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ABSTRACT. Elsewhere we developed rules for the monotonicity pattern of the ratiof/g of two
functions on an interval of the real line based on the monotonicity pattern of the ratiof ′/g′ of
the derivatives. These rules are applicable even more broadly than the l’Hospital rules for limits,
since we do not require that bothf andg, or either of them, tend to0 or∞ at an endpoint of the
interval.

Here these rules are used to obtain monotonicity patterns of the ratios of the pairwise dis-
tances between the vertices of the Lambert and Saccheri quadrilaterals in the Poincaré model of
hyperbolic geometry. Some of the results may seem surprising. Apparently, the methods will
work for other ratios of distances in hyperbolic geometry and other Riemann geometries.

The presentation is mainly self-contained.
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1. L’H OSPITAL -TYPE RULES FOR M ONOTONICITY

Let −∞ ≤ a < b ≤ ∞. Let f andg be differentiable functions defined on the interval
(a, b), and letr := f/g. It is assumed throughout thatg andg′ do not take on the zero value
and do not change their respective signs on(a, b). In [16], general “rules” for monotonicity
patterns, resembling the usual l’Hospital rules for limits, were given. In particular, according
to [16, Proposition 1.9], the dependence of the monotonicity pattern ofr (on (a, b)) on that of
ρ := f ′/g′ (and also on the sign ofgg′) is given by Table 1.1, where, for instance,r ↘↗means
that there is somec ∈ (a, b) such thatr ↘ (that is,r is decreasing) on(a, c) andr ↗ on (c, b).
Now suppose that one also knows whetherr ↗ or r ↘ in a right neighborhood ofa and in a
left neighborhood ofb; then Table 1.1 uniquely determines the monotonicity pattern ofr.
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2 IOSIF PINELIS

ρ gg′ r

↗ > 0 ↗ or↘ or↘↗
↘ > 0 ↗ or↘ or↗↘
↗ < 0 ↗ or↘ or↗↘
↘ < 0 ↗ or↘ or↘↗

Table 1.1: Basic rules for monotonicity

Clearly, these l’Hospital-type rules for monotonicity patterns are helpful wherever the l’Hospital
rules for limits are so, and even beyond that, because the monotonicity rules do not require that
bothf andg (or either of them) tend to 0 or∞ at any point.

The proof of these rules is very easy if one additionally assumes that the derivativesf ′ and
g′ are continuous andr′ has only finitely many roots in(a, b) (which will be the case if, for
instance,r is not a constant andf andg are real-analytic functions on[a, b]): Indeed, suppose
that the assumptionsρ ↗ andgg′ > 0 of the first line of Table 1.1 hold. Then it suffices to
show thatr′(x) may change sign only from− to + asx increases froma to b. To obtain a
contradiction, suppose the contrary, so that there is some rootu of r′ in (a, b) such that in some
right neighborhood(u, t) of the rootu one hasr′ < 0 and hencer < r(u). Consider now the
key identity

(1.1) g2 r′ = (ρ− r) g g′,

which is easy to check. Then the conditionsr′(u) = 0 andr′ < 0 on (u, t) imply, respectively,
thatρ(u) = r(u) andρ < r on (u, t). It follows thatρ < r < r(u) = ρ(u) on (u, t), which
contradicts the conditionρ ↗. The other three lines of Table 1.1 can be treated similarly. A
proof without using the additional conditions (that the derivativesf ′ andg′ are continuous and
r′ has only finitely many roots) was given in [16].

Based on Table 1.1, one can generally infer the monotonicity pattern ofr given that ofρ,
however complicated the latter is. In particular, one has Table 1.2.

ρ gg′ r

↗↘ > 0 ↗ or↘ or↗↘ or↘↗ or↘↗↘
↘↗ > 0 ↗ or↘ or↗↘ or↘↗ or↗↘↗
↗↘ < 0 ↗ or↘ or↗↘ or↘↗ or↗↘↗
↘↗ < 0 ↗ or↘ or↗↘ or↘↗ or↘↗↘

Table 1.2: Derived rules for monotonicity

In the special case when bothf andg vanish at an endpoint of the interval(a, b), l’Hospital-
type rules for monotonicity and their applications can be found, in different forms and with
different proofs, in [9, 11, 14, 8, 2, 3, 1, 4, 5, 15, 16, 17, 18].

Thespecial-caserule can be stated as follows: Suppose thatf(a+) = g(a+) = 0 or f(b−) =
g(b−) = 0; suppose also thatρ is increasing or decreasing on the entire interval(a, b); then,
respectively,r is increasing or decreasing on(a, b). When the conditionf(a+) = g(a+) = 0
or f(b−) = g(b−) = 0 does hold, the special-case rule may be more convenient, because then
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LAMBERT’ S AND SACCHERI’ S QUADRILATERALS 3

one does not have to investigate the monotonicity pattern of ratior near the endpoints of the
interval(a, b).

The special-case rule is easy to prove. For instance, suppose thatf(a+) = g(a+) = 0. Then
g andg′ must have the same sign on(a, b). By the mean-value theorem, for everyx ∈ (a, b)
there is someξ ∈ (a, x) such thatr(x) = ρ(ξ). Now the rule follows by identity (1.1).

This latter proof is essentially borrowed from [2, Lemma 2.2]. Another very simple proof of
the special-case rule was given in [15]; that proof remains valid under somewhat more general
conditions onf andg. A unified treatment of the monotonicity rules, applicable whether or not
f andg vanish at an endpoint of(a, b), can be found in [16].

(L’Hospital’s rule for the limit r(b−) (say) wheng(b−) = ∞ does not have a “special-
case” analogue for monotonicity, even if one also hasf(b−) = ∞. For example, consider
f(x) = x− 1− e−x andg(x) = x for x > 0. Thenr ↗ on (0,∞), even thoughρ↘ on (0,∞)
andf(∞−) = g(∞−) = ∞.)

In view of what has been said here, it should not be surprising that a very wide variety of
applications of these l’Hospital-type rules for monotonicity patterns were given: in areas of
analytic inequalities [15, 16, 19, 5], approximation theory [17], differential geometry [8, 9, 11],
information theory [15, 16], (quasi)conformal mappings [1, 2, 3, 4], statistics and probability
[14, 16, 17, 18], etc.

Clearly, the stated rules for monotonicity could be helpful whenf ′ or g′ can be expressed sim-
pler thanf or g, respectively. Such functionsf andg are essentially the same as the functions
that could be taken to play the role ofu in the integration-by-parts formula

∫
u dv = uv−

∫
v du;

this class of functions includes polynomial, logarithmic, inverse trigonometric and inverse
hyperbolic functions, and as well as non-elementary “anti-derivative” functions of the form
x 7→

∫ x
a
h(u) du or x 7→

∫ b
x
h(u) du.

(“Discrete” analogues, forf andg defined onZ, of the l’Hospital-type rules for monotonicity,
are available as well [20].)

In the present paper, we use the stated rules for monotonicity to obtain monotonicity prop-
erties of the Lambert and Saccheri quadrilaterals in hyperbolic geometry. This case represents
a perfect match between the two areas. Indeed, the distances in hyperbolic geometry are ex-
pressed in terms of inverse hyperbolic functions, whose derivatives are algebraic. One can
expect these rules to work for other Riemann geometries as well, since the geodesic distances
there are line integrals, too.

2. M ONOTONICITY PROPERTIES OF THE L AMBERT AND SACCHERI

QUADRILATERALS

2.1. Background.

2.1.1. Hyperbolic plane.The Lambert and Saccheri quadrilaterals are quadrilaterals in the
Poincaré hyperbolic planeH2.

The significance of the Poincaré model is that, by the Riemann mapping theorem, any simply
connected analytic Riemann surface is conformally equivalent toH2, C, or C ∪ {∞} [7, The-
orem 9.1]. Moreover, any analytic Riemann surface is conformally equivalent to the quotient
surfaceR̃/G, whereR̃ isH2, C, or C∪ {∞}, andG is a group of Möbius transformations act-
ing discontinuously on (the covering surface)R̃ [7, Proposition 9.2.3]. However, this comment
will not be used further in this paper.

To make this section mainly self-contained, let us fix the terminology and basic facts con-
cerning the Poincaré model of hyperbolic plane geometry. The set of points in this model is the
upper half-plane

H2 := {z ∈ C : Im z > 0}.
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This set is endowed with the differential metric element

ds :=
|dz|
Im z

,

so that the length of any rectifiable curve inH2 is obtained as the line integral ofds. Forx ∈ R
andr ∈ R \ {0}, let us refer to the semicircles

[[x− r, x+ r]] := {z ∈ H2 : |z − x| = |r|},
centered at pointx and of radius|r|, and the vertical rays

[[x,∞]] := {z ∈ H2 : Re z = x}
as the“lines” . It will be seen in a moment that these “lines” are precisely the geodesics in this
geometry, so that the geodesics are orthogonal to the real axis.

Forx ∈ R andr ∈ R\{0}, let ιx,r denote the reflection ofH2 in the semicircle[[x−r, x+r]],
so that, forz ∈ H2,

ιx,r(z) := x+
r2

z − x
.

It is easy to see that this transformation is inverse to itself and preservesH2 as well as the
metric elementds, and hence also the (absolute value of the) angles. Indeed, ifw := ιx,r(z)
for z ∈ H2, thenImw = r2 Im z/|z − x|2 anddw = −r2 dz/(z − x)2, so thatImw > 0 and
|dw|/ Imw = |dz|/ Im z.

Let G be the group of transformations ofH2 generated by all such reflections. ThenG
preserves the metric elementds. Note thatG contains all the homothetiesz 7→ ηx,λ(z) :=
x + λ(z − x), horizontal parallel translationsz 7→ σx(z) := z + x, and reflectionsz 7→
ιx,∞(z) := 2x−z in the vertical rays[[x,∞]], wherex ∈ R andλ > 0; indeed,ηx,λ = ιx,

√
λ◦ιx,1,

ιx,∞ = ιx+r,2r ◦ ιx−r,2r ◦ ιx+r,2r, andσx = ιx/2,∞ ◦ ι0,∞.
It is easy to see that the geodesic connecting two pointsz1 andz2 on the same vertical ray

[[x,∞]] (x ∈ R) is the segment of that ray with the endpointsz1 andz2, so that the geodesic
distanced(z1, z2) between suchz1 andz2 is | ln(y1/y2)|, whereyj := Im zj, j = 1, 2. Now
it is seen that groupG acts transitively on the set of all ordered pairs(z1, z2) of points on the
vertical ray [[x,∞]] with a fixed value of the distanced(z1, z2) — in the sense that, for any
two pairs(z1, z2) and(w1, w2) of points on[[x,∞]] with d(z1, z2) = d(w1, w2), there is some
transformationg in G such thatg(zj) = wj, j = 1, 2; indeed, it suffices to takeg to be a single
reflectionιx,r or a single homothetyηx,λ, for somer > 0 or λ > 0.

Next, the reflectionιx+r,2r maps the semicircle[[x− r, x+ r]] onto the vertical ray[[x− r,∞]],
and hence vice versa, for allx ∈ R andr ∈ R \ {0}. Moreover, any two distinct points inH2

lie on exactly one “line”.
It follows now that indeed the “lines” are precisely the geodesics, and groupG acts transi-

tively on the set of all ordered pairs(z1, z2) of points inH2 with any fixed value of the geodesic
distanced(z1, z2). Another corollary here is the formula for the geodesic distance between any
two pointsz1 andz2 of H2:

(2.1) d(z1, z2) = arcch

(
1 +

|z1 − z2|2

2 Im z1 Im z2

)
,

wherearcchx := ln
(
x+

√
x2 − 1

)
for x > 1; cf. [6, Theorem 7.2.1(ii)]. One can now also

easily derive Pythagoras’ theorem,

(2.2) ch c = ch a ch b,

for a right-angled (geodesic) triangleABC with side c opposite to the right-angle vertexC
and two other sidesa andb; indeed, such a triangle isG-congruent, for somek ∈ (0, 1) and
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θ ∈ (0, π/2), to the triangle with verticesC∗ = i, A∗ = k i, andB∗ = eiθ; cf. [6, Theorem
7.11.1]. (Yet another corollary, not to be used in this paper, is thatG is the group of all isometries
of H2.)

2.1.2. Lambert’s and Saccheri’s quadrilaterals.A Lambert quadrilateral is a quadrilateral in
the Poincaré hyperbolic plane with anglesπ/2, π/2, π/2, andϕ, for someϕ; a Saccheri quadri-
lateral is a quadrilateral (also in the hyperbolic plane) with anglesπ/2, π/2, ψ andψ, for some
ψ [6, Section 7.17]. See Figure 2.1.

For a Saccheri quadrilateral, let us refer to (the length of) its side adjacent to the right angles
as thebase, its opposite side as thetop, and to either of the other two (congruent to each other)
sides simply as theside.

A Lambert quadrilateral has two sides each adjacent to two of the three right angles. Let us
arbitrarily choose one of these two sides and refer to it as thebase, and to the other one of the
two as the(short) side. The side opposite to the base will again be referred to as thetop, and
the fourth side as thelong side. It will be seen in the next subsection that indeed the long side
is always longer than the short one.
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ASDS
B C

Figure 2.1: Lambert’s (ALBCDL) and Saccheri’s (ASBCDS) quadrilaterals; ALB, ALDL, BC, and
CDL are respectively the base, short side, long side, and top of the Lambert quadrilateral; ASB, ASDS =
BC, and CDS are respectively the base, side, and top of the Saccheri quadrilateral; the angles at vertices
AS, B, AL, and DL are π/2.

It follows from the discussion in Subsubsection 2.1.1 that the group G acts transitively
on the set of all Saccheri quadrilaterals with any given values of the base and the side, as
well as on the set of all Lambert quadrilaterals with any given values of the base and the
short side. That is, all Saccheri quadrilaterals with any given values of the base and the
side are G-congruent to each other, and so, they have the same geodesic distances between
any two of their corresponding vertices. The same holds for all Lambert quadrilaterals
with any given values of the base and the short side.

2.2. Main results.

2.2.1. Lambert quadrilaterals. In view of the conclusions of Subsection 2.1, any Lambert
quadrilateral is G-congruent, for some

k ∈ (0, 1) and θ ∈ (0, π/2),

to the particular Lambert quadrilateral ABCD with vertices

A = k i, B = i, C = eiθ, D = k eiψ, where ψ := arccos
(
ch(ln k) cos θ

)

Figure 2.1: Lambert’s (ALBCDL) and Saccheri’s (ASBCDS) quadrilaterals;ALB, ALDL, BC, andCDL are
respectively the base, short side, long side, and top of the Lambert quadrilateral;ASB, ASDS = BC, andCDS

are respectively the base, side, and top of the Saccheri quadrilateral; the angles at verticesAS , B, AL, andDL

areπ/2.

It follows from the discussion in Subsubsection 2.1.1 that the groupG acts transitively on the
set of all Saccheri quadrilaterals with any given values of the base and the side, as well as on the
set of all Lambert quadrilaterals with any given values of the base and the short side. That is, all
Saccheri quadrilaterals with any given values of the base and the side areG-congruentto each
other, and so, they have the same geodesic distances between any two of their corresponding
vertices. The same holds for all Lambert quadrilaterals with any given values of the base and
the short side.

2.2. Main Results.

2.2.1. Lambert quadrilaterals.In view of the conclusions of Subsection 2.1, any Lambert
quadrilateral isG-congruent, for some

k ∈ (0, 1) and θ ∈ (0, π/2),
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to the particular Lambert quadrilateralABCD with vertices

A = k i, B = i, C = eiθ, D = k eiψ, where ψ := arccos
(
ch(ln k) cos θ

)
(see Figure 2.2), so that, by (2.1),

AB = ln
1

k
, BC = arcch c, CD = arcch

1 + k2

q
, ,

AD = arcch
2 c k

q
, AC = arcch

c (1 + k2)

2 k
, BD = arcch

c (1 + k2)

q
,

(2.3)

where q :=
√

(1 + k2)2 − c2 (1− k2)2 and c := 1/ sin θ.(2.4)

(One can verify, using (2.2) and (2.3), that indeed∠A = ∠B = ∠C = π/2.) Then one may
refer toAB as the base, of lengthln(1/k), and toBC as the short side, of lengtharcch c. Note
that, for the pointD to exist inH2, one must havech(ln k) cos θ < 1, which is equivalent to

1 < c < ck, where ck :=
1 + k2

1− k2
.

Let us fix (the length of) the baseAB (so thatk ∈ (0, 1) is fixed) and letc increase from
1 to ck, so that the short sideBC = arcch c increases from0 to arcch ck. The goal here is
to determine the monotonicity patterns of

(
6
2

)
= 15 completely representative pairwise ratios

r = CD/AD, CD/BD, . . . , BC/AB of the
(
4
2

)
= 6 (geodesic) distances between the four

verticesA,B,C,D. For each pair of such distances, it is enough to consider only one of the two
mutually reciprocal ratios; indeed, for example, the monotonicity pattern of the ratioCD/AD
determines that ofAD/CD. All the ratiosr will be expressed as functions ofc. (We do not
distinguish in terminology or notation between a segment of a geodesic and its length.)
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Figure 2.2: A Lambert quadrilateral: ∠A = ∠B = ∠C = π/2

Theorem 2.1. The monotonicity patterns of the 15 representative ratios r(c) are given
by Table 2.1, where k∗ :=

√
2− 1.

One simple corollary here is that, of the two sides (BC and AD) of the Lambert
quadrilateral, BC is indeed always the shorter one (this is obvious from Figure 2.2 as
well). Also, of the two diagonals (AC and BD) of the quadrilateral, AC is always the
shorter one.

What is perhaps surprising is that the monotonicity patterns of two ratios, CD/AC
(top-to-short-diagonal) and CD/AD top-to-long-side), turn out to depend on (the fixed

Figure 2.2: A Lambert quadrilateral:∠A = ∠B = ∠C = π/2

Theorem 2.1. The monotonicity patterns of the 15 representative ratiosr(c) are given by Ta-
ble 2.1, wherek∗ :=

√
2− 1.
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r Pattern for eachk in r(1+) r(ck−) Comments
(0, 1) (0, k∗] (k∗, 1)

CD/AC ↗ ↘↗ 1 ∞
CD/AD ↘ ↘↗ ∞ 1

CD/BC ↘↗ ∞ ∞
(
∃c∈(1, ck) r(c) = 1

)
⇐⇒ k > 1/

√
3

CD/BD ↘↗ 1 1

CD/AB ↗ 1 ∞
AC/AD ↘ ∞ 0

AC/BC ↘ ∞ > 1

AC/BD ↘ 1 0

AC/AB ↗ 1 > 1

BD/AD ↘ ∞ 1

BD/BC ↘↗ ∞ ∞ ∀k∈(0, 1) ∀c∈(1, ck)
r(c) > 1

BD/AB ↗ 1 ∞
AD/BC ↗ > 1 ∞
AD/AB ↗ 0 ∞
BC/AB ↗ 0 r(ck−) r(ck−) > 1 ⇐⇒ k > k∗

Table 2.1: Monotonicity patterns for the ratios in the Lambert quadrilateral

One simple corollary here is that, of the two sides (BC andAD) of the Lambert quadrilateral,
BC is indeed always the shorter one (this is obvious from Figure 2.2 as well). Also, of the two
diagonals (AC andBD) of the quadrilateral,AC is always the shorter one.

What is perhaps surprising is that the monotonicity patterns of two ratios,CD/AC (top-
to-short-diagonal) andCD/AD (top-to-long-side), turn out to depend on (the fixed length of)
the baseAB = ln(1/k) of the quadrilateral. When the baseAB is smaller thanln(1/k∗) =
ln(1 +

√
2), these two ratios are not monotonic.

Three other ratios —CD/BC (top-to-short-side), CD/BD (top-to-long-diagonal), and
BD/BC (long-diagonal-to-short-side) — are not monotonic for any given base; however, this
should not be surprising, since for each of these three ratiosr one hasr(1+) = r(ck−).

In particular, it follows that of all the 5 ratios of thetop to the other lengths, only the trivial
one, the ratioCD/AB of thetop to the fixed base, is monotonic for every given base.

Another small-base peculiarity shows up for two ratios,CD/BC (top-to-short-side) and
BC/AB (short-side-to-base); namely, these ratios take on values to both sides of1 iff the base
is small enough – smaller thanln

√
3 in the case ofCD/BC and smaller thanln(1/k∗) =

ln(1 +
√

2) in the case ofBC/AB.

Proof of Theorem 2.1.From (2.3), it is clear that the 5 ratios ofBC, CD, AD, AC, andBD
to the fixedAB are increasing (inc), and the inequalityBC/AB > 1 can be rewritten as
chBC > chAB, which is equivalent tok > k∗. The monotonicity pattern forAC/AD =
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(AC/BD)(BD/AD) obviously follows from those forAC/BD andBD/AD. It remains to
consider the other 9 of the 15 ratios.

In terms of the expressionq, defined by (2.4), and the expressions

q1 :=
√

(c2 − 1)(1 + k2)2 + (1− k2)2, q2 :=
√
c2 − 1,(2.5)

q3 :=
√

2(c2 − 1)(1 + k4) + (1− k2)2,(2.6)

one computes the ratios,ρ, of the derivatives of the distances with respect toc:

(CD)′

(AC)′
=

(1− k2) q1
q2

,
(CD)′

(AD)′
=

(1− k2) q2
2 k

,
(CD)′

(BD)′
=

(1− k2) q3
(1 + k2)2

,

(AC)′

(BC)′
=

(1 + k2) q2
q1

,
(AC)′

(BD)′
=

q2 q3
(1 + k2)2 q1

,
(BD)′

(AD)′
=

(1 + k2)2 q2
2 k q3

,

(AD)′

(BC)′
=

2 k (1 + k2)

q2
,

(CD)′

(BC)′
=

(CD)′

(AC)′
(AC)′

(BC)′
,

(BD)′

(BC)′
=

(BD)′

(AD)′
(AD)′

(BC)′
.

Of these 9 ratios, it is now clear that 8 ratios (except(AC)′/(BD)′) are increasing (in
c). Hence, by the first line of Table 1.1, each of the corresponding 8 ratios,r, of distances,
CD/AC, . . . , AD/BC (except forAC/BD), has one of these three patterns:↗, ↘, or↘↗.
(It can be shown that(AC)′/(BD)′ is↘ or↗↘, depending on whether the base,AB, is large
enough; however, this fact will not be used in this paper.)

Now let us consider each of the 8 “unexceptional” ratios separately, after which the “excep-
tional” ratio,AC/BD, will be considered.

(1) r(c) = CD/AC: Here it is obvious thatr(1+) = 1 andr(ck−) = ∞. This excludes
the patternr ↘. To discriminate between the possibilitiesr ↘ andr ↘↗, it suffices
to determine whether there exists somec ∈ (1, ck) such thatr(c) = 1 or, equivalently,
chCD = chAC. Now it is easy to complete the proof of Theorem 2.1 for the ratio
r(c) = CD/AC.

(2) r(c) = CD/AD: Here it is obvious thatr(1+) = ∞. By l’Hospital’s rule for limits,
r(ck−) = ρ(ck−) = 1. This excludes the patternr ↗. Moreover, it is easy to see, as in
the previous case, that there exists somec ∈ (1, ck) such thatr(c) = 1 iff k > k∗.

(3) r(c) = CD/BC: Herer(1+) = r(ck−) = ∞. Hence,r ↘↗. Moreover, it is easy to
see that there exists somec ∈ (1, ck) such thatr(c) = 1 iff k > 1/

√
3.

(4) r(c) = CD/BD: Herer(1+) = 1. By l’Hospital’s rule for limits,r(ck−) = ρ(ck−) =
1. Hence,r ↘↗.

(5) r(c) = AC/BC: Here, withµ := 2k (1 + k2) andν :=
√

1 + 14k4 + k8, one has the
following at c = ck− :

r′ · 2k ν BC2

(1− k2)AC
= µ

BC

AC
− ν < µ− ν,

since, in view of (2.3),BC < AC. Butµ2−ν2 = −(1−k2)4 < 0. Hence,r′(ck−) < 0,
so thatr ↘ in a left neighborhood ofck. Thus,r ↘.

(6) r(c) = BD/AD: Here r(1+) = ∞. By l’Hospital’s rule for limits, r(ck−) =
ρ(ck−) = 1. In view of (2.3), herer > 1 on (1, ck). Hence,r is decreasing on(1, ck)
from∞ to 1.

(7) r(c) = BD/BC: Herer(1+) = r(ck−) = ∞. Hence,r ↘↗ on (1, ck). Also, in
view of (2.3), one has herer > 1 on (1, ck).

(8) r(c) = AD/BC: Here, by the special-case rule for monotonicity,r ↗. By l’Hospital’s
rule,r(1+) = ρ(1+) = (1 + k2)/(2k) > 1. Also, it is obvious thatr(ck−) = ∞.
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It remains to consider the 9th ratio,
¶ r(c) = AC/BD: Here, as was stated,ρ(c) := (AC)′/(BD)′ is non-monotonic inc for

k in a left neighborhhood of1. This makes it more difficult to act as in the cases considered
above, since the rootc of the equationρ′(c) = 0 depends onk. However, what helps here is that
the monotonicity pattern ofr turns out to be simple, as will be proved in a moment:r ↘. One
can use the following lemma, whose proof is based on the special-case rule for monotonicity
stated in Section 1.

Lemma 2.2. For x > 1, let

λ(x) :=

√
x2 − 1 arcch x

x3
, α(x) :=

x2 − 1

x3
, β(x) :=

√
x2 − 1

x3
.

Then for allu andv in (1,∞)

λ(v)

λ(u)
6 max

(
α(v)

α(u)
,
β(v)

β(u)

)
.

Proof of Lemma 2.2.Obviously,λ/β = arcch ↗. Hence,λ(v)
λ(u)

6 β(v)
β(u)

if 1 < v 6 u. It remains
to consider the case when1 < u < v. Note that

(arcch x)′(√
x2 − 1

)′ =
1

x

is decreasing inx > 1. Hence, by the special-case rule for monotonicity,

λ(x)

α(x)
=

arcchx√
x2 − 1

is decreasing inx > 1. Hence,λ(v)
λ(u)

< α(v)
α(u)

if 1 < u < v. �

Let us now return to the consideration of the ratior(c) = AC/BD. It suffices to show that
r′(c) < 0 for all k ∈ (0, 1) andc ∈ (1, ck). One has the identity

r′(c)
2BD2 k

√
u2 − 1

√
v2 − 1

(1 + k2)λ(u) v3
=
λ(v)

λ(u)
−K,

where

u :=
c (1 + k2)

2 k
, v :=

c (1 + k2)√
(1 + k2)2 − c2 (1− k2)2

, K :=

(
1 + k2

2 k

)
2.

Therefore and in view of Lemma 2.2, it suffices to show that the expressions

P :=

((
α(v)

α(u)

)2

−K2

)
α(u)2 4 c6 k2 (1 + k2)

6

(1− k2)2 and

Q :=

((
β(v)

β(u)

)2

−K2

)
β(u)2 c

6 (1 + k2)
6

(1− k2)2

are negative for allk ∈ (0, 1) andc ∈ (1, ck). But this can be done in a completely algorithmic
manner, sinceP andQ are polynomials ink andc, andck is a rational function ofk [21, 12, 10].
With Mathematica, one can use the commandReduce[P>=0 && 1<c<ck && 0<k<1]
(whereck stands forck), which outputsFalse , meaning that indeedP < 0 for all k ∈ (0, 1)
andc ∈ (1, ck); similarly, forQ in place ofP .

Theorem 2.1 is proved. �
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2.2.2. Saccheri quadrilaterals.LetABCD be a Saccheri quadrilateral. Here one may assume
that

A = k i, B = i, C = eiθ, D = k eiθ,

where again0 < k < 1 and0 < θ < π/2, so that the angles at verticesA andB are right,
andBC = AD, so thatBD = AC. Let us refer here toAB = ln(1/k) as the base and to
BC = AD = arcch c as the side, where againc := 1/ sin θ. Herec varies from1 to∞.
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2.2.2. Saccheri quadrilaterals. Let ABCD be a Saccheri quadrilateral. Here one may
assume that

A = k i, B = i, C = eiθ, D = k eiθ,

where again 0 < k < 1 and 0 < θ < π/2, so that the angles at vertices A and B are right,
and BC = AD, so that BD = AC. Let us refer here to AB = ln(1/k) as the base and to
BC = AD = arcch c as the side, where again c := 1/ sin θ. Here c varies from 1 to ∞.

top

side

side

b
as

e

A

B

C
D

Figure 2.3: A Saccheri quadrilateral: ∠A = ∠B = π/2 and ∠C = ∠D, whence AD = BC and AC = BD

Again, let us fix the base AB = ln(1/k) (so that k ∈ (0, 1) is fixed); also, let c increase
from 1 to∞, so that the side BC = AD = arcch c increases from 0 to∞. Here, taking into
account the equalities BC = AD and BD = AC, we have to determine the monotonicity
patterns of

(
4
2

)
= 6 completely representative pairwise ratios.

Theorem 2.3. The monotonicity patterns of the 6 ratios r(c) are given by Table 2.2.

r Pattern for each k in r(1+) r(∞−) k∗∗
(0, 1) (0, k∗∗] (k∗∗, 1)

CD/AD ↘ ↘↗ ∞ 2 k2
∗ = 3− 2

√
2

CD/BD ↗ ↘↗ 1 2 2−√3

CD/AB ↗ 1 ∞
AD/BD ↗ 0 1

AD/AB ↗ 0 ∞
BD/AB ↗ 1 ∞

Table 2.2: Monotonicity patterns for the ratios in the Saccheri quadrilateral

Thus, the diagonal AC = BD always exceeds both the base AB and the side AD = BC.
Also, the top CD always exceeds the base.

Recently it was observed by Pambuccian [13] that the ratio CD/BD = CD/AC of the
top of a Saccheri quadrilateral to its diagonal may be less than or greater than or equal to

Figure 2.3: A Saccheri quadrilateral:∠A = ∠B = π/2 and∠C = ∠D, whenceAD = BC andAC = BD

Again, let us fix the baseAB = ln(1/k) (so thatk ∈ (0, 1) is fixed); also, letc increase from
1 to∞, so that the sideBC = AD = arcch c increases from0 to∞. Here, taking into account
the equalitiesBC = AD andBD = AC, we have to determine the monotonicity patterns of(
4
2

)
= 6 completely representative pairwise ratios.

Theorem 2.3.The monotonicity patterns of the 6 ratiosr(c) are given by Table 2.2.

Thus, the diagonalAC = BD always exceeds both the baseAB and the sideAD = BC.
Also, the topCD always exceeds the base.

Recently it was observed by Pambuccian [13] that the ratioCD/BD = CD/AC of the
top of a Saccheri quadrilateral to its diagonal may be less than or greater than or equal to1.
The second line of Table 2.2 provides more information in that respect. In particular, one can
see now that thetop-to-diagonal ratio can be less than1 only if the baseAB is smaller than
ln(2 +

√
3). On the other hand, this ratio is always less than2.

Similarly to the case of the Lambert quadrilateral, the monotonicity patterns of two ra-
tios, CD/AD (top-to-side) andCD/BD (top-to-diagonal), turn out to depend on the base
AB = ln(1/k) of the quadrilateral. When the base is smaller than the threshold valueln(1/k∗∗),
these two ratios are not monotonic. However, in contrast with Lambert quadrilaterals, here the
threshold values for these two ratios are different from each other. Yet, for Saccheri quadrilat-
erals as well, it is the small base values that may result in non-monotonic patterns.
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r Pattern for eachk in r(1+) r(∞−) k∗∗
(0, 1) (0, k∗∗] (k∗∗, 1)

CD/AD ↘ ↘↗ ∞ 2 k2
∗ = 3− 2

√
2

CD/BD ↗ ↘↗ 1 2 2−
√

3

CD/AB ↗ 1 ∞
AD/BD ↗ 0 1

AD/AB ↗ 0 ∞
BD/AB ↗ 1 ∞

Table 2.2: Monotonicity patterns for the ratios in the Saccheri quadrilateral

Proof of Theorem 2.3.In view of (2.1), here one has

(2.7)
AB = ln

1

k
, AD = BC = arcch c, CD = arcch

c2 (1− k)2 + 2 k

2 k
,

AC = BD = arcch
c (1 + k2)

2 k
.

From these expressions, the statements of Theorem 2.3 concerning the three ratios of the top
(CD), side (AD = AC), and diagonal (AC = BD) to the fixed base (AB) are obvious. It
remains to consider the other three ratios.
¶ r(c) = CD/AD: This case follows immediately from the case of thetop-to-long-side

ratio for the Lambert quadrilateral, which latter is a “half” of a Saccheri one; see Figure 2.1.
Indeed, if the side of a Saccheri quadrilateral equals the long side of a Lambert quadrilateral
and the base of the Saccheri quadrilateral is twice the base of the Lambert quadrilateral, then
the top of the Saccheri quadrilateral is twice the top of the Lambert quadrilateral.
¶ r(c) = CD/BD: Here (recall (2.5))ρ(c) = 2 (1 − k) q1 / ((1 + k2) q4), whereq4 :=√
(c2 − 1)(1− k)2 + (1 + k)2. Hence,ρ ↗, and so,r ↗ or r ↘ or r ↗↘. Obviously,

r(1+) = 1. By l’Hospital’s rule,r(∞−) = ρ(∞−) = 2. Moreover, it is easy to see that (∃
c > 1 r(c) = 1) iff 2−

√
3 < k < 1. This proves the second line of Table 2.2.

¶ r(c) = AD/BD: Hereρ(c) = q1 / ((1 + k2) q2), so thatρ ↘. Obviously,r(1+) = 0.
By l’Hospital’s rule,r(∞−) = ρ(∞−) = 1. Also, (2.7) impliesr < 1. It follows thatr ↗.

Theorem 2.3 is proved. �

2.3. Conclusion. It seems quite likely that one could similarly examine the monotonicity pat-
terns of these ratios for the Lambert and Saccheri quadrilaterals under conditions other than
that of a fixed base. Likewise, one could examine the monotonicity patterns of other ratios of
distances, in this or other Riemann geometries.
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