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ABSTRACT. In the study of dynamic equations on time scales we deal with certain dynamic
inequalities which provide explicit bounds on the unknown functions and their derivatives. Most
of the inequalities presented are of comparison or Gronwall type and, more specifically, of Pach-
patte type.
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1. I NTRODUCTION

In this paper we present a number of dynamic inequalities that are essentially based on Gron-
wall’s inequality. Most of these inequalities are also known as being of Pachpatte type. For
a summary of related continuous inequalities, the monograph [4] by Pachpatte is an authori-
tative source. For the corresponding discrete inequalities, we refer the interested reader to the
excellent monograph [5] by Pachpatte.

Our dynamic inequalities unify and extend the (linear) inequalities presented in the first chap-
ters of [4, 5]. The setup of this paper is as follows: In Section 2 we give some preliminary results
with respect to the calculus on time scales, which can also be found in the books by Bohner and
Peterson [2, 3]. Some basic dynamic inequalities are given as established in the paper by Agar-
wal, Bohner, and Peterson [1]. The remaining sections deal with our dynamic inequalities. Note
that they contain differential and difference inequalities as special cases, and they also contain
all other dynamic inequalities, such as, for example,q-difference inequalities, as special cases.
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2 ELVAN AKIN -BOHNER, MARTIN BOHNER, AND FAYSAL AKIN

2. CALCULUS ON T IME SCALES

A time scaleT is an arbitrary nonempty closed subset of the real numbersR. We define the
forward jump operatorσ onT by

σ(t) := inf{s ∈ T : s > t} ∈ T for all t ∈ T.

In this definition we putσ(∅) = sup T, where∅ is the empty set. Ifσ(t) > t, then we say
that t is right-scattered. If σ(t) = t and t < sup T, then we say thatt is right-dense. The
backward jump operator and left-scattered and left-dense points are defined in a similar way.
Thegraininessµ : T → [0,∞) is defined byµ(t) := σ(t)− t. The setTκ is derived fromT as
follows: If T has a left-scattered maximumm, thenTκ = T − {m}; otherwise,Tκ = T. For
f : T → R andt ∈ Tκ, we definef∆(t) to be the number (provided it exists) such that given
anyε > 0, there is a neighorhoodU of t with∣∣[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]

∣∣ ≤ ε |σ(t)− s| for all s ∈ U.

We callf∆(t) thedelta derivativeof f at t, andf∆ is the usual derivativef ′ if T = R and the
usual forward difference∆f (defined by∆f(t) = f(t + 1)− f(t)) if T = Z.

Theorem 2.1.Assumef, g : T → R and lett ∈ Tκ. Then we have the following:

(i) If f is differentiable att, thenf is continuous att.

(ii) If f is continuous att andt is right-scattered, thenf is differentiable att with

f∆(t) =
f(σ(t))− f(t)

µ(t)
.

(iii) If f is differentiable att andt is right-dense, then

f∆(t) = lim
s→t

f(t)− f(s)

t− s
.

(iv) If f is differentiable att, then

fσ(t) = f(t) + µ(t)f∆(t), where fσ := f ◦ σ.

(v) If f andg are differentiable att, then so isfg with

(fg)∆(t) = f∆(t)g(t) + fσ(t)g∆(t).

We say thatf : T → R is rd-continuousprovidedf is continuous at each right-dense point
of T and has a finite left-sided limit at each left-dense point ofT. The set of rd-continuous
functions will be denoted in this paper byCrd, and the set of functions that are differentiable
and whose derivative is rd-continuous is denoted byC1

rd. A function F : T → R is called an
antiderivativeof f : T → R providedF∆(t) = f(t) holds for allt ∈ Tκ. In this case we define
the integral off by ∫ t

s

f(τ)∆τ = F (t)− F (s) for s, t ∈ T.

We say thatp : T → R is regressiveprovided1 + µ(t)p(t) 6= 0 for all t ∈ T. We denote
by R the set of all regressive and rd-continuous functions. We define the set of all positively
regressive functions byR+ = {p ∈ R : 1 + µ(t)p(t) > 0 for all t ∈ T}. If p, q ∈ R, then we
define

p⊕ q = p + q + µpq, 	q = − q

1 + µq
, and p	 q = p⊕ (	q).

If p : T → R is rd-continuous and regressive, then theexponential functionep(·, t0) is for each
fixed t0 ∈ T the unique solution of the initial value problem

x∆ = p(t)x, x(t0) = 1 on T.
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PACHPATTE INEQUALITIES ON TIME SCALES 3

We use the following four theorems which are proved in Bohner and Peterson [2].

Theorem 2.2. If p, q ∈ R, then

(i) ep(t, t) ≡ 1 ande0(t, s) ≡ 1;

(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);

(iii) 1
ep(t,s)

= e	p(t, s) = ep(s, t);

(iv) ep(t,s)

eq(t,s)
= ep	q(t, s);

(v) ep(t, s)eq(t, s) = ep⊕q(t, s);

(vi) if p ∈ R+, thenep(t, t0) > 0 for all t ∈ T.

Example 2.1. In order to allow for a comparison with the continuous Pachpatte inequalities
given in [4], we note that, ifT = R, the exponential function is given by

ep(t, s) = e
∫ t

s p(τ)dτ , eα(t, s) = eα(t−s), eα(t, 0) = eαt

for s, t ∈ R, whereα ∈ R is a constant andp : R → R is a continuous function. To compare
with the discrete Pachpatte inequalities given in [5], we also give the exponential function for
T = Z as

ep(t, s) =
t−1∏
τ=s

[1 + p(τ)], eα(t, s) = (1 + α)t−s, eα(t, 0) = (1 + α)t

for s, t ∈ Z with s < t, whereα 6= −1 is a constant andp : Z → R is a sequence satisfying
p(t) 6= −1 for all t ∈ Z. Further examples of exponential functions can be found in [2, Section
2.3].

Theorem 2.3. If p ∈ R anda, b, c ∈ T, then∫ b

a

p(t)ep(c, σ(t))∆t = ep(c, a)− ep(c, b).

Theorem 2.4. If a, b, c ∈ T andf ∈ Crd such thatf(t) ≥ 0 for all a ≤ t < b, then∫ b

a

f(t)∆t ≥ 0.

Theorem 2.5. Let t0 ∈ Tκ and assumek : T × T → R is continuous at(t, t), wheret ∈ Tκ

with t > t0. Also assume thatk(t, ·) is rd-continuous on[t0, σ(t)]. Suppose that for eachε > 0
there exists a neighborhoodU of t, independent ofτ ∈ [t0, σ(t)], such that∣∣k(σ(t), τ)− k(s, τ)− k∆(t, τ)(σ(t)− s)

∣∣ ≤ ε |σ(t)− s| for all s ∈ U,

wherek∆ denotes the derivative ofk with respect to the first variable. Then

g(t) :=

∫ t

t0

k(t, τ)∆τ implies g∆(t) =

∫ t

t0

k∆(t, τ)∆τ + k(σ(t), t).
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The next four results are proved by Agarwal, Bohner and Peterson [1]. For convenience of
notation we let throughout

t0 ∈ T, T0 = [t0,∞) ∩ T, and T−0 = (−∞, t0] ∩ T.

Also, for a functionb ∈ Crd we write

b ≥ 0 if b(t) ≥ 0 for all t ∈ T.

Theorem 2.6(Comparison Theorem). Supposeu, b ∈ Crd anda ∈ R+. Then

u∆(t) ≤ a(t)u(t) + b(t) for all t ∈ T0

implies

u(t) ≤ u(t0)ea(t, t0) +

∫ t

t0

ea(t, σ(τ))b(τ)∆τ for all t ∈ T0.

Theorem 2.7(Gronwall’s Inequality). Supposeu, a, b ∈ Crd andb ≥ 0. Then

u(t) ≤ a(t) +

∫ t

t0

b(τ)u(τ)∆τ for all t ∈ T0

implies

u(t) ≤ a(t) +

∫ t

t0

a(τ)b(τ)eb(t, σ(τ))∆τ for all t ∈ T0.

Remark 2.8. In the next section we show that Gronwall’s inequality can be stated in different
forms (see Theorem 3.1, Theorem 3.6, Theorem 3.10, and Theorem 3.12).

The next two results follow from Theorem 2.7 witha = 0 anda = u0, respectively.

Corollary 2.9. Supposeu, b ∈ Crd andb ≥ 0. Then

u(t) ≤
∫ t

t0

u(τ)b(τ)∆τ for all t ∈ T0

implies
u(t) ≤ 0 for all t ∈ T0.

Corollary 2.10. Supposeu, b ∈ Crd, u0 ∈ R, andb ≥ 0. Then

u(t) ≤ u0 +

∫ t

t0

b(τ)u(τ)∆τ for all t ∈ T0

implies
u(t) ≤ u0eb(t, t0) for all t ∈ T0.

The continuous version [4, Th. 1.2.2] of Corollary 2.10 was first proved by Bellman, while
the corresponding discrete version [5, Th. 1.2.2] is due to Sugiyama.

The remaining results in this section will be needed later on in this paper.

Corollary 2.11. If p ∈ R+ andp(t) ≤ q(t) for all t ∈ T, then

ep(t, t0) ≤ eq(t, t0) for all t ∈ T0.

Proof. Let u(t) = ep(t, t0). Then

u∆(t) = p(t)u(t) ≤ q(t)u(t).

Now note thatq ∈ R+, so using Theorem 2.6 witha = q andb = 0, we obtain

ep(t, t0) = u(t) ≤ u(t0)eq(t, t0) = eq(t, t0)

for all t ∈ T0. �
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Remark 2.12. The following statements hold:
(i) If p ≥ 0, thenep(t, t0) ≥ e0(t, t0) = 1 by Corollary 2.11 and Theorem 2.2. Therefore

e	p(t, t0) ≤ 1.

(ii) If p ≥ 0, thenep(·, t0) is nondecreasing sincee∆
p (t, t0) = p(t)ep(t, t0) ≥ 0.

3. DYNAMIC I NEQUALITIES

Note that whenp = 1 andq = 0 in Theorem 3.1 below, then we obtain Theorem 2.7. For
T = R, see [4, Th. 1.3.4]. ForT = Z, we refer to [5, Th. 1.3.1 and Th. 1.2.3]. The proof of
Theorem 3.1 below is similar to the proof of Theorem 2.7 and hence is omitted.

Theorem 3.1.Supposeu, a, b, p, q ∈ Crd andb, p ≥ 0. Then

u(t) ≤ a(t) + p(t)

∫ t

t0

[b(τ)u(τ) + q(τ)]∆τ for all t ∈ T0

implies

u(t) ≤ a(t) + p(t)

∫ t

t0

[a(τ)b(τ) + q(τ)]ebp(t, σ(τ))∆τ for all t ∈ T0.

The next result follows from Theorem 3.1 witha = q = 0.

Corollary 3.2. Supposeu, b, p ∈ Crd andb, p ≥ 0. Then

u(t) ≤ p(t)

∫ t

t0

u(τ)b(τ)∆τ for all t ∈ T0

implies
u(t) ≤ 0 for all t ∈ T0.

Remark 3.3. The following statements hold:
(i) If p = 1 in Corollary 3.2, then we get Corollary 2.9.

(ii) If q = 0 in Theorem 3.1 anda is nondecreasing onT, then

u(t) ≤ a(t) + p(t)

∫ t

t0

b(τ)u(τ)∆τ for all t ∈ T0

implies

u(t) ≤ a(t)

[
1 + p(t)

∫ t

t0

b(τ)ebp(t, σ(τ))∆τ

]
for all t ∈ T0.

For the casesT = R andT = Z, see [4, Th. 1.3.3] and [5, Th. 1.2.4], respectively.

The next result follows from Theorem 3.1. While the continuous version [4, Th. 1.5.1] of
Theorem 3.4 below is due to Gamidov, its discrete version [5, Th. 1.3.2] has been established
by Pachpatte.

Theorem 3.4.Supposeu, a, bi, pi ∈ Crd andu, bi, p := max1≤j≤n pj ≥ 0 for 1 ≤ i ≤ n. Then

u(t) ≤ a(t) +
n∑

i=1

pi(t)

∫ t

t0

bi(τ)u(τ)∆τ for all t ∈ T0

implies withb :=
∑n

i=1 bi

u(t) ≤ a(t) + p(t)

∫ t

t0

a(τ)b(τ)ebp(t, σ(τ))∆τ for all t ∈ T0.
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The comparison theorem motivates us to consider the following result whose proof is similar
to that of Theorem 2.6.

Theorem 3.5(Comparison Theorem). Letu, b ∈ Crd anda ∈ R+. Then

u∆(t) ≤ −a(t)uσ(t) + b(t) for all t ∈ T0

implies

u(t) ≤ u(t0)e	a(t, t0) +

∫ t

t0

b(τ)e	a(t, τ)∆τ for all t ∈ T0,

and
u∆(t) ≤ −a(t)uσ(t) + b(t) for all t ∈ T−0

implies

u(t) ≥ u(t0)e	a(t, t0) +

∫ t

t0

b(τ)e	a(t, τ)∆τ for all t ∈ T−0 .

Proof. We calculate

[uea(·, t0)]∆ (t) = u∆(t)ea(t, t0) + uσ(t)a(t)ea(t, t0)

=
[
u∆(t) + a(t)uσ(t)

]
ea(t, t0)

≤ b(t)ea(t, t0)

for all t ∈ T0 so that

u(t)ea(t, t0)− u(t0)ea(t0, t0) ≤
∫ t

t0

ea(τ, t0)b(τ)∆τ

for all t ∈ T0, and hence the first claim follows. For the second claim, note that the latter
inequality is reversed ift ∈ T−0 . �

For the continuous and discrete versions of the following three theorems, we refer the reader
to [4, Th. 1.3.4, Th. 1.3.3, and Th. 1.3.5] and [5, Th. 1.2.5, Th. 1.2.6, and Th. 1.2.8], respectively.

Theorem 3.6.Supposeu, b, p, q ∈ Crd andb, p ≥ 0. Then

u(t) ≤ a(t) + p(t)

∫ t0

t

[b(τ)uσ(τ) + q(τ)] ∆τ for all t ∈ T−0

implies

u(t) ≤ a(t) + p(t)

∫ t0

t

[b(τ)aσ(τ) + q(τ)] e	(bpσ)(t, τ)∆τ for all t ∈ T−0 .

Proof. Definez(t) := −
∫ t0

t
[b(τ)uσ(τ) + q(τ)] ∆τ . Then for allt ∈ T−0

z∆(t) = b(t)uσ(t) + q(t)

≤ b(t) [aσ(t)− pσ(t)zσ(t)] + q(t)

= −b(t)pσ(t)zσ(t) + b(t)aσ(t) + q(t).

Sinceb, p ≥ 0, we havebpσ ∈ R+, and we may apply Theorem 3.5 to obtain

z(t) ≥ z(t0)e	(bpσ)(t, t0) +

∫ t

t0

e	(bpσ)(t, τ) [b(τ)aσ(τ) + q(τ)] ∆τ

= −
∫ t0

t

e	(bpσ)(t, τ) [b(τ)aσ(τ) + q(τ)] ∆τ
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for all t ∈ T−0 , and therefore

u(t) ≤ a(t)− p(t)z(t)

≤ a(t) + p(t)

∫ t0

t

e	(bpσ)(t, τ) [b(τ)aσ(τ) + q(τ)] ∆τ

for all t ∈ T−0 . �

Theorem 3.7.Supposeu, b ∈ Crd, b ≥ 0, anda ∈ C1
rd. Then

u(t) ≤ a(t) +

∫ t

t0

b(τ)u(τ)∆τ for all t ∈ T0

implies

u(t) ≤ a(t0)eb(t, t0) +

∫ t

t0

a∆(τ)eb(t, σ(τ))∆τ for all t ∈ T0.

Proof. Define z(t) := a(t) +
∫ t

t0
b(τ)u(τ)∆τ . Then we obtainz∆(t) ≤ a∆(t) + b(t)z(t).

Applying Theorem 2.6 completes the proof. �

Theorem 3.8.Supposeφ, u, b, p ∈ Crd andb, p ≥ 0. Then

u(t) ≥ φ(s)− p(t)

∫ t

s

b(τ)φσ(τ)∆τ for all s, t ∈ T, s ≤ t

implies
u(t) ≥ φ(s)e	(p(t)b)(t, s) for all s, t ∈ T, s ≤ t.

Proof. Fix t0 ∈ T. Then

φ(t) ≤ u(t0) + p(t0)

∫ t0

t

b(τ)φσ(τ)∆τ for all t ∈ T−0 .

By Theorem 3.6, we find

φ(t) ≤ u(t0) + p(t0)

∫ t0

t

b(τ)u(t0)e	(bp(t0))(t, τ)∆τ

= u(t0) + u(t0)

∫ t0

t

b(τ)p(t0)ebp(t0)(τ, t)∆τ

= u(t0) + u(t0)
[
ebp(t0)(t0, t)− 1

]
= u(t0)ebp(t0)(t0, t)

for all t ∈ T−0 and thus

u(t0) ≥ φ(t)e	(bp(t0))(t0, t) for all t ∈ T−0 .

Sincet0 ∈ T was arbitrary, the claim follows. �

Remark 3.9. The following statements hold:
(i) The continuous version of Theorem 3.8 is due to Gollwitzer.

(ii) WhenT = R,
e	(p(t)b)(t, s) = e−p(t)

∫ t
s b(τ)dτ ,

and whenT = Z,

e	(p(t)b)(t, s) =
t−1∏
τ=s

[1 + p(t)b(τ)]−1.
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(iii) If p = 1 in Theorem 3.8, then we obtainu(t) ≥ φ(s)e	b(t, s).

The following Volterra type inequality reduces to Theorem 2.7 ifk = p = 1 andq = 0. For
T = R, it is due to Norbury and Stuart and can be found in [4, Th. 1.4.3]. ForT = Z, see [5,
Th. 1.3.4 and Th. 1.3.3].

Theorem 3.10. Supposeu, a, b, p, q ∈ Crd and u, b, p, q ≥ 0. Let k(t, s) be defined as in
Theorem 2.5 such thatk(σ(t), t) ≥ 0 andk∆(t, s) ≥ 0 for s, t ∈ T with s ≤ t. Then

u(t) ≤ a(t) + p(t)

∫ t

t0

k(t, τ) [b(τ)u(τ) + q(τ)] ∆τ for all t ∈ T0

implies

u(t) ≤ a(t) + p(t)

∫ t

t0

b̄(τ)eā(t, σ(τ))∆τ for all t ∈ T0,

where

ā(t) = k(σ(t), t)b(t)p(t) +

∫ t

t0

k∆(t, τ)b(τ)p(τ)∆τ

and

b̄(t) = k(σ(t), t) [a(t)b(t) + q(t)] +

∫ t

t0

k∆(t, τ) [a(τ)b(τ) + q(τ)] ∆τ.

Proof. Definez(t) :=
∫ t

t0
k(t, τ) [b(τ)u(τ) + q(τ)] ∆τ . Then for allt ∈ T0

z∆(t) = k(σ(t), t) [b(t)u(t) + q(t)] +

∫ t

t0

k∆(t, τ) [b(τ)u(τ) + q(τ)] ∆τ

≤
{

k(σ(t), t)b(t)p(t) +

∫ t

t0

k∆(t, τ)b(τ)p(τ)∆τ

}
z(t)

+ k(σ(t), t) [a(t)b(t) + q(t)] +

∫ t

t0

k∆(t, τ) [a(τ)b(τ) + q(τ)] ∆τ

= ā(t)z(t) + b̄(t).

In view of ā ∈ R+, we may apply Theorem 2.6 to obtain

z(t) ≤ z(t0)eā(t, t0) +

∫ t

t0

eā(t, σ(τ))b̄(τ)∆τ =

∫ t

t0

eā(t, σ(τ))b̄(τ)∆τ

for all t ∈ T0. Sinceu(t) ≤ a(t) + p(t)z(t) holds for allt ∈ T0, the claim follows. �

Corollary 3.11. In addition to the assumptions of Theorem 3.10 withp = b = 1 and q = 0,
suppose thata is nondecreasing. Then

u(t) ≤ a(t) +

∫ t

t0

k(t, τ)u(τ)∆τ for all t ∈ T0

implies
u(t) ≤ a(t)eā(t, t0) for all t ∈ T0,

where

ā(t) = k(σ(t), t) +

∫ t

t0

k∆(t, τ)∆τ.
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Proof. By Theorem 3.10 with

b̄(t) = k(σ(t), t)a(t) +

∫ t

t0

k∆(t, τ)a(τ)∆τ

≤
{

k(σ(t), t) +

∫ t

t0

k∆(t, τ)∆τ

}
a(t)

= ā(t)a(t),

we obtain for allt ∈ T0

u(t) ≤ a(t) +

∫ t

t0

b̄(τ)eā(t, σ(τ))∆τ

≤ a(t)

{
1 +

∫ t

t0

ā(τ)eā(t, σ(τ))∆τ

}
= a(t) {1 + eā(t, t0)− eā(t, t)}
= a(t)eā(t, t0),

where we have also used Theorem 2.2 and Theorem 2.3. �

The following theorem withk = 1 reduces to Theorem 3.6.

Theorem 3.12. Supposeu, a, b, p, q ∈ Crd and u, b, p, q ≥ 0. Let k(t, s) be defined as in
Theorem 2.5 such thatk(σ(t), t) ≥ 0 for all t ∈ T−0 andk∆(t, s) ≤ 0 for s, t ∈ T−0 with s ≥ t.
Then

u(t) ≤ a(t) + p(t)

∫ t0

t

k(t, τ) [b(τ)uσ(τ) + q(τ)] ∆τ for all t ∈ T−0
implies

u(t) ≤ a(t) + p(t)

∫ t0

t

b̄(τ)e	ā(t, τ)∆τ for all t ∈ T−0 ,

where

ā(t) = k(σ(t), t)b(t)p(σ(t))−
∫ t0

t

k∆(t, τ)b(τ)pσ(τ)∆τ

and

b̄(t) = k(σ(τ), t) [b(t)aσ(t) + q(t)]−
∫ t0

t

k∆(t, τ) [b(τ)aσ(τ) + q(τ)] ∆τ.

Proof. Definez(t) := −
∫ t0

t
k(t, τ) [b(τ)uσ(τ) + q(τ)] ∆τ . Then for allt ∈ T−0 \ {t0}

z∆(t) = k(σ(t), t) [b(t)uσ(t) + q(t)]−
∫ t0

t

k∆(t, τ) [b(τ)uσ(τ) + q(τ)] ∆τ

≤ −
{

k(σ(t), t)b(t)pσ(t)−
∫ t0

t

k∆(t, τ)b(τ)pσ(τ)∆τ

}
zσ(t)

+ k(σ(t), t) [b(t)aσ(t) + q(t)]−
∫ t0

t

k∆(t, τ) [b(τ)aσ(τ) + q(τ)] ∆τ

= −ā(t)zσ(t) + b̄(t).

In view of ā ∈ R+, we may apply Theorem 3.5 to obtain for allt ∈ T−0

z(t) ≥ z(t0)e	ā(t, t0)−
∫ t0

t

e	ā(t, τ)b̄(τ)∆τ = −
∫ t0

t

e	ā(t, τ)b̄(τ)∆τ.

Sinceu(t) ≤ a(t)− p(t)z(t) for all t ∈ T−0 , the claim follows. �
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Corollary 3.13. In addition to the assumptions of Theorem 3.12 withp = b = 1 and q = 0,
suppose thata is nondecreasing. Then

u(t) ≤ a(t) +

∫ t0

t

k(t, τ)uσ(τ)∆τ for all t ∈ T−0

implies
u(t) ≤ a(t)eā(t0, t) for all t ∈ T−0 ,

where

ā(t) = k(σ(t), t)−
∫ t0

t

k∆(t, τ)∆τ.

Proof. The proof is similar to the proof of Corollary 3.11, this time using Theorem 3.12 instead
of Theorem 3.10. Note also that this time we haveb̄(t) ≤ ā(t)aσ(t). �

The continuous versions of our next two results are essentially due to Greene and can be
found in [4, Th. 1.6.2 and Th. 1.6.1]. Their discrete versions [5, Th. 1.3.8 and Th. 1.3.7] are
proved by Pachpatte. Note that for the discrete versions, “normal” exponential functions are
used, while we employ time scales exponential functions below.

Theorem 3.14.Supposeu, v, f, g, p, q, bi ∈ Crd andu, v, f, p, q, bi ≥ 0, i ∈ {1, 2, 3, 4}. Then

u(t) ≤ f(t) + p(t)

[∫ t

t0

b1(τ)u(τ)∆τ +

∫ t

t0

eq(τ, t0)b2(τ)v(τ)∆τ

]
for all t ∈ T0

and

v(t) ≤ g(t) + p(t)

[∫ t

t0

e	q(τ, t0)b3(τ)u(τ)∆τ +

∫ t

t0

b4(τ)v(τ)∆τ

]
for all t ∈ T0

imply
u(t) ≤ eq(t, t0)Q(t) and v(t) ≤ Q(t) for t ∈ T0,

where

Q(t) = f(t) + g(t) + p(t)

∫ t

t0

[f(τ) + g(τ)] b(τ)ebp(t, σ(τ))∆τ

with
b(t) = max {b1(t) + b3(t), b2(t) + b4(t)} .

Proof. We definew(t) = e	q(t, t0)u(t) + v(t). By Remark 2.12 we obtain for allt ∈ T0

w(t) ≤ e	q(t, t0)f(t) + g(t)

+ p(t)

∫ t

t0

{
[e	q(t, t0)b1(τ) + e	q(τ, t0)b3(τ)] u(τ)

+ [e	q(t, τ)b2(τ) + b4(τ)] v(τ)
}

∆τ

≤ e	q(t, t0)f(t) + g(t)

+ p(t)

∫ t

t0

{
e	q(τ, t0) [b1(τ) + b3(τ)] u(τ) + [b2(τ) + b4(τ)] v(τ)

}
∆τ

≤ e	q(t, t0)f(t) + g(t) + p(t)

∫ t

t0

b(τ)w(τ)∆τ

≤ f(t) + g(t) + p(t)

∫ t

t0

b(τ)w(τ)∆τ.
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Now b, p ≥ 0 so that Theorem 3.1 yields for allt ∈ T0

w(t) ≤ f(t) + g(t) + p(t)

∫ t

t0

[f(τ) + g(τ)] b(τ)ebp(t, σ(τ))∆τ = Q(t).

Hence
u(t) = eq(t, t0)w(t)− eq(t, t0)v(t) ≤ eq(t, t0)Q(t)

and
v(t) = w(t)− e	q(t, t0)u(t) ≤ Q(t)

for all t ∈ T0. �

Corollary 3.15. In addition to the assumptions of Theorem 3.14 withf(t) ≡ c1, g(t) ≡ c2, and
p(t) ≡ 1, supposec1, c2 ∈ R. Then

u(t) ≤ c1 +

∫ t

t0

[b1(τ)u(τ) + eq(τ, t0)b2(τ)v(τ)] ∆τ for all t ∈ T0

and

v(t) ≤ c2 +

∫ t

t0

[e	q(τ, t0)b3(τ)u(τ) + b4(τ)v(τ)] ∆τ for all t ∈ T0

imply withc = c1 + c2

u(t) ≤ ceb⊕q(t, t0) and v(t) ≤ ceb(t, t0) for all t ∈ T0.

Proof. In this case we find, using Theorem 2.2 and Theorem 2.3, that

Q(t) = c +

∫ t

t0

cb(τ)eb(t, σ(τ))∆τ = ceb(t, t0).

Henceu(t) ≤ eq(t, t0)ceb(t, t0) = ceb⊕q(t, t0) andv(t) ≤ ceb(t, t0) for all t ∈ T0 by Theorem
3.14. �

4. FURTHER DYNAMIC I NEQUALITIES

Our first few results are, even for the casesT = R andT = Z, more general than any result
given in [4, 5].

Theorem 4.1.Supposeu, a, b, c, d, p, w ∈ Crd such thatu, a, b, c, p, w ≥ 0. Then

u(t) ≤ w(t) + p(t)

∫ t

t0

{
[a(τ) + b(τ)]u(τ) + b(τ)p(τ)

∫ τ

t0

[c(s)u(s) + d(s)]∆s

}
∆τ

for all t ∈ T0 implies

u(t) ≤ w(t) + p(t)

∫ t

t0

[a(τ) + b(τ)]

×
{

w(τ) + p(τ)

∫ τ

t0

ep(a+b+c)(τ, σ(s))[(a + b + c)w + d](s)∆s

}
∆τ

for all t ∈ T0.

Proof. Define

z(t) :=

∫ t

t0

{
[a(τ) + b(τ)]u(τ) + b(τ)p(τ)

∫ τ

t0

[c(s)u(s) + d(s)]∆s

}
∆τ

and

r(t) := z(t) +

∫ t

t0

{
c(τ) [w(τ) + p(τ)z(τ)] + d(τ)

}
∆τ.
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Then we haveu(t) ≤ w(t) + p(t)z(t), z(t) ≤ r(t), and

z∆(t) = [a(t) + b(t)]u(t) + b(t)p(t)

∫ t

t0

[c(τ)u(τ) + d(τ)]∆τ

≤ [a(t) + b(t)]w(t) + a(t)p(t)z(t) + b(t)p(t)r(t)

≤ [a(t) + b(t)][w(t) + p(t)r(t)]

and therefore

r∆(t) = z∆(t) + c(t)[w(t) + p(t)z(t)] + d(t)

≤ [a(t) + b(t)][w(t) + p(t)r(t)] + c(t)[w(t) + p(t)r(t)] + d(t)

= [(a + b + c)p](t)r(t) + [(a + b + c)w + d](t).

By Theorem 2.6 we find

r(t) ≤
∫ t

t0

e(a+b+c)p(t, σ(τ))[(a + b + c)w + d](τ)∆τ

sincer(t0) = 0. Using this inz∆(t) ≤ [a(t)+b(t)][w(t)+p(t)r(t)] and integrating the resulting
inequality completes the proof. �

In certain cases it will be possible to further evaluate the integral occurring in Theorem 4.1.
To this end we present the following useful auxiliary result, which is an extension of Theorem
2.3.

Theorem 4.2.Supposef : T → R is differentiable. Ifp ∈ R anda, b, c ∈ T, then∫ b

a

f(t)p(t)ep(c, σ(t))∆t = ep(c, a)f(a)− ep(c, b)f(b) +

∫ b

a

ep(c, σ(t))f∆(t)∆t.

Proof. We use Theorem 2.2 and integration by parts:∫ b

a

ep(c, σ(t))p(t)f(t)∆t =

∫ b

a

e	p(σ(t), c)p(t)f(t)∆t

=

∫ b

a

1

1 + µ(t)p(t)
e	p(t, c)p(t)f(t)∆t

= −
∫ b

a

(	p)(t)e	p(t, c)f(t)∆t

= −
∫ b

a

e∆
	p(t, c)f(t)∆t

= −
{

e	p(b, c)f(b)− e	p(a, c)f(a)−
∫ b

a

e	p(σ(t), c)f∆(t)∆t

}
= ep(c, a)f(a)− ep(c, b)f(b) +

∫ b

a

ep(c, σ(t))f∆(t)∆t,

which completes the proof. �

Using Theorem 4.2, we now present the following result.

Theorem 4.3. Supposeu, a, b, c, d, p, w ∈ Crd such thatu, a, b, c, p, w ≥ 0. Furthermore as-
sume thatw is differentiable and thatp is nonincreasing. Then

u(t) ≤ w(t) + p(t)

∫ t

t0

{
[a(τ) + b(τ)]u(τ) + b(τ)p(τ)

∫ τ

t0

[c(s)u(s) + d(s)]∆s

}
∆τ

J. Inequal. Pure and Appl. Math., 6(1) Art. 6, 2005 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


PACHPATTE INEQUALITIES ON TIME SCALES 13

for all t ∈ T0 implies

u(t) ≤ w(t) + p(t)

∫ t

t0

[a(τ) + b(τ)]

×
{

e(a+b+c)p(τ, t0)w(t0) +

∫ τ

t0

ep(a+b+c)(τ, σ(s))[w∆(s) + p(τ)d(s)]∆s

}
∆τ

for all t ∈ T0.

Proof. Using Theorem 4.2 and the fact thatp is nonincreasing, we employ Theorem 4.1 to find

u(t) ≤ w(t) + p(t)

∫ t

t0

[a(τ) + b(τ)]z(τ)∆τ,

where

z(t) := w(t) + p(t)

∫ t

t0

e(a+b+c)p(t, σ(τ))[(a + b + c)w + d](τ)∆τ

≤ w(t) + p(t)

∫ t

t0

e(a+b+c)p(t, σ(τ))d(τ)∆τ

+

∫ t

t0

e(a+b+c)p(t, σ(τ))(a + b + c)(τ)p(τ)w(τ)∆τ

= p(t)

∫ t

t0

e(a+b+c)p(t, σ(τ))d(τ)∆τ + e(a+b+c)p(t, t0)w(t0)

+

∫ t

t0

e(a+b+c)p(t, σ(τ))w∆(τ)∆τ,

and this completes the proof. �

Corollary 4.4. Under the same assumptions of Theorem 4.3 we can conclude

u(t) ≤ e(a+b+c)p(t, t0)w(t0)

+

∫ t

t0

{
w∆(τ) + [a(τ) + b(τ)]

∫ τ

t0

e(a+b+c)p(τ, σ(s))[w∆(s) + p(τ)d(s)]∆s

}
∆τ

for all t ∈ T0.

Proof. The estimate

p(t)

∫ t

t0

[a(τ) + b(τ)]e(a+b+c)p(τ, t0)∆τ ≤
∫ t

t0

[a(τ) + b(τ) + c(τ)]p(τ)e(a+b+c)p(τ, t0)∆τ

completes the proof as the latter integral may be evaluated directly. �

The following two results (forT = R andT = Z, see [4, Th. 1.7.2 (iv) and Th. 1.7.4] and [5,
Th. 1.4.4 and Th. 1.4.2], respectively) are immediate consequences of Theorem 4.1.

Corollary 4.5. Supposeu, b, c, p, w ∈ Crd such thatu, b, c, p, w ≥ 0. Then

u(t) ≤ w(t) + p(t)

∫ t

t0

b(τ)

{
u(τ) + p(τ)

∫ τ

t0

c(s)u(s)∆s

}
∆τ

for all t ∈ T0 implies

u(t) ≤ w(t) + p(t)

∫ t

t0

b(τ)

{
w(τ) + p(τ)

∫ τ

t0

ep(b+c)(τ, σ(s))(b + c)(s)w(s)∆s

}
∆τ
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for all t ∈ T0.

Proof. Puta = d = 0 in Theorem 4.1. �

Corollary 4.6. If we suppose in addition to the assumptions of Corollary 4.5 thatp is nonin-
creasing andw is nondecreasing, then

u(t) ≤ w(t)

[
1 + p(t)

∫ t

t0

b(τ)e(b+c)p(τ, t0)∆τ

]
for all t ∈ T0.

Proof. We have

p(t)

∫ t

t0

e(b+c)p(t, σ(τ))w(τ)(b + c)(τ)∆τ ≤ w(t)

∫ t

t0

e(b+c)p(t, σ(τ))p(τ)(b + c)(τ)∆τ,

and the latter integral can be directly evaluated using Theorem 2.3, hence yielding the result.
�

Remark 4.7. The right-hand side of the inequality in Corollary 4.6 can be further estimated
and then evaluated by Theorem 2.3 so that the statement of Corollary 4.6 can be replaced by

u(t) ≤ w(t)e(b+c)p(t, t0) for all t ∈ T0.

In the following theorem we state some easy consequences of Theorem 4.3. See [4, Th. 1.7.2]
for T = R and [5, Th. 1.4.6] forT = Z.

Theorem 4.8. Supposeu, a, b, c, d, q ∈ Crd and u, a, b, c, q ≥ 0. Let u0 be a nonnegative
constant. Then

(i) u(t) ≤ u0 +

∫ t

t0

b(τ)

[
u(τ) + q(τ) +

∫ τ

t0

c(s)u(s)∆s

]
∆τ, t ∈ T0

implies

u(t) ≤ u0 +

∫ t

t0

Q(τ)∆τ for all t ∈ T0,

where

Q(t) = b(t)

{
u0eb+c(t, t0) +

∫ t

t0

b(τ)q(τ)eb+c(t, σ(τ))∆τ + p(t)

}
;

(ii) u(t) ≤ u0 +

∫ t

t0

b(τ)

{
u(τ) +

∫ τ

t0

[c(s)u(s) + d(s)] ∆s

}
∆τ, t ∈ T0

implies

u(t) ≤ u0 +

∫ t

t0

b(τ)

[
u0eb+c(τ, t0) +

∫ τ

t0

eb+c(τ, σ(s))d(s)∆s

]
∆τ for all t ∈ T0;

(iii) u(t) ≤ u0 +

∫ t

t0

a(s)u(s)∆s +

∫ t

t0

b(s)

[
u(s) +

∫ s

t0

c(τ)u(τ)∆τ

]
∆s, t ∈ T0

implies
u(t) ≤ u0ea+b+c(t, t0) for all t ∈ T0.

Proof. In each case we use Theorem 4.3, for (i) with

a = d = 0, p = 1, and w(t) = u0 +

∫ t

t0

b(τ)q(τ)∆τ,

for (ii) with
a = 0, p = 1, and w = u0,
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and for (iii) with
d = 0, p = 1, and w = u0.

In (i) and (ii), the claim follows directly, while the calculation

u(t) ≤ u0

{
1 +

∫ t

t0

[a(τ) + b(τ)]ea+b+c(τ, t0)∆τ

}
≤ u0

{
1 +

∫ t

t0

[a(τ) + b(τ) + c(τ)]ea+b+c(τ, t0)∆τ

}
= u0ea+b+c(t, t0)

completes the proof of statement (iii). �

For further reference we state the following corollary, whose continuous and discrete versions
can be found in [4, Th. 1.7.1] and [5, Th. 1.4.1], respectively.

Corollary 4.9. Supposeu, b, c ∈ Crd andu, b, c ≥ 0. Letu0 be a nonnegative constant. Then

u(t) ≤ u0 +

∫ t

t0

b(τ)

[
u(τ) +

∫ τ

t0

c(s)u(s)∆s

]
∆τ for all t ∈ T0

implies

u(t) ≤ u0

{
1 +

∫ t

t0

b(τ)eb+c(τ, t0)∆τ

}
for all t ∈ T0.

Proof. This follows from Theorem 4.8 (i) withq = 0 or from Theorem 4.8 (iii) witha = 0. �

Remark 4.10. As in Remark 4.7, we can replace the conclusion in Corollary 4.9 by

u(t) ≤ u0eb+c(t, t0) for all t ∈ T0.

ForT = Z in the following result, we refer to [5, Th. 1.4.3].

Theorem 4.11. Supposeu, a, b, c ∈ Crd, a > 0, and u, b, c ≥ 0. Let u0 be a nonnegative
constant. Then

u(t) ≤ a(t)

{
u0 +

∫ t

t0

b(τ)

[
u(τ) +

∫ τ

t0

c(s)u(s)∆s

]
∆τ

}
for all t ∈ T0

implies

(i) u(t) ≤ u0a(t)

{
1 +

∫ t

t0

b(τ)eb+c(τ, t0)∆τ

}
for all t ∈ T0

if 0 < a(t) ≤ 1 holds for allt ∈ T, and

(ii) u(t) ≤ a(t)u0

{
1 +

∫ t

t0

a(τ)b(τ)ea(b+c)(τ, t0)∆τ

}
for all t ∈ T0

if a(t) ≥ 1 holds for allt ∈ T.

Proof. Sincea(t) > 0, we have

u(t)

a(t)
≤ u0 +

∫ t

t0

b(τ)

[
u(τ) +

∫ τ

t0

c(s)u(s)∆s

]
∆τ.

First we assume that0 < a(t) ≤ 1 holds for allt ∈ T. Then

u(t)

a(t)
≤ u0 +

∫ t

t0

b(τ)

[
u(τ)

a(τ)
+

∫ τ

t0

c(s)
u(s)

a(s)
∆s

]
∆τ.
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We apply Corollary 4.9 to obtain

u(t)

a(t)
≤ u0

{
1 +

∫ t

t0

b(τ)eb+c(τ, t0)∆τ

}
for all t ∈ T0

so that (i) follows. Next we assume thata(t) ≥ 1 holds for allt ∈ T. Then

u(t)

a(t)
≤ u0 +

∫ t

t0

b(τ)

[
u(τ) +

∫ τ

t0

c(s)u(s)∆s

]
∆τ

= u0 +

∫ t

t0

b(τ)

[
u(τ)

a(τ)
a(τ) +

∫ τ

t0

c(s)
u(s)

a(s)
a(s)∆s

]
∆τ

≤ u0 +

∫ t

t0

b(τ)

[
u(τ)

a(τ)
a(τ) + a(τ)

∫ τ

t0

c(s)
u(s)

a(s)
a(s)∆s

]
∆τ

= u0 +

∫ t

t0

b(τ)a(τ)

[
u(τ)

a(τ)
+

∫ τ

t0

c(s)
u(s)

a(s)
a(s)∆s

]
∆τ.

We again apply Corollary 4.9 to obtain

u(t)

a(t)
≤ u0

{
1 +

∫ t

t0

a(τ)b(τ)ea(b+c)(τ, t0)∆τ

}
for all t ∈ T0

so that (ii) follows. Hence the proof is complete. �

Remark 4.12. If c = 0 in the above theorem witha ≥ 0 andu0 ∈ R, then we can use Theorem
3.1, Theorem 2.3, and Theorem 2.2 to conclude

u(t) ≤ u0a(t)eab(t, t0) for all t ∈ T0.

This improves [5, Th. 1.2.7] (Ma’s inequality) for the caseT = Z, where under the assumptions
a > 0 andu0 ≥ 0 a similar result as in Theorem 4.11 is shown.

Remark 4.13. If a = 1 in Theorem 4.11, then we get Corollary 2.10.

In [4, Th. 1.7.5] forT = R and in [5, Th. 1.4.8] forT = Z, a andb are assumed to be positive
to get the result which we give next.

Theorem 4.14.Supposeu, a, b, c, p ∈ Crd andu, a, b, c, p ≥ 0. Let u0 be a nonnegative con-
stant. Then

(i) u(t) ≤ u0 +

∫ t

t0

a(s)

[
p(s) +

∫ s

t0

c(τ)u(τ)∆τ

]
∆s, t ∈ T0

implies

u(t) ≤
{

u0 +

∫ t

t0

a(s)p(s)∆s

}
eaC(t, t0) for all t ∈ T0,

where

C(t) =

∫ t

t0

c(τ)∆τ ;

(ii) u(t) ≤ u0 +

∫ t

t0

a(s)

[
p(s) +

∫ s

t0

b(τ)

(∫ τ

t0

c(γ)u(γ)∆γ

)
∆τ

]
∆s, t ∈ T0

implies

u(t) ≤
{

u0 +

∫ t

t0

a(τ)p(τ)∆τ

}
eaξ(t, t0) for all t ∈ T0,
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where

ξ(t) =

∫ t

t0

b(τ)

(∫ τ

t0

c(γ)∆γ

)
∆τ.

Proof. We only prove (i) here since the proof of (ii) can be completed by following the same
ideas as in the proof of (i) given below with suitable changes. First we define

z(t) := u0 +

∫ t

t0

a(s)

[
p(s) +

∫ s

t0

c(τ)u(τ)∆τ

]
∆s.

Thenz(t0) = u0, u(t) ≤ z(t), and

z∆(t) = a(t)

{
p(t) +

∫ t

t0

c(τ)u(τ)∆τ

}
≥ 0.

This implies thatz is nondecreasing. Therefore

z∆(t) ≤ a(t)p(t) + a(t)

∫ t

t0

c(τ)z(τ)∆τ ≤ a(t)p(t) + a(t)C(t)z(t).

By Theorem 2.6 we obtain

z(t) ≤ z(t0)eaC(t, t0) +

∫ t

t0

eaC(t, σ(τ))a(τ)p(τ)∆τ.

Sinceu(t) ≤ z(t), we get

u(t) ≤ u0eaC(t, t0) +

∫ t

t0

eaC(t, σ(τ))a(τ)p(τ)∆τ.

By Theorem 2.2 and Remark 2.12 we get the desired result. �

Our next result slightly differs from the corresponding results forT = R as given in [4,
Th. 1.7.3] and forT = Z as given in [5, Th. 1.4.7].

Theorem 4.15.Supposeu, b, c, q ∈ Crd andu, b, c, q ≥ 0. Let u0 be a nonnegative constant.
Then

u(t) ≤ u0 +

∫ t

t0

b(s)

{
u(s) +

∫ s

t0

c(τ)

[
u(τ) +

∫ τ

t0

q(γ)u(γ)∆γ

]
∆τ

}
∆s, t ∈ T0

implies
u(t) ≤ u0eφ(t, t0) for all t ∈ T0,

where

φ(t) = b(t) + c(t)

{
1 +

∫ t

t0

q(γ)∆γ

}
.

Proof. We define

z(t) := u0 +

∫ t

t0

b(s)

{
u(s) +

∫ s

t0

c(τ)

[
u(τ) +

∫ τ

t0

q(γ)u(γ)∆γ

]
∆τ

}
∆s

and

r(t) := z(t) +

∫ t

t0

c(τ)

[
z(τ) +

∫ τ

t0

q(γ)z(γ)∆γ

]
∆τ.

We observe thatz is nondecreasing and use Theorem 2.6 to get the desired result. �

The final result in this section is more general than Theorem 3.8. ForT = R, see [4,
Th. 1.7.6]. ForT = Z, see [5, Th. 1.4.5].
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Theorem 4.16.Supposeφ, u, p, b, c ∈ Crd andφ, u, b, c, p ≥ 0. Then

u(t) ≥ φ(s)− p(t)

∫ t

s

b(τ)

[
φσ(τ) +

∫ t

σ(τ)

c(γ)φσ(γ)∆γ

]
∆τ for all s, t ∈ T, s ≤ t

implies

u(t) ≥
{

φ(s) +

∫ t

s

c(γ)φσ(γ)∆γ

}
e	(p(t)b+c)(t, s) for all s, t ∈ T, s ≤ t.

Proof. By assumption we have

φ(s) ≤ u(t) + p(t)

∫ t

s

b(τ)

[
φσ(τ) +

∫ t

σ(τ)

c(γ)φσ(γ)∆γ

]
∆τ.

Define

z(s) := −u(t)− p(t)

∫ t

s

b(τ)

[
φσ(τ) +

∫ t

σ(τ)

c(γ)φσ(γ)∆γ

]
∆τ.

This implies thatφ(s) ≤ −z(s), z(t) = −u(t), and

z∆(s) = p(t)b(s)

{
φσ(s) +

∫ t

σ(s)

c(γ)φσ(γ)∆γ

}
≤ −p(t)b(s)

{
zσ(s) +

∫ t

σ(s)

c(γ)zσ(γ)∆γ

}
.

Define

r(s) := z(s) +

∫ t

s

c(γ)zσ(γ)∆γ.

Then we getr(t) = z(t), z∆(s) ≤ −p(t)b(s)rσ(s), andr(s) ≤ z(s). Thus

r∆(s) = z∆(s)− c(s)zσ(s) ≤ − [p(t)b(s) + c(s)] rσ(s).

By Theorem 3.5 we obtain

r(s) ≥ r(t)e	(p(t)b+c)(s, t) = −u(t)e	(p(t)b+c)(s, t),

and therefore

z(s) +

∫ t

s

c(γ)zσ(γ)∆γ ≥ −u(t)e	(p(t)b+c)(s, t).

Sincez(s) ≤ −φ(s), we get

−φ(s)−
∫ t

s

c(γ)φσ(γ)∆γ ≥ −u(t)e	(p(t)b+c)(s, t).

This gives the desired result. �

Remark 4.17. The following statements hold:

(i) If c = 0 in Theorem 4.16, then we obtain Theorem 3.8.

(ii) In [4, 5],

u(t) ≥ φ(s)

{
1 + p(t)

∫ t

s

b(τ)ep(t)b+c(t, σ(τ))∆τ

}−1

is given as a result of Theorem 4.16 instead. With only minor alterations of our proof
presented above, the corresponding claim can be verified, too.

J. Inequal. Pure and Appl. Math., 6(1) Art. 6, 2005 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


PACHPATTE INEQUALITIES ON TIME SCALES 19

5. I NEQUALITIES INVOLVING DELTA DERIVATIVES

In this section we establish some inequalities involving functions and their delta derivatives.
We give the estimates on the delta derivative of functions and consequently on the functions
themselves. Continuous and discrete versions (all due to Pachpatte) of the four theorems pre-
sented in this section may be found in [4, Th. 1.8.1, Th. 1.8.2, and Th. 1.8.3] and [5, Th. 1.5.1,
Th. 1.5.2, Th. 1.5.3, and Th. 1.5.4], respectively.

Theorem 5.1.Supposeu, u∆, a, b, c ∈ Crd andu, u∆, a, b, c ≥ 0. Then

(i) u∆(t) ≤ a(t) + b(t)

∫ t

t0

c(s)
[
u(s) + u∆(s)

]
∆s for all t ∈ T0

implies, provided thatb(t) ≥ 1 holds for allt ∈ T,

u∆(t) ≤ a(t) + b(t)

∫ t

t0

c(s)
[
ā(s) + b(s)b̄(s)

]
∆s for all t ∈ T0,

where

ā(t) = u(t0) + a(t) +

∫ t

t0

a(s)∆s and b̄(t) =

∫ t

t0

c(s)eb(c+1)(t, σ(s))ā(s)∆s;

(ii) u∆(t) ≤ a(t) + b(t)

{
u(t) +

∫ t

t0

c(s)
[
u(s) + u∆(s)

]
∆s

}
for all t ∈ T0

implies

u∆(t) ≤ a(t) + b(t)

{
u(t0)eb+c+bc(t, t0) +

∫ t

t0

eb+c+bc(t, σ(τ))a(τ)[c(τ) + 1]∆τ

}
for all t ∈ T0.

Proof. In order to prove (i) we definez(t) :=
∫ t

t0
c(s)

[
u(s) + u∆(s)

]
∆s. Then we have

u∆(t) ≤ a(t) + b(t)z(t).

Integrating both sides of this inequality fromt0 to t provides

u(t) ≤ u(t0) +

∫ t

t0

[a(s) + b(s)z(s)]∆s.

This implies that

z∆(t) ≤ c(t)

{
ā(t) + b(t)

[
z(t) +

∫ t

t0

b(s)z(s)∆s

]}
.

Now we definer(t) := z(t) +
∫ t

t0
b(s)z(s)∆s to obtain

r∆(t) ≤ b(t) [c(t) + 1] r(t) + c(t)ā(t).

By Theorem 2.6, we get

r(t) ≤
∫ t

t0

eb(c+1)(t, σ(τ))c(τ)ā(τ)∆τ = b̄(t)

sincer(t0) = z(t0) = 0. This implies that

z∆(t) ≤ c(t)
[
ā(t) + b(t)b̄(t)

]
.
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Upon integrating both sides of the latter inequality, we arrive at

z(t) ≤
∫ t

t0

c(τ)
[
ā(τ) + b(τ)b̄(τ)

]
∆τ.

Sinceu∆ ≤ a + bz holds, we get the desired result. The proof of (ii) is shorter than the first
part: First we definez(t) := u(t) +

∫ t

t0
c(s)

[
u(s) + u∆(s)

]
∆s. Then one can get easily that

z∆(t) ≤ [b(t) + c(t) + c(t)b(t)] z(t) + a(t) [c(t) + 1] .

Applying Theorem 2.6 andu∆ ≤ a + bz completes the proof. �

Theorem 5.2.Supposeu, u∆, a, b, c, p ∈ Crd andu, u∆, a, b, c, p ≥ 0. Then

(i) u∆(t) ≤ a(t)u(t) + b(t)

{
p(t) + u(t) +

∫ t

t0

c(s)u(s)∆s

}
for all t ∈ T0

implies

u(t) ≤ u(t0)ea(t, t0) +

∫ t

t0

ea(t, σ(τ))b(τ) [p(τ) + ā(τ)] ∆τ for all t ∈ T0,

where

ā(t) = u(t0)ea+b+c(t, t0) +

∫ t

t0

ea+b+c(t, σ(τ))b(τ)p(τ)∆τ ;

(ii) u∆(t) ≤ a(t)u(t) + b(t)

{
p(t) + u(t) +

∫ t

t0

c(s)u∆(s)∆s

}
for all t ∈ T0

implies

u(t) ≤ u(t0)ea(t, t0) +

∫ t

t0

ea(t, σ(τ))
[
p(τ) + b̄(τ)

]
b(τ)∆τ for all t ∈ T0,

where

b̄(t) = u(t0)e(1+c)(a+b)(t, t0) +

∫ t

t0

e(1+c)(a+b)(t, σ(τ))[1 + c(τ)]b(τ)p(τ)∆τ.

Proof. To prove (i) we definez(t) = u(t) +
∫ t

t0
c(s)u(s)∆s. Then we obtain

z(t) ≥ u(t), z(t0) = u(t0), and u∆(t) ≤ a(t)z(t) + b(t) [p(t) + z(t)] .

This implies that
z∆(t) ≤ [a(t) + b(t) + c(t)] z(t) + b(t)p(t).

By Theorem 2.6,z(t) ≤ ā(t). Henceu∆(t) ≤ a(t)u(t) + b(t) [p(t) + ā(t)]. Applying again
Theorem 2.6 gives us the desired result. Finally, in order to prove (ii), we definez(t) = u(t) +∫ t

t0
c(s)u∆(s)∆s and apply Theorem 2.6 twice. �

For T = Z, our result of the second part of the following theorem is different than in [5,
Th. 1.5.3].

Theorem 5.3.Supposeu, u∆, a, b ∈ Crd andu, u∆, a, b ≥ 0. Then

u∆(t) ≤ u(t0) +

∫ t

t0

a(s)

{
u(s) + u∆(s) +

∫ s

t0

b(τ)u∆(τ)∆τ

}
∆s

for all t ∈ T0 implies

u∆(t) ≤ u(t0)

[
1 + 2

∫ t

t0

a(τ)e1+a+b(τ, t0)∆τ

]
for all t ∈ T0;
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u∆(t) ≤ u(t0) +

∫ t

t0

a(s)

{
u(s) + u∆(s) +

∫ s

t0

b(τ)
[
u(τ) + u∆(τ)

]
∆τ

}
∆s

for all t ∈ T0 implies

u∆(t) ≤ u(t0)

{
2e1+a(t, t0) +

∫ t

t0

b(τ)
[
1 + 2e2+a+b(τ, t0)

+

∫ τ

t0

b(s)e2+a+b(τ, σ(s))∆s

]
e1+a(t, σ(τ))∆τ

}
.

Proof. To prove (i), we define

z(t) := u(t0) +

∫ t

t0

a(s)
[
u(s) + u∆(s)

]
∆s +

∫ t

t0

a(s)

[∫ s

t0

b(τ)u∆(τ)∆τ

]
∆s

in order to get

z∆(t) ≤ a(t)

[
u(t0) + z(t) +

∫ t

t0

z(s)∆s +

∫ t

t0

b(τ)z(τ)∆τ

]
.

Next define

r(t) := u(t0) + z(t) +

∫ t

t0

z(s)∆s +

∫ t

t0

b(τ)z(τ)∆τ

to obtain
r∆(t) ≤ [a(t) + b(t) + 1] r(t).

We apply Theorem 2.6 twice to get the desired result. To prove (ii), we define

z(t) := u(t0) +

∫ t

t0

a(s)
[
u(s) + u∆(s)

]
∆s +

∫ t

t0

a(s)

{∫ s

t0

b(τ)[u(τ) + u∆(τ)]∆τ

}
∆s

to get

z∆(t) ≤ a(t)

{
u(t0) +

∫ t

t0

z(s)∆s + z(t) +

∫ t

t0

b(τ)

[
u(t0) +

∫ τ

t0

z(s)∆s + z(τ)

]
∆τ

}
.

Defining

r(t) := u(t0) +

∫ t

t0

z(s)∆s + z(t) +

∫ τ

t0

b(τ)

[
u(t0) +

∫ τ

t0

z(s)∆s + z(τ)

]
∆τ

provides

r∆(t) ≤ [a(t) + 1] r(t) + b(t)

{
u(t0) +

∫ t

t0

r(s)∆s + r(t)

}
.

By Theorem 5.2 (i), we obtain

r(t) ≤ u(t0)

{
2e1+a(t, t0) +

∫ t

t0

e1+a(t, σ(τ))b(τ)

×
[
1 + 2e2+a+b(τ, t0) +

∫ τ

t0

ea+b+2(τ, σ(s))b(s)∆s

]
∆τ

}
.

Sinceu∆(t) ≤ z(t) ≤ r(t), the proof is complete. �

We note that the inequalities in our final result provide estimates onu∆∆(t) and consequently,
after solving, estimates onu(t).
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Theorem 5.4.Supposeu, u∆, u∆∆, a, b, c ∈ Crd andu, u∆, u∆∆, a, b, c ≥ 0. Then

(i) u∆∆(t) ≤ a(t) + b(t)

∫ t

t0

c(s)
[
u(s) + u∆(s)

]
∆s for all t ∈ T0

implies

u∆∆(t) ≤ a(t) + b(t)

∫ t

t0

p(τ)eq(t, σ(τ))∆τ,

where

p(t) = c(t)

{
u(t0) + (t− t0 + 1)u∆(t0) +

∫ t

t0

[
a(τ) +

∫ τ

t0

a(s)∆s

]
∆τ

}
and

q(t) = c(t)

∫ t

t0

[
b(τ) +

∫ τ

t0

b(s)∆s

]
∆τ ;

(ii) u∆(t) ≤ a(t) + b(t)

{
u∆(t) +

∫ t

t0

c(s)
[
u(s) + u∆(s)

]
∆s

}
for all t ∈ T0

implies

u∆∆(t) ≤ a(t) + b(t)

{
u∆(t0)eq(t, t0) +

∫ t

t0

p(τ)eq(t, σ(τ))∆τ

}
,

where

p(t) = a(t) + c(t)

{
u(t0) + (t− t0 + 1)u∆(t0) +

∫ t

t0

[
a(τ) +

∫ τ

t0

a(s)∆s

]
∆τ

}
and

q(t) = b(t) + c(t)

∫ t

t0

[
b(τ) +

∫ τ

t0

b(s)∆s

]
∆τ.

Proof. In order to prove (i), we definez(t) :=
∫ t

t0
c(τ)

[
u(τ) + u∆(τ)

]
∆τ and obtain

u∆(t) ≤ u∆(t0) +

∫ t

t0

[a(τ) + b(τ)z(τ)] ∆τ ≤ u∆(t0) +

∫ t

t0

a(τ)∆τ + z(t)

∫ t

t0

b(τ)∆τ,

where we have used the fact thatz is nondecreasing. This implies that

u(t) ≤ u(t0) + u∆(t0)(t− t0) +

∫ t

t0

∫ τ

t0

a(s)∆s∆τ + z(t)

∫ t

t0

∫ τ

t0

b(s)∆s∆τ

and thereforez∆(t) ≤ p(t) + q(t)z(t). Then by Theorem 2.6 we get

z(t) ≤
∫ t

t0

eq(t, σ(τ))p(τ)∆τ

sincez(t0) = 0. Applying the inequalityu∆∆ ≤ a + bz completes the proof. To prove (ii), we
definez(t) := u∆(t) +

∫ t

t0
c(s)

[
u(s) + u∆(s)

]
∆s. Now, by following the same arguments as

in the proof of (i) given above, we get the required inequality. �
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