ON RANK SUBTRACTIVITY BETWEEN NORMAL MATRICES

JORMA K. MERIKOSKI AND XIAOJI LIU
Department of Mathematics and Statistics
FI-33014 University of Tampere, Finland
jorma.merikoski@uta.fi
College of Computer and Information Sciences
Guangxi University for Nationalities
Nanning 530006, China
xiaojiliu72@yahoo.com.cn
Received 13 July, 2007; accepted 05 February, 2008
Communicated by F. Zhang

Abstract

The rank subtractivity partial ordering is defined on $\mathbb{C}^{n \times n}(n \geq 2)$ by $\mathbf{A} \leq^{-} \mathbf{B} \Leftrightarrow$ $\operatorname{rank}(\mathbf{B}-\mathbf{A})=\operatorname{rank} \mathbf{B}-\operatorname{rank} \mathbf{A}$, and the star partial ordering by $\mathbf{A} \leq * \mathbf{B} \Leftrightarrow \mathbf{A}^{*} \mathbf{A}=\mathbf{A}^{*} \mathbf{B} \wedge$ $\mathbf{A} \mathbf{A}^{*}=\mathbf{B} \mathbf{A}^{*}$. If \mathbf{A} and \mathbf{B} are normal, we characterize $\mathbf{A} \leq^{-} \mathbf{B}$. We also show that then $\mathbf{A} \leq^{-} \mathbf{B} \wedge \mathbf{A B}=\mathbf{B} \mathbf{A} \Leftrightarrow \mathbf{A} \leq^{*} \mathbf{B} \Leftrightarrow \mathbf{A} \leq^{-} \mathbf{B} \wedge \mathbf{A}^{2} \leq^{-} \overline{\mathbf{B}^{2}}$. Finally, we remark that some of our results follow from well-known results on EP matrices.

Key words and phrases: Rank subtractivity, Minus partial ordering, Star partial ordering, Sharp partial ordering, Normal matrices, EP matrices.
2000 Mathematics Subject Classification. 15A45, 15A18.

1. Introduction

The rank subtractivity partial ordering (also called the minus partial ordering) is defined on $\mathbb{C}^{n \times n}(n \geq 2)$ by

$$
\mathbf{A} \leq^{-} \mathbf{B} \Leftrightarrow \operatorname{rank}(\mathbf{B}-\mathbf{A})=\operatorname{rank} \mathbf{B}-\operatorname{rank} \mathbf{A} .
$$

The star partial ordering is defined by

$$
\mathbf{A} \leq^{*} \mathbf{B} \Leftrightarrow \mathbf{A}^{*} \mathbf{A}=\mathbf{A}^{*} \mathbf{B} \wedge \mathbf{A A}^{*}=\mathbf{B A}^{*} .
$$

(Actually these partial orderings can also be defined on $\mathbb{C}^{m \times n}, m \neq n$, but square matrices are enough for us.)
There is a great deal of research about characterizations of \leq^{*} and \leq^{-}, see, e.g., [8] and its references. Hartwig and Styan [8] applied singular value decompositions to this purpose. In the case of normal matrices, the present authors [10] did some parallel work and further developments by applying spectral decompostitions in characterizing \leq^{*}. As a sequel to [10], we will now do similar work with \leq^{-}.

[^0]In Section 2, we will present two well-known results. The first is a lemma about a matrix whose rank is equal to the rank of its submatrix. The second is a characterization of \leq^{-}for general matrices from [8].

In Section 3, we will characterize \leq^{-}for normal matrices.
Since \leq^{*} implies \leq^{-}, it is natural to ask for an additional condition, which, together with \leq^{-}, is equivalent to \leq^{*}. Hartwig and Styan ($[8$, Theorem 2c]), presented ten such conditions for general matrices. In Sections 4 and 5, we will find two such conditions for normal matrices.

Finally, in Section 6, we will remark that some of our results follow from well-known results on EP matrices.

In [10], we proved characterizations of \leq^{*} for normal matrices independently of general results from [8]. In dealing with the characterization of \leq^{-}for normal matrices, an independent approach seems too complicated, and so we will apply [8].

2. Preliminaries

If $1 \leq \operatorname{rank} \mathbf{A}=r<n$, then \mathbf{A} can be constructed by starting from a nonsingular $r \times r$ submatrix according to the following lemma. Since this lemma is of independent interest, we present it more broadly than we would actually need.
Lemma 2.1. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $1 \leq r<n, s=n-r$. Then the following conditions are equivalent:
(a) $\operatorname{rank} \mathbf{A}=r$.
(b) If $\mathbf{E} \in \mathbb{C}^{r \times r}$ is a nonsingular submatrix of \mathbf{A}, then there are permutation matrices $\mathbf{P}, \mathbf{Q} \in \mathbb{R}^{n \times n}$ and matrices $\mathbf{R} \in \mathbb{C}^{s \times r}, \mathbf{S} \in \mathbb{C}^{r \times s}$ such that

$$
A=P\left(\begin{array}{cc}
\text { RES } & \text { RE } \\
\mathrm{ES} & \mathrm{E}
\end{array}\right) \mathrm{Q} .
$$

Proof. If (a) holds, then proceeding as Ben-Israel and Greville ([3, p. 178]) gives (b). Conversely, if (b) holds, then

$$
\mathbf{A}=\mathbf{P}\binom{\mathbf{R}}{\mathbf{I}} \mathbf{E}\left(\begin{array}{ll}
\mathbf{S} & \mathbf{I}
\end{array}\right) \mathbf{Q}
$$

(cf. (22) on [3, p. 178]), and (a) follows.
Next, we recall a characterization of \leq^{-}for general matrices, due to Hartwig and Styan [8] (and actually stated also for non-square matrices).
Theorem 2.2 ([8, Theorem 1]). Let $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{n \times n}$. If $a=\operatorname{rank} \mathbf{A}, b=\operatorname{rank} \mathbf{B}, 1 \leq a<b \leq n$, and $p=b-a$, then the following conditions are equivalent:
(a) $\mathbf{A} \leq^{-} \mathbf{B}$.
(b) There are unitary matrices $\mathbf{U}, \mathbf{V} \in \mathbb{C}^{n \times n}$ such that

$$
\mathrm{U}^{*} \mathrm{AV}=\left(\begin{array}{ll}
\Sigma & \mathrm{O} \\
\mathrm{O} & \mathrm{O}
\end{array}\right)
$$

and

$$
\mathbf{U}^{*} \mathbf{B V}=\left(\begin{array}{ccc}
\Sigma+\text { RES } & \text { RE } & \mathrm{O} \\
\text { ES } & \mathrm{E} & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O}
\end{array}\right)
$$

where $\mathrm{\Sigma} \in \mathbb{R}^{a \times a}, \mathbf{E} \in \mathbb{R}^{p \times p}$ are diagonal matrices with positive diagonal elements, $\mathbf{R} \in \mathbb{C}^{a \times p}$, and $\mathbf{S} \in \mathbb{C}^{p \times a}$.

In fact, $\mathbf{U}^{*} \mathbf{A V}$ is a singular value decomposition of \mathbf{A}. (If $b=n$, then omit the zero blocks in the representation of $\mathbf{U}^{*} \mathbf{B V}$.)

3. Characterizations of $\mathbf{A} \leq^{-}$B

Now we characterize \leq^{-}for normal matrices.
Theorem 3.1. Let $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{n \times n}$ be normal. If $a=\operatorname{rank} \mathbf{A}, b=\operatorname{rank} \mathbf{B}, 1 \leq a<b \leq n$, and $p=b-a$, then the following conditions are equivalent:
(a) $\mathbf{A} \leq^{-} \mathbf{B}$.
(b) There is a unitary matrix $\mathbf{U} \in \mathbb{C}^{n \times n}$ such that

$$
\mathbf{U}^{*} \mathbf{A U}=\left(\begin{array}{ll}
\mathbf{D} & \mathrm{O} \\
\mathbf{O} & \mathrm{O}
\end{array}\right)
$$

and

$$
\mathbf{U}^{*} \mathrm{BU}=\left(\begin{array}{ccc}
\mathrm{D}+\mathrm{RES} & \text { RE } & \mathrm{O} \\
\mathrm{ES} & \mathrm{E} & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O}
\end{array}\right),
$$

where $\mathbf{D} \in \mathbb{C}^{a \times a}, \mathbf{E} \in \mathbb{C}^{p \times p}$ are nonsingular diagonal matrices, $\mathbf{R} \in \mathbb{C}^{a \times p}$, and $\mathbf{S} \in \mathbb{C}^{p \times a}$.
(c) There is a unitary matrix $\mathbf{U} \in \mathbb{C}^{n \times n}$ such that

$$
\mathbf{U}^{*} \mathbf{A U}=\left(\begin{array}{ll}
\mathrm{G} & \mathrm{O} \\
\mathrm{O} & \mathrm{O}
\end{array}\right)
$$

and

$$
\mathbf{U}^{*} \mathbf{B U}=\left(\begin{array}{ccc}
\mathrm{G}+\text { RFS } & \text { RF } & \mathrm{O} \\
\text { FS } & \text { F } & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O}
\end{array}\right)
$$

where $\mathbf{G} \in \mathbb{C}^{a \times a}, \mathbf{F} \in \mathbb{C}^{p \times p}$ are nonsingular matrices, $\mathbf{R} \in \mathbb{C}^{a \times p}$, and $\mathbf{S} \in \mathbb{C}^{p \times a}$. (If $b=n$, then omit the zero blocks in the representations of $\mathbf{U}^{*} \mathbf{B U}$.)

Proof. We proceed via $(\mathrm{b}) \Rightarrow(\mathrm{c}) \Rightarrow(\mathrm{a}) \Rightarrow(\mathrm{b})$.
(b) \Rightarrow (c). Trivial.
(c) \Rightarrow (a). Assume (c). Then

$$
\mathbf{B}-\mathbf{A}=\mathbf{U C U}^{*}
$$

where

$$
\mathrm{C}=\left(\begin{array}{ccc}
\text { RFS } & \text { RF } & \mathrm{O} \\
\mathrm{FS} & \mathrm{~F} & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O}
\end{array}\right)
$$

satisfies

$$
\operatorname{rank} \mathbf{C}=\operatorname{rank}(\mathbf{B}-\mathbf{A})
$$

On the other hand, by Lemma 2.1,

$$
\operatorname{rank} \mathbf{C}=\operatorname{rank} \mathbf{F}=p=b-a=\operatorname{rank} \mathbf{B}-\operatorname{rank} \mathbf{A}
$$

and (a) follows.
(a) \Rightarrow (b). Assume that A and B satisfy (a). Then, with the notations of Theorem 2.2,

$$
\mathrm{U}^{*} \mathrm{AV}=\left(\begin{array}{ll}
\Sigma & \mathrm{O} \\
\mathrm{O} & \mathrm{O}
\end{array}\right)=\Sigma_{0}
$$

and

$$
\mathbf{U}^{*} \mathbf{B V}=\left(\begin{array}{ccc}
\Sigma+\text { RES } & \text { RE } & \mathrm{O} \\
\mathrm{ES} & \mathrm{E} & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O}
\end{array}\right)
$$

The singular values of a normal matrix are absolute values of its eigenvalues. Therefore the diagonal matrix of (appropriately ordered) eigenvalues of \mathbf{A} is $\mathbf{D}_{0}=\boldsymbol{\Sigma}_{0} \mathbf{J}$, where \mathbf{J} is a diagonal matrix of elements with absolute value 1 . Furthermore, $\mathbf{V}=\mathbf{U J}^{-1}$, and

$$
\mathbf{U}^{*} \mathbf{A} \mathbf{U}=\mathbf{D}_{0}=\left(\begin{array}{ll}
\mathbf{D} & \mathbf{O} \\
\mathbf{O} & \mathbf{O}
\end{array}\right),
$$

where \mathbf{D} is the diagonal matrix of nonzero eigenvalues of \mathbf{A}. For details, see, e.g., [9, p. 417].
To study $\mathbf{U}^{*} \mathbf{B V}$, let us denote

$$
\mathbf{J}=\left(\begin{array}{ccc}
\mathrm{K} & \mathrm{O} & \mathrm{O} \\
\mathrm{O} & \mathrm{~L} & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{M}
\end{array}\right)
$$

partitioned as $\mathbf{U}^{*} \mathbf{B V}$ above. Now,

$$
\begin{aligned}
\mathbf{U}^{*} \mathbf{B U}=\mathbf{U}^{*} \mathbf{B V J} & =\left(\begin{array}{ccc}
\Sigma+\text { RES } & \text { RE } & \mathrm{O} \\
\text { ES } & \mathrm{E} & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O}
\end{array}\right)\left(\begin{array}{ccc}
\mathrm{K} & \mathrm{O} & \mathrm{O} \\
\mathrm{O} & \mathrm{~L} & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{M}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\Sigma \mathrm{K}+\text { RESK } & \text { REL } & \mathrm{O} \\
\text { ESK } & \text { EL } & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O}
\end{array}\right)=\left(\begin{array}{cccc}
\mathrm{D}+\text { RESK } & \text { REL } & \mathrm{O} \\
\text { ESK } & \text { EL } & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O}
\end{array}\right) .
\end{aligned}
$$

By (a),

$$
b-a=\operatorname{rank}(\mathbf{B}-\mathbf{A})=\operatorname{rank} \mathbf{U}^{*}(\mathbf{B}-\mathbf{A}) \mathbf{U}=\operatorname{rank}\left(\begin{array}{cc}
\text { RESK } & \text { REL } \\
\text { ESK } & \text { EL }
\end{array}\right) .
$$

Denote $\mathbf{E}^{\prime}=\mathbf{E L}$. Because \mathbf{E} and \mathbf{L} are nonsingular, $\operatorname{rank} \mathbf{E}^{\prime}=b-a$. Hence, by Lemma 2.1 . there are matrices $\mathbf{R}^{\prime} \in \mathbb{C}^{a \times p}$ and $\mathbf{S}^{\prime} \in \mathbb{C}^{p \times a}$ such that

$$
\left(\begin{array}{cc}
\text { RESK } & \mathrm{REL} \\
\mathrm{ESK} & \mathrm{EL}
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{R}^{\prime} \mathbf{E}^{\prime} \mathbf{S}^{\prime} & \mathbf{R}^{\prime} \mathbf{E}^{\prime} \\
\mathbf{E}^{\prime} \mathbf{S}^{\prime} & \mathbf{E}^{\prime}
\end{array}\right) .
$$

Consequently,

$$
\mathbf{U}^{*} \mathbf{B U}=\left(\begin{array}{ccc}
\mathbf{D}+\mathbf{R}^{\prime} \mathbf{E}^{\prime} \mathbf{S}^{\prime} & \mathbf{R}^{\prime} \mathbf{E}^{\prime} & \mathbf{O} \\
\mathbf{E}^{\prime} \mathbf{S}^{\prime} & \mathbf{E}^{\prime} & \mathbf{O} \\
\mathrm{O} & \mathrm{O} & \mathbf{O}
\end{array}\right)
$$

and (b) follows.
Corollary 3.2. Let $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{n \times n}$. If \mathbf{A} is normal, \mathbf{B} is Hermitian, and $\mathbf{A} \leq^{-} \mathbf{B}$, then \mathbf{A} is Hermitian.
Proof. If $\operatorname{rank} \mathbf{A}=0$ or $\operatorname{rank} \mathbf{A}=\operatorname{rank} \mathbf{B}$, the claim is trivial. Otherwise, with the notations of Theorem 3.1,

$$
\mathbf{A}^{\prime}=\mathbf{U}^{*} \mathbf{A} \mathbf{U}=\left(\begin{array}{ll}
\mathbf{D} & \mathbf{O} \\
\mathbf{O} & \mathbf{O}
\end{array}\right), \quad \mathbf{B}^{\prime}=\mathbf{U}^{*} \mathbf{B U}=\left(\begin{array}{ccc}
\mathbf{D}+\mathbf{R E S} & \mathbf{R E} & \mathbf{O} \\
\mathbf{E S} & \mathbf{E} & \mathbf{O} \\
\mathbf{O} & \mathbf{O} & \mathbf{O}
\end{array}\right)
$$

Since \mathbf{B} is Hermitian, \mathbf{B}^{\prime} is also Hermitian. Therefore $\mathbf{E}^{*}=\mathbf{E}$ and $\mathbf{E S}=(\mathbf{R E})^{*}=\mathbf{E R}^{*}$, which implies $\mathbf{S}=\mathbf{R}^{*}$, since \mathbf{E} is nonsingular. Now

$$
\mathbf{A}^{\prime}=\mathbf{B}^{\prime}-\left(\begin{array}{ccc}
\mathrm{RER}^{*} & \mathrm{RE} & \mathrm{O} \\
\mathrm{ER}^{*} & \mathrm{E} & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O}
\end{array}\right)
$$

is a difference of Hermitian matrices and so Hermitian. Hence also A is Hermitian.

$$
\text { 4. } \mathbf{A} \leq^{-} \mathbf{B} \wedge \mathbf{A B}=\mathbf{B A} \Leftrightarrow \mathbf{A} \leq^{*} \mathbf{B}
$$

The partial ordering \leq^{*} implies \leq^{-}. For the proof, apply Theorem 2.2 and the corresponding characterization of \leq^{*} ([8, Theorem 2]). In fact, this implication originates with Hartwig ([7] p. 4, (iii)]) on general star-semigoups.

We are therefore motivated to look for an additional condition, which, together with \leq^{-}, is equivalent to \leq^{*}. First we recall a characterization of \leq^{*} from [10] but formulate it slightly differently.

Theorem 4.1 ([10, Theorem 2.1ab], cf. also [8, Theorem 2ab]). Let $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{n \times n}$ be normal. If $a=\operatorname{rank} \mathbf{A}, b=\operatorname{rank} \mathbf{B}, 1 \leq a<b \leq n$, and $p=b-a$, then the following conditions are equivalent:
(a) $\mathbf{A} \leq^{*} \mathbf{B}$.
(b) There is a unitary matrix $\mathbf{U} \in \mathbb{C}^{n \times n}$ such that

$$
\mathbf{U}^{*} \mathbf{A U}=\left(\begin{array}{ll}
\mathbf{D} & \mathbf{O} \\
\mathbf{O} & \mathrm{O}
\end{array}\right)
$$

and

$$
\mathbf{U}^{*} \mathbf{B U}=\left(\begin{array}{ccc}
\mathbf{D} & \mathbf{O} & \mathbf{O} \\
\mathrm{O} & \mathbf{E} & \mathrm{O} \\
\mathbf{O} & \mathbf{O} & \mathbf{O}
\end{array}\right)
$$

where $\mathbf{D} \in \mathbb{C}^{a \times a}$ and $\mathbf{E} \in \mathbb{C}^{p \times p}$ are nonsingular diagonal matrices. (If $b=n$, then omit the third block-row and block-column of zeros in the expression of \mathbf{B}.)

Hartwig and Styan [8] proved the following theorem assuming that A and B are Hermitian. We assume only normality.

Theorem 4.2 (cf. [8, Corollary 1ac]). Let $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{n \times n}$ be normal. The following conditions are equivalent:
(a) $\mathrm{A} \leq^{*} \mathrm{~B}$,
(b) $\mathbf{A} \leq^{-} \mathbf{B} \wedge \mathrm{AB}=\mathrm{BA}$.

Proof. If $a=\operatorname{rank} \mathbf{A}$ and $b=\operatorname{rank} \mathbf{B}$ satisfy $a=0$ or $a=b$, then the claim is trivial. So we assume $1 \leq a<b \leq n$.
(a) \Rightarrow (b). This follows immediately from Theorems 4.1 and 3.1 .
(b) \Rightarrow (a). Assume (b). Since $\mathbf{A} \leq^{-} \mathbf{B}$, we have with the notations of Theorem 3.1

$$
\mathbf{U}^{*} \mathbf{A U}=\left(\begin{array}{ccc}
\mathrm{D} & \mathrm{O} & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O}
\end{array}\right), \quad \mathbf{U}^{*} \mathbf{B U}=\left(\begin{array}{ccc}
\mathrm{D}+\mathrm{RES} & \mathrm{RE} & \mathrm{O} \\
\mathrm{ES} & \mathrm{E} & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O}
\end{array}\right) .
$$

Thus

$$
\mathrm{U}^{*} \mathrm{ABU}=\left(\begin{array}{ccc}
\mathrm{D}^{2}+\text { DRES } & \text { DRE } & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O}
\end{array}\right)
$$

and

$$
\mathbf{U}^{*} \mathbf{B A U}=\left(\begin{array}{ccc}
\mathbf{D}^{2}+\text { RESD } & \mathrm{O} & \mathrm{O} \\
\text { ESD } & \mathrm{O} & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O}
\end{array}\right)
$$

Since $\mathbf{A B}=\mathbf{B A}$, also $\mathbf{U}^{*} \mathbf{A B U}=\mathbf{U}^{*} \mathbf{B A U}$, which implies $\mathbf{D R E}=\mathbf{O}$ and $\mathbf{E S D}=\mathbf{O}$. Because \mathbf{D} and \mathbf{E} are nonsingular, we therefore have $\mathbf{R}=\mathbf{O}$ and $\mathbf{S}=\mathbf{O}$. So

$$
\mathbf{U}^{*} \mathbf{B U}=\left(\begin{array}{ccc}
\mathrm{D} & \mathrm{O} & \mathrm{O} \\
\mathrm{O} & \mathbf{E} & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O}
\end{array}\right)
$$

and (a) follows from Theorem4.1.

$$
\text { 5. } \mathbf{A} \leq^{-} \mathbf{B} \wedge \mathbf{A}^{2} \leq^{-} \mathbf{B}^{2} \Leftrightarrow \mathbf{A} \leq^{*} \mathbf{B}
$$

We first note that the conditions $\mathbf{A} \leq^{-} \mathbf{B}$ and $\mathbf{A}^{2} \leq^{-} \mathbf{B}^{2}$ are independent, even if \mathbf{A} and \mathbf{B} are Hermitian.

Example 5.1. If

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right)
$$

then

$$
\operatorname{rank}(\mathbf{B}-\mathbf{A})=\operatorname{rank}\left(\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right)=1, \quad \operatorname{rank} \mathbf{B}-\operatorname{rank} \mathbf{A}=2-1=1
$$

and so $\mathbf{A} \leq^{-} \mathbf{B}$. However, $\mathbf{A}^{2} \leq^{-} \mathbf{B}^{2}$ does not hold, since

$$
\begin{gathered}
\mathbf{A}^{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad \mathbf{B}^{2}=\left(\begin{array}{cc}
29 & 12 \\
12 & 5
\end{array}\right), \quad \mathbf{B}^{2}-\mathbf{A}^{2}=\left(\begin{array}{cc}
28 & 12 \\
12 & 5
\end{array}\right), \\
\operatorname{rank}\left(\mathbf{B}^{2}-\mathbf{A}^{2}\right)=2, \quad \operatorname{rank} \mathbf{B}^{2}-\operatorname{rank} \mathbf{A}^{2}=2-1=1 .
\end{gathered}
$$

Example 5.2. If

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right)
$$

then $\mathbf{A}^{2} \leq^{-} \mathbf{B}^{2}$ holds but $\mathbf{A} \leq^{-} \mathbf{B}$ does not hold.
Gross ([5], Theorem 5]) proved that, in the case of Hermitian nonnegative definite matrices, the conditions $\mathbf{A} \leq^{-} \mathbf{B}$ and $\mathbf{A}^{2} \leq^{-} \mathbf{B}^{2}$ together are equivalent to $\mathbf{A} \leq^{*} \mathbf{B}$. Baksalary and Hauke ([1, Theorem 4]) proved it for all Hermitian matrices. We generalize this result.

Theorem 5.1. Let $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{n \times n}$ be normal. Assume that
(i) B is Hermitian
or
(ii) $\mathbf{B}-\mathbf{A}$ is Hermitian.

Then the following conditions are equivalent:
(a) $\mathbf{A} \leq{ }^{*} \mathbf{B}$,
(b) $\mathrm{A} \leq^{-} \mathrm{B} \wedge \mathrm{A}^{2} \leq^{-} \mathrm{B}^{2}$.

Proof. First, assume (i). If $\mathbf{A} \leq^{-} \mathbf{B}$, then \mathbf{A} is Hermitian by Corollary 3.2. If $\mathbf{A} \leq^{*} \mathbf{B}$, then $\mathbf{A} \leq^{-} \mathbf{B}$, and so \mathbf{A} is Hermitian also in this case. Therefore, both (a) and (b) imply that \mathbf{A} is actually Hermitian, and hence $(\mathrm{a}) \Leftrightarrow$ (b) follows from [1, Theorem 4]. The following proof applies to an alternative.

Second, assume (ii). If $a=\operatorname{rank} \mathbf{A}$ and $b=\operatorname{rank} \mathbf{B}$ satisfy $a=0$ or $a=b$, then the claim is trivial. So we let $1 \leq a<b \leq n$.
(a) \Rightarrow (b). This is an immediate consequence of Theorems 4.1 and 3.1 .
(b) \Rightarrow (a). Assume (b). Since $\mathbf{A} \leq^{-} \mathbf{B}$, we have with the notations of Theorem 3.1

$$
\mathbf{A}=\mathbf{U}\left(\begin{array}{ll}
\mathbf{D} & \mathbf{O} \\
\mathbf{O} & \mathrm{O}
\end{array}\right) \mathbf{U}^{*}, \quad \mathbf{B}=\mathbf{U}\left(\begin{array}{ccc}
\mathrm{D}+\mathrm{RES} & \mathrm{RE} & \mathrm{O} \\
\mathrm{ES} & \mathrm{E} & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O}
\end{array}\right) \mathbf{U}^{*}
$$

Since $\mathbf{B}-\mathbf{A}$ is Hermitian, $\mathbf{U}^{*}(\mathbf{B}-\mathbf{A}) \mathbf{U}$ is also Hermitian. Therefore \mathbf{E} is Hermitian and $\mathbf{S}=\mathbf{R}^{*}$, and so

$$
\mathbf{B}=\mathbf{U}\left(\begin{array}{ccc}
\mathbf{D}+\text { RER }^{*} & \mathbf{R E} & \mathbf{O} \\
\mathbf{E R}^{*} & \mathbf{E} & \mathbf{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O}
\end{array}\right) \mathbf{U}^{*}
$$

Furthermore,

$$
\mathbf{A}^{2}=\mathbf{U}\left(\begin{array}{cc}
\mathbf{D}^{2} & \mathrm{O} \\
\mathbf{O} & \mathrm{O}
\end{array}\right) \mathbf{U}^{*}
$$

and

$$
\mathbf{B}^{2}=\mathbf{U}\left(\begin{array}{ccc}
\left(\mathbf{D}+\mathbf{R E R}^{*}\right)^{2}+\mathbf{R E}^{2} \mathbf{R}^{*} & \left(\mathbf{D}+\mathbf{R E R}^{*}\right) \mathbf{R E}+\mathbf{R E}^{2}\left(\mathbf{D}+\mathbf{R E R} \mathbf{R}^{*}\right)+\mathbf{E}^{2} \mathbf{R}^{*} & \mathbf{O} \\
\mathbf{E} \mathbf{R}^{*} \mathbf{R E}+\mathbf{E}^{2} & \mathbf{O} \\
\mathbf{O} & \mathbf{O} & \mathbf{O}
\end{array}\right) \mathbf{U}^{*} .
$$

Now

$$
\mathbf{B}^{2}-\mathbf{A}^{2}=\mathbf{U}\left(\begin{array}{ll}
\mathbf{H} & \mathbf{O} \\
\mathbf{O} & \mathbf{O}
\end{array}\right) \mathbf{U}^{*}
$$

where

$$
\mathbf{H}=\left(\begin{array}{cc}
\mathbf{D R E R}^{*}+\mathbf{R E R}^{*} \mathbf{D}+\left(\mathbf{R E R}^{*}\right)^{2}+\mathbf{R E}^{2} \mathbf{R}^{*} & \mathbf{D R E}+\mathbf{R E R}^{*} \mathbf{R E}+\mathbf{R E}^{2} \\
\mathbf{E R}^{*} \mathbf{D}+\mathbf{E R}^{*} \mathbf{R E R} \mathbf{R}^{*}+\mathbf{E}^{2} \mathbf{R}^{*} & \mathbf{E R}^{*} \mathbf{R E}+\mathbf{E}^{2}
\end{array}\right)
$$

Multiplying the second block-row of \mathbf{H} by $-\mathbf{R}$ from the right and adding the result to the first block-row is a set of elementary row operations and so does not change the rank. Thus

$$
\operatorname{rank} \mathbf{H}=\operatorname{rank}\left(\begin{array}{cc}
\mathbf{D R E R}^{*} & \mathbf{D R E} \\
\mathbf{E R}^{*} \mathbf{D}+\mathbf{E R}^{*} \mathbf{R E R}^{*}+\mathbf{E}^{2} \mathbf{R}^{*} & \mathbf{E R} \mathbf{R}^{*} \mathbf{R E}+\mathbf{E}^{2}
\end{array}\right)=\operatorname{rank} \mathbf{H}^{\prime} .
$$

Furthermore, multiplying the second block-column of \mathbf{H}^{\prime} by $-\mathbf{R}^{*}$ from the right and adding the result to the first block-column is a set of elementary column operations, and so

$$
\operatorname{rank} \mathbf{H}^{\prime}=\operatorname{rank}\left(\begin{array}{cc}
\mathbf{O} & \mathbf{D R E} \\
\mathbf{E R} \mathbf{R}^{*} \mathbf{D} & \mathbf{E R} \mathbf{R E}^{*} \mathbf{R E}+\mathbf{E}^{2}
\end{array}\right)=\operatorname{rank} \mathbf{H}^{\prime \prime} .
$$

Since $\mathbf{A}^{2} \leq^{-} \mathbf{B}^{2}$, we therefore have

$$
\operatorname{rank} \mathbf{H}^{\prime \prime}=\operatorname{rank}\left(\mathbf{B}^{2}-\mathbf{A}^{2}\right)=\operatorname{rank} \mathbf{B}^{2}-\operatorname{rank} \mathbf{A}^{2}=b-a=p .
$$

Because $\mathbf{E R}^{*} \mathbf{R E}$ is Hermitian nonnegative definite and \mathbf{E} is Hermitian positive definite, their sum $\mathbf{E}^{\prime}=\mathbf{E R} \mathbf{R}^{*} \mathbf{R E}+\mathbf{E}^{2}$ is Hermitian positive definite and hence nonsingular. Applying Lemma 2.1 to $\mathbf{H}^{\prime \prime}$, we see that there is a matrix $\mathbf{S} \in \mathbb{C}^{p \times a}$ such that (1) $\mathbf{S}^{*} \mathbf{E}^{\prime}=\mathrm{DRE}$ and (2) $\mathbf{S}^{*} \mathbf{E}^{\prime} \mathbf{S}=\mathbf{O}$. Since \mathbf{E}^{\prime} is positive definite, then (2) implies $\mathbf{S}=\mathbf{O}$, and so (1) reduces to $\mathbf{D R E}=\mathbf{O}$, which, in turn, implies $\mathbf{R}=\mathbf{O}$ by the nonsingularity of \mathbf{D} and \mathbf{E}. Consequently,

$$
\mathbf{B}=\mathbf{U}\left(\begin{array}{lll}
\mathrm{D} & \mathrm{O} & \mathrm{O} \\
\mathrm{O} & \mathrm{E} & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{O}
\end{array}\right) \mathbf{U}^{*},
$$

and (a) follows from Theorem 4.1.

6. REMARKS

A matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ is a group matrix if it belongs to a subset of $\mathbb{C}^{n \times n}$ which is a group under matrix multiplication. This happens if and only if $\operatorname{rank} \mathbf{A}^{2}=\operatorname{rank} \mathbf{A}$ (see, e.g., [3], Theorem 4.2] or [11, Theorem 9.4.2]). A matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ is an EP matrix if $\mathcal{R}\left(\mathbf{A}^{*}\right)=\mathcal{R}(\mathbf{A})$ where \mathcal{R} denotes the column space. There are plenty of characterizations for EP matrices, see Cheng and Tian [4] and its references. A normal matrix is EP, and an EP matrix is a group matrix (see, e.g., [3, p. 159]). The sharp partial ordering between group matrices A and B is defined by

$$
\mathbf{A} \leq^{\#} \mathbf{B} \Leftrightarrow \mathbf{A}^{2}=\mathbf{A B}=\mathbf{B A} .
$$

Three of our results follow from well-known results on EP matrices.
First, Corollary 3.2 is a special case of Lemma 3.1 of Baksalary et al [2], where A is assumed only EP.

Second, let \mathbf{A} and \mathbf{B} be group matrices. Then

$$
\mathbf{A} \leq^{\#} \mathbf{B} \Leftrightarrow \mathbf{A} \leq^{-} \mathbf{B} \wedge \mathbf{A B}=\mathbf{B A}
$$

by Mitra ([12, Theorem 2.5]). On the other hand, if \mathbf{A} is EP, then

$$
\mathbf{A} \leq^{\#} \mathbf{B} \Leftrightarrow \mathbf{A} \leq^{*} \mathbf{B},
$$

by Gross ([6, Remark 1]). Hence Theorem 4.2 follows assuming only that \mathbf{A} is EP and \mathbf{B} is a group matrix.
Third, Theorem 5.1 with assumption (i) is a special case of [2, Corollary 3.2], where \mathbf{A} is assumed only EP.

References

[1] J.K. BAKSALARY and J. HAUKE, Characterizations of minus and star orders between the squares of Hermitian matrices, Linear Algebra Appl., 388 (2004), 53-59.
[2] J.K. BAKSALARY, J. HAUKE, X. LIU AND S. LIU, Relationships between partial orders of matrices and their powers, Linear Algebra Appl., 379 (2004), 277-287.
[3] A. BEN-ISRAEL AND T.N.E. GREVILLE, Generalized Inverses. Theory and Applications, Second Edition. Springer, 2003.
[4] S. CHENG and Y. TIAN, Two sets of new characterizations for normal and EP matrices, Linear Algebra Appl., 375 (2003), 181-195.
[5] J. GROSS, Löwner partial ordering and space preordering of Hermitian non-negative definite matrices, Linear Algebra Appl., 326 (2001), 215-223.
[6] J. GROSS, Remarks on the sharp partial order and the ordering of squares of matrices, Linear Algebra Appl., 417 (2006), 87-93.
[7] R.E. HARTWIG, How to partially order regular elements, Math. Japonica, 25 (1980), 1-13.
[8] R.E. HARTWIG and G.P.H. STYAN, On some characterizations of the "star" partial ordering for matrices and rank subtractivity, Linear Algebra Appl., 82 (1986), 145-161.
[9] R.A. HORN AND C.R. JOHNSON, Matrix Analysis, Cambridge University Press, 1985.
[10] J.K. MERIKOSKI and X. LIU, On the star partial ordering of normal matrices, J. Ineq. Pure Appl. Math., 7(1) (2006), Art. 17. [ONLINE: http://jipam.vu.edu.au/article.php?sid= 647].
[11] L. MIRSKY, An Introduction to Linear Algebra, Clarendon Press, 1955. Reprinted by Dover Publications, 1990.
[12] S.K. MITRA, On group inverses and their sharp order, Linear Algebra Appl., 92 (1987), 17-37.

[^0]: We thank one referee for alerting us to the results presented in the remark. We thank also the other referee for his/her suggestions. 233-07

