FEJÉR INEQUALITIES FOR WRIGHT-CONVEX FUNCTIONS

MING-IN HO

China Institute of Technology
NANKANG, TAIPEI
TAIWAN 11522
mingin@cc.chit.edu.tw
Received 07 September, 2006; accepted 18 November, 2006
Communicated by P.S. Bullen

AbSTRACT. In this paper, we establish several inequalities of Fejér type for Wright-convex functions.

Key words and phrases: Hermite-Hadamard inequality, Fejér inequality, Wright-convex functions.

2000 Mathematics Subject Classification. 26D15.

1. Introduction

If $f:[a, b] \rightarrow \mathbb{R}$ is a convex function, then

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1.1}
\end{equation*}
$$

is known as the Hermite-Hadamard inequality ([5]).
In [4], Fejér established the following weighted generalization of the inequality (1.1):
Theorem A. If $f:[a, b] \rightarrow \mathbb{R}$ is a convex function, then the inequality

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} p(x) d x \leq \int_{a}^{b} f(x) p(x) d x \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} p(x) d x \tag{1.2}
\end{equation*}
$$

holds, where $p:[a, b] \rightarrow \mathbb{R}$ is nonnegative, integrable, and symmetric about $x=\frac{a+b}{2}$.
In recent years there have been many extensions, generalizations, applications and similar results of the inequalities (1.1) and (1.2) see [1] - [8], [10] - [16].

In [2], Dragomir established the following theorem which is a refinement of the first inequality of (1.1).

Theorem B. If $f:[a, b] \rightarrow \mathbb{R}$ is a convex function, and H is defined on $[0,1]$ by

$$
H(t)=\frac{1}{b-a} \int_{a}^{b} f\left(t x+(1-t) \frac{a+b}{2}\right) d x
$$

then H is convex, increasing on $[0,1]$, and for all $t \in[0,1]$, we have

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right)=H(0) \leq H(t) \leq H(1)=\frac{1}{b-a} \int_{a}^{b} f(x) d x \tag{1.3}
\end{equation*}
$$

In [11], Yang and Hong established the following theorem which is a refinement of the second inequality of (1.1):

Theorem C. If $f:[a, b] \rightarrow \mathbb{R}$ is a convex function, and F is defined on $[0,1]$ by

$$
\begin{aligned}
F(t)=\frac{1}{2(b-a)} \int_{a}^{b}\left[f \left(\left(\frac{1+t}{2}\right) a+\right.\right. & \left.\left(\frac{1-t}{2}\right) x\right) \\
& \left.+f\left(\left(\frac{1+t}{2}\right) b+\left(\frac{1-t}{2}\right) x\right)\right] d x
\end{aligned}
$$

then F is convex, increasing on $[0,1]$, and for all $t \in[0,1]$, we have

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(x) d x=F(0) \leq F(t) \leq F(1)=\frac{f(a)+f(b)}{2} . \tag{1.4}
\end{equation*}
$$

We recall the definition of a Wright-convex function:
Definition 1.1 ([9, p. 223]). We say that $f:[a, b] \rightarrow \mathbb{R}$ is a Wright-convex function, if, for all $x, y+\delta \in[a, b]$ with $x<y$ and $\delta \geq 0$, we have

$$
\begin{equation*}
f(x+\delta)+f(y) \leq f(y+\delta)+f(x) . \tag{1.5}
\end{equation*}
$$

Let $C([a, b])$ be the set of all convex functions on $[a, b]$ and $W([a, b])$ be the set of all Wrightconvex functions on $[a, b]$. Then $C([a, b]) \varsubsetneqq W([a, b])$. That is, a convex function must be a Wright-convex function but the converse is not true. (see [9, p. 224]).

In [10], Tseng, Yang and Dragomir established the following theorems for Wright-convex functions related to the inequality (1.1), Theorem A and Theorem B;

Theorem D. Let $f \in W([a, b]) \cap L_{1}[a, b]$. Then the inequality (1.1) holds.
Theorem E. Let $f \in W([a, b]) \cap L_{1}[a, b]$ and let H be defined as in Theorem B Then $H \in$ $W([0,1])$ is increasing on $[0,1]$, and the inequality (1.3) holds for all $t \in[0,1]$.

Theorem F. Let $f \in W([a, b]) \cap L_{1}[a, b]$ and let F be defined as in Theorem C. Then $F \in$ $W([0,1])$ is increasing on $[0,1]$, and the inequality (1.4) holds for all $t \in[0,1]$.

In [12], Yang and Tseng established the following theorem which refines the inequality (1.2):
Theorem G ([12, Remark 6]). Let f and p be defined as in Theorem A. If P, Q are defined on $[0,1]$ by

$$
\begin{equation*}
P(t)=\int_{a}^{b} f\left(t x+(1-t) \frac{a+b}{2}\right) p(x) d x \quad(t \in(0,1)) \tag{1.6}
\end{equation*}
$$

and

$$
\begin{align*}
Q(t)=\int_{a}^{b} \frac{1}{2}\left[f \left(\frac{1+t}{2} a\right.\right. & \left.+\frac{1-t}{2} x\right) p\left(\frac{x+a}{2}\right) \tag{1.7}\\
& \left.+f\left(\frac{1+t}{2} b+\frac{1-t}{2} x\right) p\left(\frac{x+b}{2}\right)\right] d x \quad(t \in(0,1))
\end{align*}
$$

then P, Q are convex and increasing on $[0,1]$ and, for all $t \in[0,1]$,

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} p(x) d x=P(0) \leq P(t) \leq P(1)=\int_{a}^{b} f(x) p(x) d x \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{a}^{b} f(x) p(x) d x=Q(0) \leq Q(t) \leq Q(1)=\frac{f(a)+f(b)}{2} \int_{a}^{b} p(x) d x \tag{1.9}
\end{equation*}
$$

In this paper, we establish some results about Theorem A and Theorem Gror Wright-convex functions which are weighted generalizations of Theorem D, E and F.

2. Main Results

In order to prove our main theorems, we need the following lemma [10]:
Lemma 2.1. If $f:[a, b] \rightarrow \mathbb{R}$, then the following statements are equivalent:
(1) $f \in W([a, b])$;
(2) for all $s, t, u, v \in[a, b]$ with $s \leq t \leq u \leq v$ and $t+u=s+v$, we have

$$
\begin{equation*}
f(t)+f(u) \leq f(s)+f(v) . \tag{2.1}
\end{equation*}
$$

Theorem 2.2. Let $f \in W([a, b]) \cap L_{1}[a, b]$ and let $p:[a, b] \rightarrow \mathbb{R}$ be nonnegative, integrable, and symmetric about $x=\frac{a+b}{2}$. Then the inequality (1.2) holds.

Proof. For the inequality (2.1) and the assumptions that p is nonnegative, integrable, and symmetric about $x=\frac{a+b}{2}$, we have

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) & \int_{a}^{b} p(x) d x \\
& =\int_{a}^{\frac{a+b}{2}} f\left(\frac{a+b}{2}\right) p(x) d x+\int_{a}^{\frac{a+b}{2}} f\left(\frac{a+b}{2}\right) p(a+b-x) d x \\
& =\int_{a}^{\frac{a+b}{2}}\left[f\left(\frac{a+b}{2}\right)+f\left(\frac{a+b}{2}\right)\right] p(x) d x \\
& \leq \int_{a}^{\frac{a+b}{2}}[f(x)+f(a+b-x)] p(x) d x \quad\left(x \leq \frac{a+b}{2} \leq \frac{a+b}{2} \leq a+b-x\right) \\
& =\int_{a}^{\frac{a+b}{2}} f(x) p(x) d x+\int_{\frac{a+b}{2}}^{b} f(x) p(x) d x \\
& =\int_{a}^{b} f(x) p(x) d x,
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{f(a)+f(b)}{2} \int_{a}^{b} p(x) d x \\
& \quad=\int_{a}^{\frac{a+b}{2}}\left[\frac{f(a)+f(b)}{2}\right] p(x) d x+\int_{a}^{\frac{a+b}{2}}\left[\frac{f(a)+f(b)}{2}\right] p(a+b-x) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{a}^{\frac{a+b}{2}}[f(a)+f(b)] p(x) d x \\
& \geq \int_{a}^{\frac{a+b}{2}}[f(x)+f(a+b-x)] p(x) d x \quad(a \leq x \leq a+b-x \leq b) \\
& =\int_{a}^{\frac{a+b}{2}} f(x) p(x) d x+\int_{\frac{a+b}{2}}^{b} f(x) p(x) d x=\int_{a}^{b} f(x) p(x) d x .
\end{aligned}
$$

This completes the proof.
Remark 2.3. If we set $p(x) \equiv 1(x \in[a, b])$ in Theorem 2.2, then Theorem 2.2 generalizes Theorem D.

Remark 2.4. From $C([a, b]) \varsubsetneqq W([a, b])$, Theorem 2.2 generalizes Theorem A
Theorem 2.5. Let f and p be defined as in Theorem 2.2 and let P be defined as in (1.6). Then $P \in W([0,1])$ is increasing on $[0,1]$, and the inequality (1.8) holds for all $t \in[0,1]$.
Proof. If $s, t, u, v \in[0,1]$ and $s \leq t \leq u \leq v, t+u=s+v$, then for $x \in\left[a, \frac{a+b}{2}\right]$ we have

$$
\begin{aligned}
b & \geq s x+(1-s) \frac{a+b}{2} \geq t x+(1-t) \frac{a+b}{2} \\
& \geq u x+(1-u) \frac{a+b}{2} \geq v x+(1-v) \frac{a+b}{2} \geq a
\end{aligned}
$$

and if $x \in\left[\frac{a+b}{2}, b\right]$, then

$$
\begin{aligned}
a & \leq s x+(1-s) \frac{a+b}{2} \leq t x+(1-t) \frac{a+b}{2} \\
& \leq u x+(1-u) \frac{a+b}{2} \leq v x+(1-v) \frac{a+b}{2} \leq b,
\end{aligned}
$$

where

$$
\begin{aligned}
{\left[t x+(1-t) \frac{a+b}{2}\right]+[u x} & \left.+(1-u) \frac{a+b}{2}\right] \\
& =\left[s x+(1-s) \frac{a+b}{2}\right]+\left[v x+(1-v) \frac{a+b}{2}\right]
\end{aligned}
$$

By the inequality (2.1), we have

$$
\begin{align*}
& f\left(t x+(1-t) \frac{a+b}{2}\right)+f\left(u x+(1-u) \frac{a+b}{2}\right) \tag{2.2}\\
& \leq f\left(s x+(1-s) \frac{a+b}{2}\right)+f\left(v x+(1-v) \frac{a+b}{2}\right)
\end{align*}
$$

for all $x \in[a, b]$. Now, using the inequality (2.2) and p is nonnegative on $[a, b]$, we have

$$
\begin{align*}
& {\left[f\left(t x+(1-t) \frac{a+b}{2}\right)+f\left(u x+(1-u) \frac{a+b}{2}\right)\right] p(x)} \tag{2.3}\\
& \leq\left[f\left(s x+(1-s) \frac{a+b}{2}\right)+f\left(v x+(1-v) \frac{a+b}{2}\right)\right] p(x)
\end{align*}
$$

for all $x \in[a, b]$. Integrating the inequality (2.3) over x on $[a, b]$, we have

$$
P(t)+P(u) \leq P(s)+P(v) .
$$

Hence $P \in W([0,1])$.
Next, if $0 \leq s \leq t \leq 1$ and $x \in\left[a, \frac{a+b}{2}\right]$, then

$$
\begin{aligned}
t x+(1-t) \frac{a+b}{2} & \leq s x+(1-s) \frac{a+b}{2} \\
& \leq s(a+b-x)+(1-s) \frac{a+b}{2} \\
& \leq t(a+b-x)+(1-t) \frac{a+b}{2}
\end{aligned}
$$

where

$$
\begin{aligned}
{\left[s x+(1-s) \frac{a+b}{2}\right]+[s(a} & \left.+b-x)+(1-s) \frac{a+b}{2}\right] \\
& =\left[t x+(1-t) \frac{a+b}{2}\right]+\left[t(a+b-x)+(1-t) \frac{a+b}{2}\right] .
\end{aligned}
$$

By the inequality (2.1) and the assumptions that p is nonnegative, integrable, and symmetric about $x=\frac{a+b}{2}$, we have

$$
\begin{aligned}
P(s)= & \int_{a}^{b} f\left(s x+(1-s) \frac{a+b}{2}\right) p(x) d x \\
= & \int_{a}^{\frac{a+b}{2}} f\left(s x+(1-s) \frac{a+b}{2}\right) p(x) d x \\
& \quad \int_{a}^{\frac{a+b}{2}} f\left(s(a+b-x)+(1-s) \frac{a+b}{2}\right) p(a+b-x) d x \\
= & \int_{a}^{\frac{a+b}{2}}\left[f\left(s x+(1-s) \frac{a+b}{2}\right)+f\left(s(a+b-x)+(1-s) \frac{a+b}{2}\right)\right] p(x) d x \\
\leq & \int_{a}^{\frac{a+b}{2}}\left[f\left(t x+(1-t) \frac{a+b}{2}\right)+f\left(t(a+b-x)+(1-t) \frac{a+b}{2}\right)\right] p(x) d x \\
= & \int_{a}^{\frac{a+b}{2}} f\left(t x+(1-t) \frac{a+b}{2}\right) p(x) d x \\
& +\int_{a}^{\frac{a+b}{2}} f\left(t(a+b-x)+(1-t) \frac{a+b}{2}\right) p(a+b-x) d x \\
= & \int_{a}^{b} f\left(t x+(1-t) \frac{a+b}{2}\right) p(x) d x=P(t) .
\end{aligned}
$$

Thus, P is increasing on $[0,1]$, and the inequality (1.8) holds for all $t \in[0,1]$.
This completes the proof.
Remark 2.6. If we set $p(x) \equiv 1(x \in[a, b])$ in Theorem 2.5, then Theorem 2.2 generalizes TheoremE

Theorem 2.7. Let f and p be defined as in Theorem 2.2 and let Q be defined as in (1.7). Then $Q \in W([0,1])$ is increasing on $[0,1]$, and the inequality (1.9) holds for all $t \in[0,1]$.

Proof. If $s, t, u, v \in[0,1]$ and $s \leq t \leq u \leq v, t+u=s+v$, then for all $x \in[a, b]$ we have

$$
\begin{aligned}
a & \leq\left(\frac{1+v}{2}\right) a+\left(\frac{1-v}{2}\right) x \leq\left(\frac{1+u}{2}\right) a+\left(\frac{1-u}{2}\right) x \\
& \leq\left(\frac{1+t}{2}\right) a+\left(\frac{1-t}{2}\right) x \leq\left(\frac{1+s}{2}\right) a+\left(\frac{1-s}{2}\right) x \leq b
\end{aligned}
$$

and

$$
\begin{aligned}
a & \leq\left(\frac{1+s}{2}\right) b+\left(\frac{1-s}{2}\right) x \leq\left(\frac{1+t}{2}\right) b+\left(\frac{1-t}{2}\right) x \\
& \leq\left(\frac{1+u}{2}\right) b+\left(\frac{1-u}{2}\right) x \leq\left(\frac{1+v}{2}\right) b+\left(\frac{1-v}{2}\right) x \leq b
\end{aligned}
$$

where

$$
\begin{aligned}
{\left[\left(\frac{1+u}{2}\right) a+\left(\frac{1-u}{2}\right) x\right] } & +\left[\left(\frac{1+t}{2}\right) a+\left(\frac{1-t}{2}\right) x\right] \\
& =\left[\left(\frac{1+v}{2}\right) a+\left(\frac{1-v}{2}\right) x\right]+\left[\left(\frac{1+s}{2}\right) a+\left(\frac{1-s}{2}\right) x\right]
\end{aligned}
$$

and

$$
\begin{aligned}
{\left[\left(\frac{1+t}{2}\right) b+\left(\frac{1-t}{2}\right) x\right] } & +\left[\left(\frac{1+u}{2}\right) b+\left(\frac{1-u}{2}\right) x\right] \\
& =\left[\left(\frac{1+s}{2}\right) b+\left(\frac{1-s}{2}\right) x\right]+\left[\left(\frac{1+v}{2}\right) b+\left(\frac{1-v}{2}\right) x\right]
\end{aligned}
$$

By the inequality (2.1), we have

$$
\begin{align*}
f\left(\left(\frac{1+u}{2}\right) a+\right. & \left.\left(\frac{1-u}{2}\right) x\right)+f\left(\left(\frac{1+t}{2}\right) a+\left(\frac{1-t}{2}\right) x\right) \tag{2.4}\\
& \leq f\left(\left(\frac{1+v}{2}\right) a+\left(\frac{1-v}{2}\right) x\right)+f\left(\left(\frac{1+s}{2}\right) a+\left(\frac{1-s}{2}\right) x\right)
\end{align*}
$$

and
(2.5) $f\left(\left(\frac{1+t}{2}\right) b+\left(\frac{1-t}{2}\right) x\right)+f\left(\left(\frac{1+u}{2}\right) b+\left(\frac{1-u}{2}\right) x\right)$

$$
\leq f\left(\left(\frac{1+s}{2}\right) b+\left(\frac{1-s}{2}\right) x\right)+f\left(\left(\frac{1+v}{2}\right) b+\left(\frac{1-v}{2}\right) x\right)
$$

for all $x \in[a, b]$. Now, using the inequality (2.4), (2.5) and the assumptions that p is nonnegative on $[a, b]$, we have

$$
\begin{align*}
& \frac{1}{2} f\left(\left(\frac{1+u}{2}\right) a+\left(\frac{1-u}{2}\right) x\right) p\left(\frac{x+a}{2}\right) \tag{2.6}\\
& \quad+\frac{1}{2} f\left(\left(\frac{1+t}{2}\right) a+\left(\frac{1-t}{2}\right) x\right) p\left(\frac{x+a}{2}\right) \\
& \quad+\frac{1}{2} f\left(\left(\frac{1+t}{2}\right) b+\left(\frac{1-t}{2}\right) x\right) p\left(\frac{x+b}{2}\right) \\
& \quad+\frac{1}{2} f\left(\left(\frac{1+u}{2}\right) b+\left(\frac{1-u}{2}\right) x\right) p\left(\frac{x+b}{2}\right)
\end{align*}
$$

$$
\begin{aligned}
\leq & \frac{1}{2} f\left(\left(\frac{1+v}{2}\right) a+\left(\frac{1-v}{2}\right) x\right) p\left(\frac{x+a}{2}\right) \\
& +\frac{1}{2} f\left(\left(\frac{1+s}{2}\right) a+\left(\frac{1-s}{2}\right) x\right) p\left(\frac{x+a}{2}\right) \\
& +\frac{1}{2} f\left(\left(\frac{1+s}{2}\right) b+\left(\frac{1-s}{2}\right) x\right) p\left(\frac{x+b}{2}\right) \\
& +\frac{1}{2} f\left(\left(\frac{1+v}{2}\right) b+\left(\frac{1-v}{2}\right) x\right) p\left(\frac{x+b}{2}\right)
\end{aligned}
$$

Integrating the inequality (2.6) over x on $[a, b]$, we have

$$
Q(t)+Q(u) \leq Q(s)+Q(v)
$$

Hence $Q \in W([0,1])$.
Next, if $0 \leq s \leq t \leq 1$ and $x \in[a, b]$, then

$$
\begin{aligned}
\left(\frac{1+t}{2}\right) a+\left(\frac{1-t}{2}\right) x & \leq\left(\frac{1+s}{2}\right) a+\left(\frac{1-s}{2}\right) x \\
& \leq\left(\frac{1+s}{2}\right) b+\left(\frac{1-s}{2}\right)(a+b-x) \\
& \leq\left(\frac{1+t}{2}\right) b+\left(\frac{1-t}{2}\right)(a+b-x)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\frac{1+t}{2}\right) a+\left(\frac{1-t}{2}\right)(a+b-x) & \leq\left(\frac{1+s}{2}\right) a+\left(\frac{1-s}{2}\right)(a+b-x) \\
& \leq\left(\frac{1+s}{2}\right) b+\left(\frac{1-s}{2}\right) x \\
& \leq\left(\frac{1+t}{2}\right) b+\left(\frac{1-t}{2}\right) x
\end{aligned}
$$

where

$$
\begin{aligned}
& {\left[\left(\frac{1+s}{2} a\right)+\left(\frac{1-s}{2}\right) x\right]+\left[\left(\frac{1+s}{2}\right) b+\left(\frac{1-s}{2}\right)(a+b-x)\right]} \\
& \quad=\left[\left(\frac{1+t}{2}\right) a+\left(\frac{1-t}{2}\right) x\right]+\left[\left(\frac{1+t}{2}\right) b+\left(\frac{1-t}{2}\right)(a+b-x)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& {\left[\left(\frac{1+s}{2}\right) a+\left(\frac{1-s}{2}\right)(a+b-x)\right]+\left[\left(\frac{1+s}{2}\right) b+\left(\frac{1-s}{2}\right) x\right]} \\
& \quad=\left[\left(\frac{1+t}{2}\right) a+\left(\frac{1-t}{2}\right)(a+b-x)\right]+\left[\left(\frac{1+t}{2}\right) b+\left(\frac{1-t}{2}\right) x\right]
\end{aligned}
$$

By the inequality (2.1) and the assumptions that p is nonnegative and symmetric about $x=\frac{a+b}{2}$, we have

$$
\begin{align*}
& f\left(\left(\frac{1+s}{2}\right) a\right.\left.+\left(\frac{1-s}{2}\right) x\right) p\left(\frac{x+a}{2}\right) \tag{2.7}\\
&+f\left(\left(\frac{1+s}{2}\right) b+\left(\frac{1-s}{2}\right)(a+b-x)\right) p\left(\frac{2 a+b-x}{2}\right) \\
&+f\left(\left(\frac{1+s}{2}\right) a+\left(\frac{1-s}{2}\right)(a+b-x)\right) p\left(\frac{a+2 b-x}{2}\right) \\
&+f\left(\left(\frac{1+s}{2}\right) b+\left(\frac{1-s}{2}\right) x\right) p\left(\frac{x+b}{2}\right) \\
&=\left[f\left(\left(\frac{1+s}{2}\right) a+\left(\frac{1-s}{2}\right) x\right)\right. \\
&\left.+f\left(\left(\frac{1+s}{2}\right) a+\left(\frac{1-s}{2}\right)(a+b-x)\right)\right] p\left(\frac{x+a}{2}\right) \\
&+\left[f\left(\left(\frac{1+s}{2}\right) b+\left(\frac{1-s}{2}\right)(a+b-x)\right)\right. \\
&\left.+f\left(\left(\frac{1+s}{2}\right) b+\left(\frac{1-s}{2}\right) x\right)\right] p\left(\frac{x+b}{2}\right) \\
& \leq[f(\left.\left.\frac{1+t}{2}\right) a+\left(\frac{1-t}{2}\right) x\right) \\
&\left.+f\left(\left(\frac{1+t}{2}\right) a+\left(\frac{1-t}{2}\right)(a+b-x)\right)\right] p\left(\frac{x+a}{2}\right) \\
&+\left[f\left(\left(\frac{1+t}{2}\right) b+\left(\frac{1-t}{2}\right)(a+b-x)\right)\right. \\
&\left.+f\left(\left(\frac{1+t}{2}\right) b+\left(\frac{1-t}{2}\right) x\right)\right] p\left(\frac{x+b}{2}\right) \\
&+f\left(\left(\frac{1+t}{2}\right) a+\left(\frac{1-t}{2}\right)(a+b-x)\right) p\left(\frac{a+2 b-x}{2}\right) \\
&+f\left(\left(\frac{1+t}{2}\right) b+\left(\frac{1-t}{2}\right) x\right) p\left(\frac{x+b}{2}\right) .
\end{align*}
$$

Integrating the inequality 2.7 over x on $[a, b]$, we have

$$
4 Q(s) \leq 4 Q(t)
$$

Hence Q is increasing on $[0,1]$, and the inequality (1.9) holds for all $t \in[0,1]$.
This completes the proof.
Remark 2.8. If we set $p(x) \equiv 1(x \in[a, b])$ in Theorem 2.7, then Theorem 2.2 generalizes TheoremE

Remark 2.9. From $C([a, b]) \varsubsetneqq W([a, b])$, Theorem 2.5 and Theorem 2.7 generalize Theorem C.

References

[1] J.L. BRENNER AND H. ALZER, Integral inequalities for concave functions with applications to special functions, Proc. Roy. Soc. Edinburgh A, 118 (1991), 173-192.
[2] S.S. DRAGOMIR, Two mappings in connection to Hadamard's inequalities, J. Math. Anal. Appl., 167 (1992), 49-56.
[3] S.S. DRAGOMIR, Y.J. CHO AND S.S. KIM, Inequalities of Hadamard's type for Lipschitzian mappings and their applications, J. Math. Anal. Appl., 245 (2000), 489-501.
[4] L. FEJÉR, Über die Fourierreihen, II, Math. Naturwiss. Anz Ungar. Akad. Wiss., 24 (1906), 369390. (Hungarian).
[5] J. HADAMARD, Étude sur les propriétés des fonctions entières en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl., 58 (1893), 171-215.
[6] K.C. LEE AND K.L. TSENG, On a weighted generalization of Hadamard's inequality for G-convex functions, Tamsui-Oxford J. Math. Sci., 16(1) (2000), 91-104.
[7] M. MATIĆ AND J. PEČARIĆ, On inequalities of Hadamard's type for Lipschitzian mappings, Tamkang J. Math., 32(2) (2001), 127-130.
[8] C.E.M. PEARCE AND J. PEČARIĆ, On some inequalities of Brenner and Alzer for concave Functions, J. Math. Anal. Appl., 198 (1996), 282-288.
[9] A.W. ROBERTS and D.E. VARBERG, Convex Functions, Academic Press, New York, 1973.
[10] K.L. TSENG, G.S. YANG and S.S. DRAGOMIR, Hadamard inequalities for Wright-convex functions, Demonstratio Math., 37(3) (2004), 525-532.
[11] G.S. YANG and M.C. HONG, A note on Hadamard's inequality, Tamkang. J. Math., 28(1) (1997), 33-37.
[12] G.S. YANG and K.L. TSENG, On certain integral inequalities related to Hermite-Hadamard inequalities, J. Math. Anal. Appl., 239 (1999), 180-187.
[13] G.S. YANG and K.L. TSENG, Inequalities of Hadamard's Type for Lipschitzian mappings, J. Math. Anal. Appl., 260 (2001), 230-238.
[14] G.S. YANG and K.L. TSENG, On certain multiple integral inequalities related to HermiteHadamard inequality, Utilitas Mathematica, 62 (2002), 131-142.
[15] G.S. YANG and K.L. TSENG, Inequalities of Hermite-Hadamard-Fejér type for convex functions and Lipschitizian functions, Taiwanese J. Math., 7(3) (2003), 433-440.
[16] G.S. YANG and C.S. WANG, Some refinements of Hadamard's inequalities, Tamkang J. Math., 28(2) (1997), 87-92.

