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ABSTRACT. We give a reverse inequality to the most standard rearrangement inequality for
sequences and we emphasize the usefulness of matrix methods to study classical inequalities.
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1. REVERSE REARRANGEMENT I NEQUALITIES

We have the following reverse inequality to the most basic rearrangement inequality. Down
arrows mean nonincreasing rearrangements.

Theorem 1.1.Let{ai}n
i=1 and{bi}n

i=1 ben-tuples of positive numbers with

p ≥ ai

bi

≥ q, i = 1, . . . , n,

for somep, q > 0. Then,
n∑

i=1

a↓i b
↓
i ≤

p + q

2
√

pq

n∑
i=1

aibi.

The proof uses matrix arguments. Indeed, Theorem 1.1 is a byproduct of some matrix in-
equalities which are given in Section 2.

For the convenience of readers we recall some facts about the trace norm. Capital letters
A, B, . . . , Z, denoten-by-n matrices or operators on ann-dimensional Hilbert spaceH. Let
X = U |X| be the polar decomposition ofX, soU is unitary and|X| = (X∗X)1/2. The trace
norm ofX is ‖X‖1 = Tr |X|. One may easily check that the trace norm is a norm: For anyX,
Y , consider the polar decompositionX + Y = U |X + Y |. Then,

(1.1) ‖X + Y ‖1 = Tr |X + Y | = Tr U∗(X + Y ) = Tr U∗X + Tr U∗Y.
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2 JEAN-CHRISTOPHEBOURIN

On the other hand, for allA,

(1.2) |Tr A| ≤ Tr |A|,

as it is shown by computing|Tr A| in a basis of eigenvectors of|A|. From (1.1) and (1.2) we
infer that‖ · ‖1 is a norm.

We need a simple fact: Given two diagonal positive matricesX = diag(xi), Y = diag(yi)
and a permutation matrixV acting on the canonical basis{ei} by V ei = eσ(i), we have

(1.3) ‖XV Y ‖1 =
∑

xiyσ(i).

Indeed, since|XV Y |2ei = Y V ∗X2V Y ei = (x2
σ(i)y

2
i )ei, we obtain|XV Y |ei = (xσ(i)yi)ei so

that (1.3) holds.

Proof of Theorem 1.1.Introduce the diagonal matricesA = diag(ai) andB = diag(bi). By the
above discussion, we have

n∑
i=1

aibi = ‖AB‖1 and
n∑

i=1

a↓i b
↓
i = ‖AV B‖1

for some permutation matrixV . Hence we have to show that

‖AV B‖1 ≤
p + q

2
√

pq
‖AB‖1.

To this end consider the spectral representationV =
∑

i vihi ⊗ hi wherevi are the eigenvalues
andhi the corresponding unit eigenvectors. We have

‖AV B‖1 ≤
n∑

i=1

‖A · vihi ⊗ hi ·B‖1

=
n∑

i=1

‖Ahi‖ ‖Bhi‖

≤ p + q

2
√

pq

n∑
i=1

〈Ahi, Bhi〉

=
p + q

2
√

pq

n∑
i=1

〈hi, ABhi〉

=
p + q

2
√

pq
‖AB‖1,

where we have used the triangle inequality for the trace norm and Lemma 1.4 below. �

The following example shows that equality can occur.

Example 1.1.Consider couplesa1 = 2, a2 = 1 andb1 = 1/2, b2 = 1; then withp = 4, q = 1,

p + q

2
√

pq
=

5

4
=

a1b2 + a2b1

a1b1 + a2b2

.

From the above, one easily derives:

Corollary 1.2. Let{ai}n
i=1 and{bi}n

i=1 ben-tuples of positive numbers with

bi ≤ ai ≤ pbi, i = 1, . . . , n,
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REVERSEREARRANGEMENT INEQUALITIES 3

for somep > 0. Then,
n∑

i=1

a↓i b
↓
i ≤

p + 1

2
√

p

n∑
i=1

aibi.

Moreover, for evenn and eachp, there aren-tuples for which equality occurs.

To obtain equality, consider ann-tuple{ai} for which the first half terms equal
√

p and the
second half ones equal1, and ann-tuple {bi} for which the first half terms equal1 and the
second half ones equal1/

√
p.

We turn to the lemmas necessary to complete the proof of Theorem 1.1. Given a subspace
E ⊂ H, denote byZE the compression ofZ ontoE, that is the restriction ofEZ to E whereE
is the orthoprojection ontoE .

Lemma 1.3. LetZ > 0 with extremal eigenvaluesa andb. Then, for every norm one vectorh,

‖Zh‖ ≤ a + b

2
√

ab
〈h, Zh〉.

Proof. Let E be any subspace ofH and leta′ andb′ be the extremal eigenvalues ofZE . Then
a ≥ a′ ≥ b′ ≥ b and, settingt =

√
a/b, t′ =

√
a′/b′, we havet ≥ t′ ≥ 1. Sincet −→ t + 1/t

increases on[1,∞) and

a + b

2
√

ab
=

1

2

(
t +

1

t

)
,

a′ + b′

2
√

a′b′
=

1

2

(
t′ +

1

t′

)
,

we infer
a + b

2
√

ab
≥ a′ + b′

2
√

a′b′
.

Therefore, it suffices to prove the lemma forZE with E = span{h, Zh}. Hence, we may assume
dimH = 2, Z = ae1 ⊗ e1 + be2 ⊗ e2 andh = xe1 + (

√
1− x2)e2. Settingx2 = y we have

||Zh||
〈h, Zh〉

=

√
a2y + b2(1− y)

ay + b(1− y)
.

The right hand side attains its maximum on[0, 1] aty = b/(a + b), and then

||Zh||
〈h, Zh〉

=
a + b

2
√

ab
,

proving the lemma. �

Lemma 1.4. LetA, B > 0 with AB = BA andpI ≥ AB−1 ≥ qI for somep, q > 0. Then, for
every vectorh,

‖Ah‖ ‖Bh‖ ≤ p + q

2
√

pq
〈Ah,Bh〉.

Proof. Write h = B−1f and apply Lemma 1.3. �

Remark 1.5. Lemma 1.3 is nothing but a rephrasing of a Kantorovich inequality and Lemma
1.4 a rephrasing of Cassel’s Inequality:
Cassel’s inequality. For nonnegativen-tuples{ai}n

i=1, {bi}n
i=1 and{wi}n

i=1 with

p ≥ ai

bi

≥ q, i = 1, . . . , n,

for somep, q > 0; it holds that(
n∑

i=1

wia
2
i

) 1
2
(

n∑
i=1

wib
2
i

) 1
2

≤ p + q

2
√

pq

n∑
i=1

wiaibi.
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4 JEAN-CHRISTOPHEBOURIN

Of course it is a reverse inequality to the Cauchy-Schwarz inequality. To obtain it from Lemma
1.4, one simply takesA = diag(a1, . . . , an), B = diag(b1, . . . , bn) andh = (

√
w1, . . . ,

√
wn).

If one letsa = (a1, . . . , an) andb = (b1, . . . , bn) then Cassel’s inequality can be written as

(1.4) ‖a‖ ‖b‖ ≤ p + q

2
√

pq
〈a, b〉

for a suitable inner product〈·, ·〉. It is then natural to search for conditions ona, b ensuring that
the above inequality remains valid withUa, Ub for all orthogonal matricesU . This motivates a
remarkable extension of Cassel’s inequality:

tDragomir’s inequality. For real vectorsa, b such that〈a− qb, pb− a〉 ≥ 0 for some scalars
p, q with pq > 0, inequality (1.4) holds. For this inequality and its complex version see [4], [5],
[6].

Taking squares in Cassel’s inequality and using the convexity oft2 we obtain:
n∑

i=1

wiai

n∑
i=1

wibi ≤
(
√

p +
√

q)2

4
√

pq

n∑
i=1

wiaibi

for all nonnegativen-tuples{ai}n
i=1, {bi}n

i=1 and{wi}n
i=1 with

∑n
i=1 wi = 1 andp ≥ ai/bi ≥ q

for somep, q > 0. Though weaker than Cassel’s inequality, this is also a sharp inequality:
Takingbi = 1/ai we get the (sharp) Kantorovich inequality: Ifp ≥ ai ≥ q > 0 and

∑n
i=1 wi =

1, then
n∑

i=1

wiai

n∑
i=1

wia
−1
i ≤ (p + q)2

4pq
.

Let (Ω, P ) be a probability space. The above discussions shows a sharp result:

Proposition 1.6. Letf(ω) andg(ω) be measurable functions onΩ such thatp ≥ f(ω)/g(ω) ≥
q for somep, q > 0. Then,∫

Ω

f(ω) dP

∫
Ω

g(ω) dP ≤
(
√

p +
√

q)2

4
√

pq

∫
Ω

fg(ω) dP.

2. RELATED M ATRIX I NEQUALITIES AND COMMENTS

We dicovered the statements of Theorem 1.1 and its corollaries while investigating some
matrix inequalities. Among those are inequalities for symmetric norms. Such a norm‖ · ‖ is
characterized by the property that‖A‖ = ‖UAV ‖ for all A and all unitariesU , V . The most
basic inequality for symmetric norms is

‖AB‖ ≤ ‖BA‖,

whenever the productAB is normal. In [1] (see also [2]) we established:

Theorem 2.1. Let A, B such thatAB ≥ 0 and letZ > 0 with extremal eigenvaluesa and b.
Then, for every symmetric norm, the following sharp inequality holds

‖ZAB‖ ≤ a + b

2
√

ab
‖BZA‖.

By sharpness, we mean that we can findA andB such that equality occurs. Note that letting
A = B be a rank one projectionh ⊗ h we recapture Lemma 1.3 which is the starting point of
Theorem 1.1. From this theorem we derived several known Kantorovich type inequalities and
also a sharp operator inequality:
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Corollary 2.2. Let0 ≤ A ≤ I and letZ > 0 with extremal eigenvaluesa andb. Then,

AZA ≤ (a + b)2

4ab
Z.

Next, let us note that an immediate consequence of Theorem 1.1 is:

Corollary 2.3. Let Z ≥ 0 and letA, B > 0 with AB = BA andpI ≥ AB−1 ≥ qI for some
p, q > 0. Then, for all symmetric norms,

‖AZB‖ ≤ p + q

2
√

pq
‖ZAB‖.

Proof. From Theorem 2.1 we get

‖AZB‖ = ‖AB−1(BZ ·B)‖ ≤ p + q

2
√

pq
‖ABZ‖ =

p + q

2
√

pq
‖ZAB‖.

by the simple fact that‖ST‖ = ‖TS‖ for all HermitiansS, T , since‖X‖ = ‖X∗‖ for all
X. �

The previous theorem cannot be extended to normal operatorsZ, except in the case of the
trace norm:

Theorem 2.4. LetA, B > 0 with AB = BA andpI ≥ AB−1 ≥ qI for somep, q > 0 and let
Z be normal. Then,

‖AZB‖1 ≤
p + q

2
√

pq
‖ZAB‖1.

The proof is quite similar to that of Theorem 1.1. Clearly Theorem 1.1 is a corollary of
Theorem 2.4.
Some comments.One aim of the paper is to place stress on the power of matrix methods in
dealing with classical inequalities. This is apparent in the quite natural statement and proof of
Cassel’s inequality via Lemma 1.4. We also note that from the matrix inequality of Theorem
2.4 we infer our reverse rearrangement inequality stated in Theorem 1.1. Having now at our
disposal the good statement, it remains to find a direct proof without matrix arguments (in
particular without using complex numbers via the spectral decomposition). A first immediate
simplification consists in noting that we can assume that

a1, . . . , an = a↓1, . . . , a
↓
n and b1, . . . , bn = b↓σ(1), . . . , b

↓
σ(n)

for a permutationσ. By decomposingσ in cycles we may assume thatσ is a cycle. Equivalently
we may assume that

a1, . . . , an = a↓σ(1), . . . , a
↓
σ(n) and b1, . . . , bn = b↓σ(2), . . . , b

↓
σ(n), b

↓
σ(1)

for a permutationσ. However, does it really simplify the problem ?
It is tempting to try to reduce the problem to the casen = 2. We have no idea of how to

proceed. The casen = 2 can be easily solved by elementary methods as it is shown in the
next proposition. The proof shows that the inequality of Theorem 1.1 is sharp (and equality can
occur whenn is even).

Proposition 2.5. Leta∗ ≥ a∗ > 0 andb∗ ≥ b∗ > 0 with

p ≥ a∗

b∗
and

a∗
b∗
≥ q

for somep, q > 0. Then,
a∗b∗ + a∗b∗
a∗b∗ + a∗b∗

≤ p + q

2
√

pq
.
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Proof. First, fix a∗, a∗ and renamedb∗, b∗ by x, y respectively. We want to maximize

f(x, y) =
a∗x + a∗y

a∗y + a∗x

on the domain
∆ =

{
(x, y) : x ≥ y, q ≤ a∗

x
≤ p, q ≤ a∗

y
≤ p

}
that is,

∆ =

{
(x, y) : x ≥ y,

a∗
p
≤ x ≤ a∗

q
,

a∗

p
≤ y ≤ a∗

q

}
.

Thus∆ is a triangle (more precisely a half-square) with vertices

(a∗/p, a∗/p) (a∗/q, a∗/q) (a∗/q, a
∗/p).

On ∆ we have∂f/∂x > 0 and∂f/∂y < 0. This shows thatf takes its maximun in∆ at
(a∗/q, a

∗/p). The value is then
a∗a∗

q
+ a∗a∗

p
a∗a∗

p
+ a∗a∗

q

.

Next, observe that in our inequality we can takea∗ = 1. Hence, lettinga∗ = t, we have to
check that

max
t∈[0,1]

(1
p

+ 1
q
)t

1
p

+ t2

q

=
p + q

2
√

pq
.

Considering the derivative, we see that the maximum is attained att =
√

q/p and we obtain the
expected value. �

We close with two open problems:

Problem 2.1. Find a direct proof of Theorem 1.1.

Problem 2.2. Let {ai}n
i=1 and{bi}n

i=1 ben-tuples of positive numbers. Find a suitable bound
for the difference n∑

i=1

a↓i b
↓
i −

n∑
i=1

aibi.

In the research/survey paper [3] we consider matrix proofs and several extensions of some
classical inequalities of Chebyshev, Grüss and Kantorovich type.
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