Journal of Inequalities in Pure and Applied Mathematics

REVERSE REARRANGEMENT INEQUALITIES VIA MATRIX TECHNICS

JEAN-CHRISTOPHE BOURIN

8 rue Henri Durel 78510 Triel, France bourinjc@club-internet.fr

Received 01 August, 2005; accepted 31 January, 2006
Communicated by F. Hansen

AbSTRACT. We give a reverse inequality to the most standard rearrangement inequality for sequences and we emphasize the usefulness of matrix methods to study classical inequalities.

Key words and phrases: Trace inequalities; Rearrangement inequalities.

2000 Mathematics Subject Classification. 15A60.

1. Reverse Rearrangement Inequalities

We have the following reverse inequality to the most basic rearrangement inequality. Down arrows mean nonincreasing rearrangements.

Theorem 1.1. Let $\left\{a_{i}\right\}_{i=1}^{n}$ and $\left\{b_{i}\right\}_{i=1}^{n}$ be n-tuples of positive numbers with

$$
p \geq \frac{a_{i}}{b_{i}} \geq q, \quad i=1, \ldots, n
$$

for some $p, q>0$. Then,

$$
\sum_{i=1}^{n} a_{i}^{\downarrow} b_{i}^{\downarrow} \leq \frac{p+q}{2 \sqrt{p q}} \sum_{i=1}^{n} a_{i} b_{i} .
$$

The proof uses matrix arguments. Indeed, Theorem 1.1 is a byproduct of some matrix inequalities which are given in Section 2 .

For the convenience of readers we recall some facts about the trace norm. Capital letters A, B, \ldots, Z, denote n-by- n matrices or operators on an n-dimensional Hilbert space \mathcal{H}. Let $X=U|X|$ be the polar decomposition of X, so U is unitary and $|X|=\left(X^{*} X\right)^{1 / 2}$. The trace norm of X is $\|X\|_{1}=\operatorname{Tr}|X|$. One may easily check that the trace norm is a norm: For any X, Y, consider the polar decomposition $X+Y=U|X+Y|$. Then,

$$
\begin{equation*}
\|X+Y\|_{1}=\operatorname{Tr}|X+Y|=\operatorname{Tr} U^{*}(X+Y)=\operatorname{Tr} U^{*} X+\operatorname{Tr} U^{*} Y \tag{1.1}
\end{equation*}
$$

[^0]On the other hand, for all A,

$$
\begin{equation*}
|\operatorname{Tr} A| \leq \operatorname{Tr}|A|, \tag{1.2}
\end{equation*}
$$

as it is shown by computing $|\operatorname{Tr} A|$ in a basis of eigenvectors of $|A|$. From (1.1) and (1.2) we infer that $\|\cdot\|_{1}$ is a norm.
We need a simple fact: Given two diagonal positive matrices $X=\operatorname{diag}\left(x_{i}\right), Y=\operatorname{diag}\left(y_{i}\right)$ and a permutation matrix V acting on the canonical basis $\left\{e_{i}\right\}$ by $V e_{i}=e_{\sigma(i)}$, we have

$$
\begin{equation*}
\|X V Y\|_{1}=\sum x_{i} y_{\sigma(i)} . \tag{1.3}
\end{equation*}
$$

Indeed, since $|X V Y|^{2} e_{i}=Y V^{*} X^{2} V Y e_{i}=\left(x_{\sigma(i)}^{2} y_{i}^{2}\right) e_{i}$, we obtain $|X V Y| e_{i}=\left(x_{\sigma(i)} y_{i}\right) e_{i}$ so that (1.3) holds.

Proof of Theorem [.1]. Introduce the diagonal matrices $A=\operatorname{diag}\left(a_{i}\right)$ and $B=\operatorname{diag}\left(b_{i}\right)$. By the above discussion, we have

$$
\sum_{i=1}^{n} a_{i} b_{i}=\|A B\|_{1} \quad \text { and } \quad \sum_{i=1}^{n} a_{i}^{\downarrow} b_{i}^{\downarrow}=\|A V B\|_{1}
$$

for some permutation matrix V. Hence we have to show that

$$
\|A V B\|_{1} \leq \frac{p+q}{2 \sqrt{p q}}\|A B\|_{1}
$$

To this end consider the spectral representation $V=\sum_{i} v_{i} h_{i} \otimes h_{i}$ where v_{i} are the eigenvalues and h_{i} the corresponding unit eigenvectors. We have

$$
\begin{aligned}
\|A V B\|_{1} & \leq \sum_{i=1}^{n}\left\|A \cdot v_{i} h_{i} \otimes h_{i} \cdot B\right\|_{1} \\
& =\sum_{i=1}^{n}\left\|A h_{i}\right\|\left\|B h_{i}\right\| \\
& \leq \frac{p+q}{2 \sqrt{p q}} \sum_{i=1}^{n}\left\langle A h_{i}, B h_{i}\right\rangle \\
& =\frac{p+q}{2 \sqrt{p q}} \sum_{i=1}^{n}\left\langle h_{i}, A B h_{i}\right\rangle \\
& =\frac{p+q}{2 \sqrt{p q}}\|A B\|_{1}
\end{aligned}
$$

where we have used the triangle inequality for the trace norm and Lemma 1.4 below.
The following example shows that equality can occur.
Example 1.1. Consider couples $a_{1}=2, a_{2}=1$ and $b_{1}=1 / 2, b_{2}=1$; then with $p=4, q=1$,

$$
\frac{p+q}{2 \sqrt{p q}}=\frac{5}{4}=\frac{a_{1} b_{2}+a_{2} b_{1}}{a_{1} b_{1}+a_{2} b_{2}} .
$$

From the above, one easily derives:
Corollary 1.2. Let $\left\{a_{i}\right\}_{i=1}^{n}$ and $\left\{b_{i}\right\}_{i=1}^{n}$ be n-tuples of positive numbers with

$$
b_{i} \leq a_{i} \leq p b_{i}, \quad i=1, \ldots, n,
$$

for some $p>0$. Then,

$$
\sum_{i=1}^{n} a_{i}^{\downarrow} b_{i}^{\downarrow} \leq \frac{p+1}{2 \sqrt{p}} \sum_{i=1}^{n} a_{i} b_{i} .
$$

Moreover, for even n and each p, there are n-tuples for which equality occurs.
To obtain equality, consider an n-tuple $\left\{a_{i}\right\}$ for which the first half terms equal \sqrt{p} and the second half ones equal 1 , and an n-tuple $\left\{b_{i}\right\}$ for which the first half terms equal 1 and the second half ones equal $1 / \sqrt{p}$.

We turn to the lemmas necessary to complete the proof of Theorem 1.1. Given a subspace $\mathcal{E} \subset \mathcal{H}$, denote by $Z_{\mathcal{E}}$ the compression of Z onto E, that is the restriction of $E Z$ to \mathcal{E} where E is the orthoprojection onto \mathcal{E}.
Lemma 1.3. Let $Z>0$ with extremal eigenvalues a and b. Then, for every norm one vector h,

$$
\|Z h\| \leq \frac{a+b}{2 \sqrt{a b}}\langle h, Z h\rangle .
$$

Proof. Let \mathcal{E} be any subspace of \mathcal{H} and let a^{\prime} and b^{\prime} be the extremal eigenvalues of $Z_{\mathcal{E}}$. Then $a \geq a^{\prime} \geq b^{\prime} \geq b$ and, setting $t=\sqrt{a / b}, t^{\prime}=\sqrt{a^{\prime} / b^{\prime}}$, we have $t \geq t^{\prime} \geq 1$. Since $t \longrightarrow t+1 / t$ increases on $[1, \infty)$ and

$$
\frac{a+b}{2 \sqrt{a b}}=\frac{1}{2}\left(t+\frac{1}{t}\right), \quad \frac{a^{\prime}+b^{\prime}}{2 \sqrt{a^{\prime} b^{\prime}}}=\frac{1}{2}\left(t^{\prime}+\frac{1}{t^{\prime}}\right),
$$

we infer

$$
\frac{a+b}{2 \sqrt{a b}} \geq \frac{a^{\prime}+b^{\prime}}{2 \sqrt{a^{\prime} b^{\prime}}} .
$$

Therefore, it suffices to prove the lemma for $Z_{\mathcal{E}}$ with $\mathcal{E}=\operatorname{span}\{h, Z h\}$. Hence, we may assume $\operatorname{dim} \mathcal{H}=2, Z=a e_{1} \otimes e_{1}+b e_{2} \otimes e_{2}$ and $h=x e_{1}+\left(\sqrt{1-x^{2}}\right) e_{2}$. Setting $x^{2}=y$ we have

$$
\frac{\|Z h\|}{\langle h, Z h\rangle}=\frac{\sqrt{a^{2} y+b^{2}(1-y)}}{a y+b(1-y)} .
$$

The right hand side attains its maximum on $[0,1]$ at $y=b /(a+b)$, and then

$$
\frac{\|Z h\|}{\langle h, Z h\rangle}=\frac{a+b}{2 \sqrt{a b}},
$$

proving the lemma.
Lemma 1.4. Let $A, B>0$ with $A B=B A$ and $p I \geq A B^{-1} \geq q I$ for some $p, q>0$. Then, for every vector h,

$$
\|A h\|\|B h\| \leq \frac{p+q}{2 \sqrt{p q}}\langle A h, B h\rangle .
$$

Proof. Write $h=B^{-1} f$ and apply Lemma 1.3 .
Remark 1.5. Lemma 1.3 is nothing but a rephrasing of a Kantorovich inequality and Lemma 1.4 a rephrasing of Cassel's Inequality:

Cassel's inequality. For nonnegative n-tuples $\left\{a_{i}\right\}_{i=1}^{n},\left\{b_{i}\right\}_{i=1}^{n}$ and $\left\{w_{i}\right\}_{i=1}^{n}$ with

$$
p \geq \frac{a_{i}}{b_{i}} \geq q, \quad i=1, \ldots, n
$$

for some $p, q>0$; it holds that

$$
\left(\sum_{i=1}^{n} w_{i} a_{i}^{2}\right)^{\frac{1}{2}}\left(\sum_{i=1}^{n} w_{i} b_{i}^{2}\right)^{\frac{1}{2}} \leq \frac{p+q}{2 \sqrt{p q}} \sum_{i=1}^{n} w_{i} a_{i} b_{i} .
$$

Of course it is a reverse inequality to the Cauchy-Schwarz inequality. To obtain it from Lemma 1.4, one simply takes $A=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right), B=\operatorname{diag}\left(b_{1}, \ldots, b_{n}\right)$ and $h=\left(\sqrt{w_{1}}, \ldots, \sqrt{w_{n}}\right)$. If one lets $a=\left(a_{1}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, \ldots, b_{n}\right)$ then Cassel's inequality can be written as

$$
\begin{equation*}
\|a\|\|b\| \leq \frac{p+q}{2 \sqrt{p q}}\langle a, b\rangle \tag{1.4}
\end{equation*}
$$

for a suitable inner product $\langle\cdot, \cdot\rangle$. It is then natural to search for conditions on a, b ensuring that the above inequality remains valid with $U a, U b$ for all orthogonal matrices U. This motivates a remarkable extension of Cassel's inequality:
t Dragomir's inequality. For real vectors a, b such that $\langle a-q b, p b-a\rangle \geq 0$ for some scalars p, q with $p q>0$, inequality (1.4) holds. For this inequality and its complex version see [4], [5], [6].

Taking squares in Cassel's inequality and using the convexity of t^{2} we obtain:

$$
\sum_{i=1}^{n} w_{i} a_{i} \sum_{i=1}^{n} w_{i} b_{i} \leq \frac{(\sqrt{p}+\sqrt{q})^{2}}{4 \sqrt{p q}} \sum_{i=1}^{n} w_{i} a_{i} b_{i}
$$

for all nonnegative n-tuples $\left\{a_{i}\right\}_{i=1}^{n},\left\{b_{i}\right\}_{i=1}^{n}$ and $\left\{w_{i}\right\}_{i=1}^{n}$ with $\sum_{i=1}^{n} w_{i}=1$ and $p \geq a_{i} / b_{i} \geq q$ for some $p, q>0$. Though weaker than Cassel's inequality, this is also a sharp inequality: Taking $b_{i}=1 / a_{i}$ we get the (sharp) Kantorovich inequality: If $p \geq a_{i} \geq q>0$ and $\sum_{i=1}^{n} w_{i}=$ 1 , then

$$
\sum_{i=1}^{n} w_{i} a_{i} \sum_{i=1}^{n} w_{i} a_{i}^{-1} \leq \frac{(p+q)^{2}}{4 p q}
$$

Let (Ω, P) be a probability space. The above discussions shows a sharp result:
Proposition 1.6. Let $f(\omega)$ and $g(\omega)$ be measurable functions on Ω such that $p \geq f(\omega) / g(\omega) \geq$ q for some $p, q>0$. Then,

$$
\int_{\Omega} f(\omega) \mathrm{d} P \int_{\Omega} g(\omega) \mathrm{d} P \leq \frac{(\sqrt{p}+\sqrt{q})^{2}}{4 \sqrt{p q}} \int_{\Omega} f g(\omega) \mathrm{d} P .
$$

2. Related Matrix Inequalities and Comments

We dicovered the statements of Theorem 1.1 and its corollaries while investigating some matrix inequalities. Among those are inequalities for symmetric norms. Such a norm $\|\cdot\|$ is characterized by the property that $\|A\|=\|U A V\|$ for all A and all unitaries U, V. The most basic inequality for symmetric norms is

$$
\|A B\| \leq\|B A\|
$$

whenever the product $A B$ is normal. In [1] (see also [2]) we established:
Theorem 2.1. Let A, B such that $A B \geq 0$ and let $Z>0$ with extremal eigenvalues a and b. Then, for every symmetric norm, the following sharp inequality holds

$$
\|Z A B\| \leq \frac{a+b}{2 \sqrt{a b}}\|B Z A\|
$$

By sharpness, we mean that we can find A and B such that equality occurs. Note that letting $A=B$ be a rank one projection $h \otimes h$ we recapture Lemma 1.3 which is the starting point of Theorem 1.1. From this theorem we derived several known Kantorovich type inequalities and also a sharp operator inequality:

Corollary 2.2. Let $0 \leq A \leq I$ and let $Z>0$ with extremal eigenvalues a and b. Then,

$$
A Z A \leq \frac{(a+b)^{2}}{4 a b} Z
$$

Next, let us note that an immediate consequence of Theorem 1.1 is:
Corollary 2.3. Let $Z \geq 0$ and let $A, B>0$ with $A B=B A$ and $p I \geq A B^{-1} \geq q I$ for some $p, q>0$. Then, for all symmetric norms,

$$
\|A Z B\| \leq \frac{p+q}{2 \sqrt{p q}}\|Z A B\|
$$

Proof. From Theorem 2.1 we get

$$
\|A Z B\|=\left\|A B^{-1}(B Z \cdot B)\right\| \leq \frac{p+q}{2 \sqrt{p q}}\|A B Z\|=\frac{p+q}{2 \sqrt{p q}}\|Z A B\| .
$$

by the simple fact that $\|S T\|=\|T S\|$ for all Hermitians S, T, since $\|X\|=\left\|X^{*}\right\|$ for all X.

The previous theorem cannot be extended to normal operators Z, except in the case of the trace norm:
Theorem 2.4. Let $A, B>0$ with $A B=B A$ and $p I \geq A B^{-1} \geq q I$ for some $p, q>0$ and let Z be normal. Then,

$$
\|A Z B\|_{1} \leq \frac{p+q}{2 \sqrt{p q}}\|Z A B\|_{1} .
$$

The proof is quite similar to that of Theorem 1.1. Clearly Theorem 1.1 is a corollary of Theorem 2.4.
Some comments. One aim of the paper is to place stress on the power of matrix methods in dealing with classical inequalities. This is apparent in the quite natural statement and proof of Cassel's inequality via Lemma 1.4 . We also note that from the matrix inequality of Theorem 2.4 we infer our reverse rearrangement inequality stated in Theorem 1.1. Having now at our disposal the good statement, it remains to find a direct proof without matrix arguments (in particular without using complex numbers via the spectral decomposition). A first immediate simplification consists in noting that we can assume that

$$
a_{1}, \ldots, a_{n}=a_{1}^{\downarrow}, \ldots, a_{n}^{\downarrow} \quad \text { and } \quad b_{1}, \ldots, b_{n}=b_{\sigma(1)}^{\downarrow}, \ldots, b_{\sigma(n)}^{\downarrow}
$$

for a permutation σ. By decomposing σ in cycles we may assume that σ is a cycle. Equivalently we may assume that

$$
a_{1}, \ldots, a_{n}=a_{\sigma(1)}^{\downarrow}, \ldots, a_{\sigma(n)}^{\downarrow} \quad \text { and } \quad b_{1}, \ldots, b_{n}=b_{\sigma(2)}^{\downarrow}, \ldots, b_{\sigma(n)}^{\downarrow}, b_{\sigma(1)}^{\downarrow}
$$

for a permutation σ. However, does it really simplify the problem?
It is tempting to try to reduce the problem to the case $n=2$. We have no idea of how to proceed. The case $n=2$ can be easily solved by elementary methods as it is shown in the next proposition. The proof shows that the inequality of Theorem 1.1 is sharp (and equality can occur when n is even).
Proposition 2.5. Let $a^{*} \geq a_{*}>0$ and $b^{*} \geq b_{*}>0$ with

$$
p \geq \frac{a^{*}}{b_{*}} \quad \text { and } \quad \frac{a_{*}}{b^{*}} \geq q
$$

for some $p, q>0$. Then,

$$
\frac{a^{*} b^{*}+a_{*} b_{*}}{a^{*} b_{*}+a_{*} b^{*}} \leq \frac{p+q}{2 \sqrt{p q}}
$$

Proof. First, fix a^{*}, a_{*} and renamed b^{*}, b_{*} by x, y respectively. We want to maximize

$$
f(x, y)=\frac{a^{*} x+a_{*} y}{a^{*} y+a_{*} x}
$$

on the domain

$$
\Delta=\left\{(x, y): x \geq y, q \leq \frac{a_{*}}{x} \leq p, q \leq \frac{a^{*}}{y} \leq p\right\}
$$

that is,

$$
\Delta=\left\{(x, y): x \geq y, \frac{a_{*}}{p} \leq x \leq \frac{a_{*}}{q}, \frac{a^{*}}{p} \leq y \leq \frac{a^{*}}{q}\right\}
$$

Thus Δ is a triangle (more precisely a half-square) with vertices

$$
\left(a^{*} / p, a^{*} / p\right) \quad\left(a_{*} / q, a_{*} / q\right) \quad\left(a_{*} / q, a^{*} / p\right)
$$

On Δ we have $\partial f / \partial x>0$ and $\partial f / \partial y<0$. This shows that f takes its maximun in Δ at $\left(a_{*} / q, a^{*} / p\right)$. The value is then

$$
\frac{\frac{a^{*} a_{*}}{q}+\frac{a^{*} a_{*}}{p}}{\frac{a^{*} a^{*}}{p}+\frac{a_{*} a_{*}}{q}} .
$$

Next, observe that in our inequality we can take $a^{*}=1$. Hence, letting $a_{*}=t$, we have to check that

$$
\max _{t \in[0,1]} \frac{\left(\frac{1}{p}+\frac{1}{q}\right) t}{\frac{1}{p}+\frac{t^{2}}{q}}=\frac{p+q}{2 \sqrt{p q}}
$$

Considering the derivative, we see that the maximum is attained at $t=\sqrt{q / p}$ and we obtain the expected value.

We close with two open problems:
Problem 2.1. Find a direct proof of Theorem 1.1 .
Problem 2.2. Let $\left\{a_{i}\right\}_{i=1}^{n}$ and $\left\{b_{i}\right\}_{i=1}^{n}$ be n-tuples of positive numbers. Find a suitable bound for the difference

$$
\sum_{i=1}^{n} a_{i}^{\downarrow} b_{i}^{\downarrow}-\sum_{i=1}^{n} a_{i} b_{i} .
$$

In the research/survey paper [3] we consider matrix proofs and several extensions of some classical inequalities of Chebyshev, Grüss and Kantorovich type.

References

[1] J.-C. BOURIN, Symmetric norms and reverse inequalities to Davis and Hansen-Pedersen characterizations of operator convexity, Math. Ineq. Appl., 9(1) (2006), xxx-xxx.
[2] J.-C. BOURIN, Compressions, Dilations and Matrix Inequalities, RGMIA Monographs, Victoria University, Melbourne 2004. [ONLINE: http://rgmia.vu.edu.au/monographs].
[3] J.-C. BOURIN, Matrix versions of some classical inequalities, Linear Algebra Appl., (2006), in press.
[4] S.S. DRAGOMIR, Reverse of Schwarz, triangle and Bessel Inequalities, RGMIA Res. Rep. Coll., 6(Supp.) (2003), Art. 19. [ONLINE: http://rgmia.vu.edu.au/v6 (E).html]
[5] S.S. DRAGOMIR, A survey on Cauchy-Bunyakowsky-Schwarz type discrete inequalities, J. Inequal. Pure and Appl. Math., 4(3) (2003), Art. 63. [ONLINE: http://jipam.vu.edu.au/ article.php?sid=301
[6] N. ELEZOVIĆ, L. MARANGUNIĆ AND J.E. PEČARIĆ, Unified treatement of complemented Schwarz and Grüss inequalities in inner product spaces, Math. Ineq. Appl., 8(2) (2005), 223-231.

[^0]: ISSN (electronic): 1443-5756
 (c) 2006 Victoria University. All rights reserved.

 233-05

