiV € Q(J). So, the functionp satisfies|(3]3).

Assume that[(3]3) is valid with a certain functign: S — R. Then there exists a set
M € Q(J) such that

pla) < plx +y) —y) < gqlz), (v,y) € S*\ M.
SinceM € Q(J), one can find aséf € J suchthatV/[z] € 7, forallz € S\ U. Now, given
an element € S\ U we have

(3.6) p(x) <p(r+y) —ply) <qlx), ye S\ Mzl
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which means that for any fixed e S \ U the function
Soy—o@+y) —¢ey) R

belongs to the spadg’ (S, R).
Let MY represent a left invariant mean on the sp&¢E S, R), whose existence results from
Theorenj 2.4. The functiom: S — R is defined by the formula

a(z) = M (p(z +y) — @ly), forzeS\U
Lo forz e U,

where the subscript indicates that the meal” is applied to a function of the variable
If we chooseu, v € S\ U in such a manner that+ v € S\ U too, then by the left invariance
and linearity ofA/7, we get

a(u) +a(v) = M (o(u+y) = o(y)) + M (p(v +y) — o(y))
= M (p(u+v+y) —pv+y) + M (v +y) = o(y))
= M (p(u+v+y) —o(y) = alu+v).

This means that(u + v) = a(u) + a(v), for all (u,v) € S*\ W, where

W=UxS)u(SxU)u{(u,v)eS* ut+tvelU}.

Itis clear thatiV € Q(J) and we get[(3]1). Moreover, conditidn (2.11) jointly with the defini-
tion of « and [3.6) implies|(3]2) and completes the proof. O

For groups we have the following.

Corollary 3.2. Let(S,+) be a left (right) amenable group, Igt be a p.l.q.i. (p.r.q.i.) ideal of
subsets of and letp, g : S — R. Then there exists an additive functidn S — R such that

(3.7) p(z) < A(x) < q(z) J —a.e.onS
if and only if there exists a functiop: S — R such that
(3.8) p(x) < plz+y) —ely) <qlz) QJT) —ae ons xS

Proof. The proof of this theorem is a consequence of our previous result and the Cabello
Sanchez theoremi ([6, Theorem 8]) which is a version of the celebrated theorem of de Bruijn (see
[5]) and its generalization given by Ger (seel[10]) and which shows that for aumap— R
fulfilling (B.1) there exists an additive functiofi: S — R such that

a(x) = A(z) J —a.e.onS.
U

As a consequence of this fact we obtain the following (see Gajda, Komiinek [8] and Cabello
Sanchez[6]).

Theorem 3.3.Let (S, +) be an Abelian group and lef be a p.l.g.i. (p.r.q.i.) ideal of subsets
of S. If f,g:S — R satisfy

fle+y) < f(@)+ fly) UT)—ae.on§ xS

gz +y) > g(x) +g(y) UT)—aeons xS
and
g(x) < f(z) J —a.e.onS
then there exists an additive functiah: S — R such that

g(z) <a(x) < f(z) J —a.e.ons.
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Proof. Assume that/;, V; € J satisfy: forx € S\ U;
flx+y) < fla)+ fly), ye S\ W
and letl,, V, € J satisfy: forz € S\ Us
g(x+y) >g(x)+9(y), yeS\Va
Moreover, letl; be such that
g(x) < f(z), eS8\ U.
Then, forzr € S\ U, whereU = U, U U, U U, and fory € S\ (V; UV, U Uy U, Uy) we have
fle+y) —9(y) 2 9(z+y) —9(y) = g().
Hence, one can define a functipn S — R by p(z) =0, if z € U and forz € S\ U by
p(r) = essnf(.f — g)(t).
Suppose that andx + y are inS \ U. Then, as in([6], we can show that
9(x) < plz+y) —(y) < flz).

Now, takingN = (U x S) U {(z,y) € S? : x +y € U} we observe thalv € Q(J) which
means thap satisfies conditiorj (3]8) and an appeal to Corolfary 3.2 completes the proaf.

The next application concerns the stability problem for Cauchy’s functional equation. On
account of similarity we restrict our considerations to the "Ger-additive" functions.

Theorem 3.4.Let (S, +) be a left (right) amenable semigroug, be a p.l.g.i. (p.r.g.i.) ideal of
subsets of and letp : S — R. Moreover, letf : S — R be a function such that for a certain
setN € Q(J), the inequality

[f(x+y) — flz) = fy)| < plx)

(If(z+y) = f(z) = fW)] < p(y))
holds whenevefz, y) € S x S\ N. Then there exists a map: S — R such that

(3.9) a(z+y) =alx) +aly) UT)—ae.onS xS
and
(3.10) |f(z) —a(z)| < p(z) T —a.e.ons.

Proof. The functionsp = f — p, ¢ = f + p andy = [ satisfy condition[(3]3). Theore@ 1
yields a mam fulfilling (B.9) and [3.10), and the proof is complete.

For groups we have the following result.

Corollary 3.5. Let (S, +) be a left (right) amenable groups be a p.l.g.i. (p.r.q.i.) ideal of
subsets of and letp : S — R . Moreover, letf : S — R be a function such that for a certain
setN € Q(J), the inequality

[f(x+y) = f@) = f(y)] < p(x)

(If(z +y) = f(2) = f(W)] < p(y)
holds whenevefz,y) € S x S\ N. Then there exists an additive map S — R such that

|f(z) — A(z)| < p(z) T —a.e.onS.

Remark 3.6. The vector-valued versions of the above results can be obtained using the tech-
niques presented in![4],][6] orl[2].
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