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1. I NTRODUCTION

If f : [a, b] → R is a convex function, then

(1.1) f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)

2

is known as the Hermite-Hadamard inequality ([5]).
In [4], Fejér established the following weighted generalization of the inequality(1.1):

Theorem A. If f : [a, b] → R is a convex function, then the inequality

(1.2) f

(
a + b

2

) ∫ b

a

p (x) dx ≤
∫ b

a

f (x) p (x) dx ≤ f (a) + f (b)

2

∫ b

a

p (x) dx

holds, wherep : [a, b] → R is nonnegative, integrable, and symmetric aboutx = a+b
2

.

In recent years there have been many extensions, generalizations, applications and similar
results of the inequalities(1.1) and(1.2) see [1] – [8], [10] – [16].

In [2], Dragomir established the following theorem which is a refinement of the first inequal-
ity of (1.1).

Theorem B. If f : [a, b] → R is a convex function, andH is defined on[0, 1] by

H (t) =
1

b− a

∫ b

a

f

(
tx + (1− t)

a + b

2

)
dx,
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thenH is convex, increasing on[0, 1] , and for all t ∈ [0, 1], we have

(1.3) f

(
a + b

2

)
= H (0) ≤ H (t) ≤ H (1) =

1

b− a

∫ b

a

f (x) dx.

In [11], Yang and Hong established the following theorem which is a refinement of the second
inequality of(1.1):

Theorem C. If f : [a, b] → R is a convex function, andF is defined on[0, 1] by

F (t) =
1

2 (b− a)

∫ b

a

[
f

((
1 + t

2

)
a +

(
1− t

2

)
x

)
+f

((
1 + t

2

)
b +

(
1− t

2

)
x

)]
dx,

thenF is convex, increasing on[0, 1] , and for all t ∈ [0, 1], we have

(1.4)
1

b− a

∫ b

a

f (x) dx = F (0) ≤ F (t) ≤ F (1) =
f (a) + f (b)

2
.

We recall the definition of a Wright-convex function:

Definition 1.1 ([9, p. 223]). We say thatf : [a, b] → R is a Wright-convex function, if, for all
x, y + δ ∈ [a, b] with x < y andδ ≥ 0, we have

(1.5) f (x + δ) + f (y) ≤ f (y + δ) + f (x) .

Let C ([a, b]) be the set of all convex functions on[a, b] andW ([a, b]) be the set of all Wright-
convex functions on[a, b]. ThenC ([a, b]) $ W ([a, b]). That is, a convex function must be a
Wright-convex function but the converse is not true. (see [9, p. 224]).

In [10], Tseng, Yang and Dragomir established the following theorems for Wright-convex
functions related to the inequality(1.1), Theorem A and Theorem B:

Theorem D. Letf ∈ W ([a, b]) ∩ L1 [a, b] . Then the inequality(1.1) holds.

Theorem E. Let f ∈ W ([a, b]) ∩ L1 [a, b] and letH be defined as in Theorem B. ThenH ∈
W ([0, 1]) is increasing on[0, 1], and the inequality(1.3) holds for allt ∈ [0, 1].

Theorem F. Let f ∈ W ([a, b]) ∩ L1 [a, b] and letF be defined as in Theorem C. ThenF ∈
W ([0, 1]) is increasing on[0, 1], and the inequality(1.4) holds for allt ∈ [0, 1].

In [12], Yang and Tseng established the following theorem which refines the inequality(1.2):

Theorem G ([12, Remark 6]). Let f andp be defined as in Theorem A. IfP , Q are defined on
[0, 1] by

(1.6) P (t) =

∫ b

a

f

(
tx + (1− t)

a + b

2

)
p (x) dx (t ∈ (0, 1))

and

(1.7) Q (t) =

∫ b

a

1

2

[
f

(
1 + t

2
a +

1− t

2
x

)
p

(
x + a

2

)
+ f

(
1 + t

2
b +

1− t

2
x

)
p

(
x + b

2

)]
dx (t ∈ (0, 1)) ,
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thenP , Q are convex and increasing on[0, 1] and, for all t ∈ [0, 1],

(1.8) f

(
a + b

2

) ∫ b

a

p (x) dx = P (0) ≤ P (t) ≤ P (1) =

∫ b

a

f (x) p (x) dx

and

(1.9)
∫ b

a

f (x) p (x) dx = Q (0) ≤ Q (t) ≤ Q (1) =
f (a) + f (b)

2

∫ b

a

p (x) dx.

In this paper, we establish some results about Theorem A and Theorem G for Wright-convex
functions which are weighted generalizations of Theorem D, E and F.

2. M AIN RESULTS

In order to prove our main theorems, we need the following lemma [10]:

Lemma 2.1. If f : [a, b] → R, then the following statements are equivalent:

(1) f ∈ W ([a, b]) ;
(2) for all s, t, u, v ∈ [a, b] with s ≤ t ≤ u ≤ v andt + u = s + v, we have

(2.1) f (t) + f (u) ≤ f (s) + f (v) .

Theorem 2.2. Let f ∈ W ([a, b]) ∩ L1 [a, b] and letp : [a, b] → R be nonnegative, integrable,
and symmetric aboutx = a+b

2
. Then the inequality(1.2) holds.

Proof. For the inequality (2.1) and the assumptions thatp is nonnegative, integrable, and sym-
metric aboutx = a+b

2
, we have

f

(
a + b

2

) ∫ b

a

p (x) dx

=

∫ a+b
2

a

f

(
a + b

2

)
p (x) dx +

∫ a+b
2

a

f

(
a + b

2

)
p (a + b− x) dx

=

∫ a+b
2

a

[
f

(
a + b

2

)
+ f

(
a + b

2

)]
p (x) dx

≤
∫ a+b

2

a

[f (x) + f (a + b− x)] p (x) dx

(
x ≤ a + b

2
≤ a + b

2
≤ a + b− x

)
=

∫ a+b
2

a

f (x) p (x) dx +

∫ b

a+b
2

f (x) p (x) dx

=

∫ b

a

f (x) p (x) dx,

and

f (a) + f (b)

2

∫ b

a

p (x) dx

=

∫ a+b
2

a

[
f (a) + f (b)

2

]
p (x) dx +

∫ a+b
2

a

[
f (a) + f (b)

2

]
p (a + b− x) dx
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=

∫ a+b
2

a

[f (a) + f (b)] p (x) dx

≥
∫ a+b

2

a

[f (x) + f (a + b− x)] p (x) dx (a ≤ x ≤ a + b− x ≤ b)

=

∫ a+b
2

a

f (x) p (x) dx +

∫ b

a+b
2

f (x) p (x) dx =

∫ b

a

f (x) p (x) dx.

This completes the proof. �

Remark 2.3. If we setp (x) ≡ 1 (x ∈ [a, b]) in Theorem 2.2, then Theorem 2.2 generalizes
Theorem D.

Remark 2.4. FromC ([a, b]) $ W ([a, b]), Theorem 2.2 generalizes Theorem A.

Theorem 2.5. Let f andp be defined as in Theorem 2.2 and letP be defined as in(1.6). Then
P ∈ W ([0, 1]) is increasing on[0, 1], and the inequality(1.8) holds for allt ∈ [0, 1].

Proof. If s, t, u, v ∈ [0, 1] ands ≤ t ≤ u ≤ v, t + u = s + v, then forx ∈
[
a, a+b

2

]
we have

b ≥ sx + (1− s)
a + b

2
≥ tx + (1− t)

a + b

2

≥ ux + (1− u)
a + b

2
≥ vx + (1− v)

a + b

2
≥ a

and ifx ∈
[

a+b
2

, b
]
, then

a ≤ sx + (1− s)
a + b

2
≤ tx + (1− t)

a + b

2

≤ ux + (1− u)
a + b

2
≤ vx + (1− v)

a + b

2
≤ b,

where [
tx + (1− t)

a + b

2

]
+

[
ux + (1− u)

a + b

2

]
=

[
sx + (1− s)

a + b

2

]
+

[
vx + (1− v)

a + b

2

]
.

By the inequality(2.1), we have

(2.2) f

(
tx + (1− t)

a + b

2

)
+ f

(
ux + (1− u)

a + b

2

)
≤ f

(
sx + (1− s)

a + b

2

)
+ f

(
vx + (1− v)

a + b

2

)
for all x ∈ [a, b]. Now, using the inequality(2.2) andp is nonnegative on[a, b], we have

(2.3)

[
f

(
tx + (1− t)

a + b

2

)
+ f

(
ux + (1− u)

a + b

2

)]
p (x)

≤
[
f

(
sx + (1− s)

a + b

2

)
+ f

(
vx + (1− v)

a + b

2

)]
p (x)

for all x ∈ [a, b]. Integrating the inequality(2.3) overx on [a, b], we have

P (t) + P (u) ≤ P (s) + P (v) .
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HenceP ∈ W ([0, 1]).
Next, if 0 ≤ s ≤ t ≤ 1 andx ∈

[
a, a+b

2

]
, then

tx + (1− t)
a + b

2
≤ sx + (1− s)

a + b

2

≤ s (a + b− x) + (1− s)
a + b

2

≤ t (a + b− x) + (1− t)
a + b

2
,

where[
sx + (1− s)

a + b

2

]
+

[
s (a + b− x) + (1− s)

a + b

2

]
=

[
tx + (1− t)

a + b

2

]
+

[
t (a + b− x) + (1− t)

a + b

2

]
.

By the inequality(2.1) and the assumptions thatp is nonnegative, integrable, and symmetric
aboutx = a+b

2
, we have

P (s) =

∫ b

a

f

(
sx + (1− s)

a + b

2

)
p (x) dx

=

∫ a+b
2

a

f

(
sx + (1− s)

a + b

2

)
p (x) dx

+

∫ a+b
2

a

f

(
s (a + b− x) + (1− s)

a + b

2

)
p (a + b− x) dx

=

∫ a+b
2

a

[
f

(
sx + (1− s)

a + b

2

)
+ f

(
s (a + b− x) + (1− s)

a + b

2

)]
p (x) dx

≤
∫ a+b

2

a

[
f

(
tx + (1− t)

a + b

2

)
+ f

(
t (a + b− x) + (1− t)

a + b

2

)]
p (x) dx

=

∫ a+b
2

a

f

(
tx + (1− t)

a + b

2

)
p (x) dx

+

∫ a+b
2

a

f

(
t (a + b− x) + (1− t)

a + b

2

)
p (a + b− x) dx

=

∫ b

a

f

(
tx + (1− t)

a + b

2

)
p (x) dx = P (t) .

Thus,P is increasing on[0, 1], and the inequality(1.8) holds for allt ∈ [0, 1] .
This completes the proof. �

Remark 2.6. If we setp (x) ≡ 1 (x ∈ [a, b]) in Theorem 2.5, then Theorem 2.2 generalizes
Theorem E.

Theorem 2.7. Let f andp be defined as in Theorem 2.2 and letQ be defined as in(1.7). Then
Q ∈ W ([0, 1]) is increasing on[0, 1], and the inequality(1.9) holds for allt ∈ [0, 1].
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Proof. If s, t, u, v ∈ [0, 1] ands ≤ t ≤ u ≤ v, t + u = s + v, then for allx ∈ [a, b] we have

a ≤
(

1 + v

2

)
a +

(
1− v

2

)
x ≤

(
1 + u

2

)
a +

(
1− u

2

)
x

≤
(

1 + t

2

)
a +

(
1− t

2

)
x ≤

(
1 + s

2

)
a +

(
1− s

2

)
x ≤ b

and

a ≤
(

1 + s

2

)
b +

(
1− s

2

)
x ≤

(
1 + t

2

)
b +

(
1− t

2

)
x

≤
(

1 + u

2

)
b +

(
1− u

2

)
x ≤

(
1 + v

2

)
b +

(
1− v

2

)
x ≤ b,

where[(
1 + u

2

)
a +

(
1− u

2

)
x

]
+

[(
1 + t

2

)
a +

(
1− t

2

)
x

]
=

[(
1 + v

2

)
a +

(
1− v

2

)
x

]
+

[(
1 + s

2

)
a +

(
1− s

2

)
x

]
and[(

1 + t

2

)
b +

(
1− t

2

)
x

]
+

[(
1 + u

2

)
b +

(
1− u

2

)
x

]
=

[(
1 + s

2

)
b +

(
1− s

2

)
x

]
+

[(
1 + v

2

)
b +

(
1− v

2

)
x

]
.

By the inequality(2.1), we have

(2.4) f

((
1 + u

2

)
a +

(
1− u

2

)
x

)
+ f

((
1 + t

2

)
a +

(
1− t

2

)
x

)
≤ f

((
1 + v

2

)
a +

(
1− v

2

)
x

)
+ f

((
1 + s

2

)
a +

(
1− s

2

)
x

)
and

(2.5) f

((
1 + t

2

)
b +

(
1− t

2

)
x

)
+ f

((
1 + u

2

)
b +

(
1− u

2

)
x

)
≤ f

((
1 + s

2

)
b +

(
1− s

2

)
x

)
+ f

((
1 + v

2

)
b +

(
1− v

2

)
x

)
for all x ∈ [a, b]. Now, using the inequality(2.4), (2.5) and the assumptions thatp is nonnega-
tive on[a, b], we have

1

2
f

((
1 + u

2

)
a +

(
1− u

2

)
x

)
p

(
x + a

2

)
(2.6)

+
1

2
f

((
1 + t

2

)
a +

(
1− t

2

)
x

)
p

(
x + a

2

)
+

1

2
f

((
1 + t

2

)
b +

(
1− t

2

)
x

)
p

(
x + b

2

)
+

1

2
f

((
1 + u

2

)
b +

(
1− u

2

)
x

)
p

(
x + b

2

)
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≤ 1

2
f

((
1 + v

2

)
a +

(
1− v

2

)
x

)
p

(
x + a

2

)
+

1

2
f

((
1 + s

2

)
a +

(
1− s

2

)
x

)
p

(
x + a

2

)
+

1

2
f

((
1 + s

2

)
b +

(
1− s

2

)
x

)
p

(
x + b

2

)
+

1

2
f

((
1 + v

2

)
b +

(
1− v

2

)
x

)
p

(
x + b

2

)
Integrating the inequality(2.6) overx on [a, b], we have

Q (t) + Q (u) ≤ Q (s) + Q (v) .

HenceQ ∈ W ([0, 1]).
Next, if 0 ≤ s ≤ t ≤ 1 andx ∈ [a, b], then(

1 + t

2

)
a +

(
1− t

2

)
x ≤

(
1 + s

2

)
a +

(
1− s

2

)
x

≤
(

1 + s

2

)
b +

(
1− s

2

)
(a + b− x)

≤
(

1 + t

2

)
b +

(
1− t

2

)
(a + b− x)

and (
1 + t

2

)
a +

(
1− t

2

)
(a + b− x) ≤

(
1 + s

2

)
a +

(
1− s

2

)
(a + b− x)

≤
(

1 + s

2

)
b +

(
1− s

2

)
x

≤
(

1 + t

2

)
b +

(
1− t

2

)
x,

where[(
1 + s

2
a

)
+

(
1− s

2

)
x

]
+

[(
1 + s

2

)
b +

(
1− s

2

)
(a + b− x)

]
=

[(
1 + t

2

)
a +

(
1− t

2

)
x

]
+

[(
1 + t

2

)
b +

(
1− t

2

)
(a + b− x)

]
,

and[(
1 + s

2

)
a +

(
1− s

2

)
(a + b− x)

]
+

[(
1 + s

2

)
b +

(
1− s

2

)
x

]
=

[(
1 + t

2

)
a +

(
1− t

2

)
(a + b− x)

]
+

[(
1 + t

2

)
b +

(
1− t

2

)
x

]
.
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By the inequality(2.1) and the assumptions thatp is nonnegative and symmetric aboutx = a+b
2

,
we have

f

((
1 + s

2

)
a +

(
1− s

2

)
x

)
p

(
x + a

2

)
(2.7)

+ f

((
1 + s

2

)
b +

(
1− s

2

)
(a + b− x)

)
p

(
2a + b− x

2

)
+ f

((
1 + s

2

)
a +

(
1− s

2

)
(a + b− x)

)
p

(
a + 2b− x

2

)
+ f

((
1 + s

2

)
b +

(
1− s

2

)
x

)
p

(
x + b

2

)
=

[
f

((
1 + s

2

)
a +

(
1− s

2

)
x

)
+ f

((
1 + s

2

)
a +

(
1− s

2

)
(a + b− x)

)]
p

(
x + a

2

)
+

[
f

((
1 + s

2

)
b +

(
1− s

2

)
(a + b− x)

)
+ f

((
1 + s

2

)
b +

(
1− s

2

)
x

)]
p

(
x + b

2

)
≤

[
f

((
1 + t

2

)
a +

(
1− t

2

)
x

)
+ f

((
1 + t

2

)
a +

(
1− t

2

)
(a + b− x)

)]
p

(
x + a

2

)
+

[
f

((
1 + t

2

)
b +

(
1− t

2

)
(a + b− x)

)
+ f

((
1 + t

2

)
b +

(
1− t

2

)
x

)]
p

(
x + b

2

)
= f

((
1 + t

2

)
a +

(
1− t

2

)
x

)
p

(
x + a

2

)
+ f

((
1 + t

2

)
b +

(
1− t

2

)
(a + b− x)

)
p

(
2a + b− x

2

)
+ f

((
1 + t

2

)
a +

(
1− t

2

)
(a + b− x)

)
p

(
a + 2b− x

2

)
+ f

((
1 + t

2

)
b +

(
1− t

2

)
x

)
p

(
x + b

2

)
.

Integrating the inequality(2.7) overx on [a, b], we have

4Q (s) ≤ 4Q (t)

HenceQ is increasing on[0, 1], and the inequality(1.9) holds for allt ∈ [0, 1].
This completes the proof. �

Remark 2.8. If we setp (x) ≡ 1 (x ∈ [a, b]) in Theorem 2.7, then Theorem 2.2 generalizes
Theorem F.
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Remark 2.9. FromC ([a, b]) $ W ([a, b]), Theorem 2.5 and Theorem 2.7 generalize Theorem
C.
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