THE BEST CONSTANTS FOR A DOUBLE INEQUALITY IN A TRIANGLE

YU-DONG WU, NU-CHUN HU, AND WEI-PING KUANG
Department of Mathematics
Zhejiang Xinchang High School
Shaoxing 312500, Zhejiang
People's Republic of China.
yudong.wu@yahoo.com.cn
URL: http://www.staff.vu.edu.au/rgmia/members/Wu3.htm
Department of Mathematics
Zhejiang Normal University Jinhua 321004, Zhejiang
People's Republic of China.
nuchun@zjnu.cn
Department of Mathematics
Huaihua University
Huaihua 418008, Hunan
People's Republic of China.
sy785153@126.com
Received 08 August, 2008; accepted 02 February, 2009
Communicated by S.S. Dragomir
Dedicated to Professor Bi-Cheng Yang on the occasion of his 63rd birthday.

Abstract

In this short note, by using some of Chen's theorems and classic analysis, we obtain a double inequality for triangle and give a positive answer to a problem posed by Yang and Yin [6].

Key words and phrases: Inequality; Best Constant; Triangle.

2000 Mathematics Subject Classification. 51M16.

1. Introduction and Main Results

For $\triangle A B C$, let a, b, c denote the side-lengths, A, B, C the angles, s the semi-perimeter, R the circumradius and r the inradius, respectively.

[^0]In 1957, Kooistra (see [1]) built the following double inequality for any triangle:

$$
\begin{equation*}
2<\cos \frac{A}{2}+\cos \frac{B}{2}+\cos \frac{C}{2} \leq \frac{3 \sqrt{3}}{2} \tag{1.1}
\end{equation*}
$$

In 2000, Yang and Yin [6] considered a new bound of inequality (1.1) and posed a problem as follows:

Problem 1.1. Determine the best constant μ such that

$$
\begin{equation*}
\left(\frac{3 \sqrt{3}}{2}\right)^{\mu} \cdot\left(\frac{s}{R}\right)^{1-\mu} \leq \cos \frac{A}{2}+\cos \frac{B}{2}+\cos \frac{C}{2} \tag{1.2}
\end{equation*}
$$

holds for any $\triangle A B C$.

In this short note, we solve the above problem and obtain the following result.
Theorem 1.1. Let

$$
\lambda \geq \lambda_{0}=1
$$

and

$$
\mu \leq \mu_{0}=\frac{2 \ln (2-\sqrt{2})+\ln 2}{4 \ln 2-3 \ln 3} \approx 0.7194536993
$$

Then the double inequality

$$
\begin{equation*}
\left(\frac{3 \sqrt{3}}{2}\right)^{\mu} \cdot\left(\frac{s}{R}\right)^{1-\mu} \leq \cos \frac{A}{2}+\cos \frac{B}{2}+\cos \frac{C}{2} \leq\left(\frac{3 \sqrt{3}}{2}\right)^{\lambda} \cdot\left(\frac{s}{R}\right)^{1-\lambda} \tag{1.3}
\end{equation*}
$$

holds for any $\triangle A B C$, while the constants λ_{0} and μ_{0} are both the best constant for inequality (1.3).

Remark 1. When $\lambda_{0}=1$, the right hand of inequality (1.3) is just the right hand of inequality (1.1).

Remark 2. It is not difficult to demonstrate that:

$$
\left\{\begin{array}{l}
\left(\frac{3 \sqrt{3}}{2}\right)^{\mu_{0}} \cdot\left(\frac{s}{R}\right)^{1-\mu_{0}}<2\left(0<\frac{s}{R}<2^{\frac{1}{1-\mu_{0}}}\left(\frac{2}{3 \sqrt{3}}\right)^{\frac{\mu_{0}}{1-\mu_{0}}}\right) \\
\left(\frac{3 \sqrt{3}}{2}\right)^{\mu_{0}} \cdot\left(\frac{s}{R}\right)^{1-\mu_{0}} \geq 2\left(2^{\frac{1}{1-\mu_{0}}}\left(\frac{2}{3 \sqrt{3}}\right)^{\frac{\mu_{0}}{1-\mu_{0}}} \leq \frac{s}{R} \leq \frac{3 \sqrt{3}}{2}\right)
\end{array}\right.
$$

2. Preliminary Results

In order to establish our main theorem, we shall require the following lemmas.
Lemma 2.1 (see [3, 4, 5]). If the inequality $s \geq(>) f(R, r)$ holds for any isosceles triangle whose top-angle is greater than or equal to $\frac{\pi}{3}$, then the inequality $s \geq(>) f(R, r)$ holds for any triangle.

Lemma 2.2 (see [2, 3]). The homogeneous inequality

$$
\begin{equation*}
s \geq(>) f(R, r) \tag{2.1}
\end{equation*}
$$

holds for any acute-angled triangle if and only if it holds for any acute isosceles triangle whose top-angle $A \in\left[\frac{\pi}{3}, \frac{\pi}{2}\right)$ with $2 r \leq R<(\sqrt{2}+1) r$ and any right-angled triangle with $R \geq$ $(\sqrt{2}+1) r$.

For the convenience of our readers, we give below the proof by Chen in [2, 3].
Proof. Let $\odot O$ denote the circumcircle of $\triangle A B C$. Necessity is obvious from Lemma 2.1 . Thus we only need to prove the sufficiency. It is well known that $R \geq 2 r$ for any acute-angled triangle. So we consider the following two cases:
(i) When $2 r \leq R<(\sqrt{2}+1) r$: In this case, we can construct an isosceles triangle $A_{1} B_{1} C_{1}$ whose circumcircle is also $\odot O$ and the top-angle of $\triangle A_{1} B_{1} C_{1}$ (see Figure (2.1) is

$$
A_{1}=2 \arcsin \frac{1}{2}\left(1+\sqrt{1-\frac{2 r}{R}}\right)
$$

Figure 2.1:

It is easy to see that (see [4, 5]):

$$
R_{1}=R, \quad r_{1}=r, \quad s_{1} \leq s \quad \text { and } \quad \frac{\pi}{3} \leq A_{1}<\frac{\pi}{2} .
$$

Thus we have

$$
\begin{equation*}
s \geq s_{1} \geq f\left(R_{1}, r_{1}\right)=f(R, r) \tag{2.2}
\end{equation*}
$$

because the inequality (2.1) holds for any acute isosceles triangle whose top-angle $A \in$ $\left[\frac{\pi}{3}, \frac{\pi}{2}\right)$.
(ii) When $R \geq(\sqrt{2}+1) r$: In this case we can construct a right-angled triangle $A_{2} B_{2} C_{2}$ whose inscribed circle is also $\odot I$ and the length of its hypotenuse is $c_{2}=2 R$ (see Figure 2.2. This implies that

Figure 2.2:

$$
\begin{aligned}
& r_{2}=\frac{1}{2}\left(a_{2}+b_{2}-c_{2}\right)=r, \quad R_{2}=\frac{1}{2} c_{2}=R, \\
& s_{2}=\frac{1}{2}\left(a_{2}+b_{2}+c_{2}\right)=2 R_{2}+r_{2}=2 R+r<s
\end{aligned}
$$

Thus we have the inequality (2.2) since the inequality (2.1) holds for any right-angled triangle.

Lemma 2.3 (see [2, 3]). The homogeneous inequality (2.1) holds for any acute-angled triangle if and only if

$$
\begin{equation*}
\sqrt{(1-x)(3+x)^{3}} \geq(>) f\left(2,1-x^{2}\right) \quad(0 \leq x<\sqrt{2}-1) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
5-x^{2} \geq(>) f\left(2,1-x^{2}\right) \quad(\sqrt{2}-1 \leq x<1) \tag{2.4}
\end{equation*}
$$

Proof. Since the inequality (2.1) is homogeneous, we may assume $R=2$ without losing generality.
(i) When $2 r \leq R<(\sqrt{2}+1) r$: By Lemma 2.2, we only need to consider the isosceles triangle whose top-angle $A \in\left[\frac{\pi}{3}, \frac{\pi}{2}\right)$. Let

$$
t=\sin \frac{A}{2} \in\left[\frac{1}{2}, \frac{\sqrt{2}}{2}\right)
$$

Then we have (see [4, 5])

$$
\begin{equation*}
r=4 t(1-t) \quad \text { and } \quad s=4(1+t) \sqrt{1-t^{2}} \tag{2.5}
\end{equation*}
$$

Let $x=2 t-1$. Then the inequality (2.1) is just the inequality (2.3).
(ii) When $R \geq(\sqrt{2}+1) r$: We only need to consider a right-angled triangle. Let

$$
r=\frac{2 r}{R}=4 t(1-t) \in(0, \sqrt{2}-1) \quad\left(\frac{\sqrt{2}}{2} \leq t<1\right) .
$$

Thus we have

$$
\begin{equation*}
s=2 R+r=4+4 t(1-t) . \tag{2.6}
\end{equation*}
$$

Let $x=2 t-1$. Then the inequality (2.1) is just the inequality (2.4).
This completes the proof Lemma 2.3 .
Lemma 2.4 ([3, 4, 4, 5]). The homogeneous inequality

$$
\begin{equation*}
s \leq(<) f(R, r) \tag{2.7}
\end{equation*}
$$

holds for any triangle if and only if it holds for any isosceles triangle whose top-angle $A \in$ ($\left.0, \frac{\pi}{3}\right]$, or the following inequality holds

$$
\begin{equation*}
\sqrt{(1-x)(3+x)^{3}} \leq(<) f\left(2,1-x^{2}\right) \quad(-1<x \leq 0) \tag{2.8}
\end{equation*}
$$

Lemma 2.5 (see [2, 3]). The homogeneous inequality (2.7) holds for any acute-angled triangle if and only if it holds for any isosceles triangle whose top-angle $A \in\left(0, \frac{\pi}{3}\right]$, or the inequality (2.8) holds.

Proof. As acute-angled triangles include all isosceles triangles whose top-angle is less than or equal to $\frac{\pi}{3}$, Lemma 2.5 straightforwardly follows from Lemma 2.4 and Lemma 2.1 .

Lemma 2.6. Define

$$
\begin{equation*}
G_{1}(x):=\frac{2 \ln (1-x)+2 \ln (1+x)}{3 \ln (1-x)+3 \ln (3+x)+2 \ln (1+x)-3 \ln 3} . \tag{2.9}
\end{equation*}
$$

Then G_{1} is decreasing on $(-1, \sqrt{2}-1)$, and

$$
\begin{equation*}
\lim _{x \rightarrow(\sqrt{2}-1)^{-}} G_{1}(x)=\frac{2 \ln (2-\sqrt{2})+\ln 2}{4 \ln 2-3 \ln 3}<G_{1}(x)<1=\lim _{x \rightarrow-1^{+}} G_{1}(x) . \tag{2.10}
\end{equation*}
$$

Proof. Let G_{1}^{\prime} be the derivative of G_{1}. It is easy to see that

$$
\begin{equation*}
G_{1}^{\prime}(x)=\frac{4 x g_{1}(x)}{(3 \ln (1-x)+3 \ln (3+x)+2 \ln (1+x)-3 \ln 3)^{2}\left(1-x^{2}\right)(3+x)} \tag{2.11}
\end{equation*}
$$

with

$$
\begin{equation*}
g_{1}(x):=(x-1) \ln (1-x)-3(x+3)[\ln (3+x)-\ln 3]+2(x+1) \ln (1+x) . \tag{2.12}
\end{equation*}
$$

Moreover, we know that

$$
\begin{equation*}
g_{1}^{\prime}(x)=\ln (1-x)-3 \ln (3+x)+2 \ln (1+x)+3 \ln 3 \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{1}^{\prime \prime}(x)=\frac{-8 x}{\left(1-x^{2}\right)(3+x)} \tag{2.14}
\end{equation*}
$$

Now we show that G_{1} is decreasing on $(-1, \sqrt{2}-1)$.
(i) It is easy to see that $g_{1}^{\prime \prime}(x) \geq 0$ when $-1<x \leq 0$, and g_{1}^{\prime} is increasing on $(-1,0]$. Thus, $g_{1}^{\prime}(x) \leq g_{1}^{\prime}(0)=0$, and g_{1} is decreasing on $(-1,0]$. Therefore, $g_{1}(x) \geq g_{1}(0)=0$, and $G_{1}^{\prime}(x) \leq 0$. This means that G_{1} is decreasing on $(-1,0]$.
(ii) It is easy to see that $g_{1}^{\prime \prime}(x) \leq 0$ when $0 \leq x<\sqrt{2}-1$, and g_{1}^{\prime} is decreasing on $[0, \sqrt{2}-1)$. Thus, $g_{1}^{\prime}(x) \leq g_{1}^{\prime}(0)=0$, and g_{1} is decreasing on $[0, \sqrt{2}-1)$. Therefore, $g_{1}(x) \leq g_{1}(0)=0$, and $G_{1}^{\prime}(x) \leq 0$. This means that G_{1} is decreasing on $[0, \sqrt{2}-1)$.
Combining (i) and (ii), it follows that G_{1} is decreasing on $(-1, \sqrt{2}-1)$ and (2.10) holds, and hence the proof is complete.

Lemma 2.7. Define

$$
\begin{equation*}
G_{2}(x):=\frac{2 \ln \left(1-x^{2}\right)}{2 \ln \left(5-x^{2}\right)+2 \ln \left(1-x^{2}\right)-3 \ln 3} . \tag{2.15}
\end{equation*}
$$

Then G_{2} is increasing on $[\sqrt{2}-1,1)$, and

$$
\begin{equation*}
G_{2}(x) \geq G_{2}(\sqrt{2}-1)=\frac{2 \ln (2-\sqrt{2})+\ln 2}{4 \ln 2-3 \ln 3} . \tag{2.16}
\end{equation*}
$$

Proof. Let G_{2}^{\prime} be the derivative of G_{2}. It is easy to see that

$$
\begin{gather*}
G_{2}^{\prime}(x)=\frac{4 x g_{2}(x)}{\left(2 \ln \left(5-x^{2}\right)+2 \ln \left(1-x^{2}\right)-3 \ln 3\right)^{2}\left(1-x^{2}\right)\left(5-x^{2}\right)}, \tag{2.17}\\
g_{2}^{\prime}(x)=-2 x h_{2}(x)
\end{gather*}
$$

and

$$
\begin{equation*}
h_{2}^{\prime}(x)=\frac{-16 x}{\left(1-x^{2}\right)\left(5-x^{2}\right)} \tag{2.18}
\end{equation*}
$$

where

$$
g_{2}(x):=2\left(1-x^{2}\right)[\ln (1-x)+\ln (1+x)]+2\left(x^{2}-5\right) \ln \left(5-x^{2}\right)+3\left(5-x^{2}\right) \ln 3
$$

and

$$
\begin{equation*}
h_{2}(x)=2 \ln \left(1-x^{2}\right)-2 \ln \left(5-x^{2}\right)+3 \ln 3 . \tag{2.19}
\end{equation*}
$$

Thus it follows that $h_{2}^{\prime}(x)<0$ when $\sqrt{2}-1 \leq x<1$, and h_{2} is decreasing on $[\sqrt{2}-1,1)$, and

$$
h_{2}(x) \leq h_{2}(\sqrt{2}-1)=\ln \frac{27}{34+24 \sqrt{2}}<0 .
$$

Therefore $g_{2}^{\prime}(x)>0$, and g_{2} is increasing on $[\sqrt{2}-1,1)$, and

$$
g_{2}(x) \geq g_{2}(\sqrt{2}-1)=6(\sqrt{2}+1) \ln 3-8 \ln 2-8 \sqrt{2} \ln (\sqrt{2}+1)>0
$$

This means that $G_{2}^{\prime}(x)>0$, and G_{2} is increasing on $[\sqrt{2}-1,1)$, and 2.16 holds. The proof of Lemma 2.7 is thus completed.

3. The Proof of Theorem 1.1

Proof. (i) The first inequality of (1.3) is equivalent to

$$
\begin{equation*}
\cos \frac{A}{2}+\cos \frac{B}{2}+\cos \frac{C}{2} \geq\left(\frac{3 \sqrt{3}}{2}\right)^{\mu} \cdot(\sin A+\sin B+\sin C)^{1-\mu} \tag{3.1}
\end{equation*}
$$

with application to the well known identity

$$
\sin A+\sin B+\sin C=\frac{s}{R} .
$$

Taking

$$
A \rightarrow \pi-2 A, \quad B \rightarrow \pi-2 B \quad \text { and } \quad C \rightarrow \pi-2 C
$$

then inequality (3.1) is equivalent to

$$
\begin{equation*}
\sin A+\sin B+\sin C \geq\left(\frac{3 \sqrt{3}}{2}\right)^{\mu} \cdot(\sin 2 A+\sin 2 B+\sin 2 C)^{1-\mu} \tag{3.2}
\end{equation*}
$$

for an acute-angled triangle $A B C$.
By the well known identities

$$
\sin 2 A+\sin 2 B+\sin 2 C=4 \sin A \sin B \sin C,
$$

and

$$
\sin A \sin B \sin C=\frac{r s}{2 R^{2}},
$$

the inequality $\sqrt{3.2}$) can be written as follows:

$$
\begin{equation*}
\bar{s} \geq\left(\frac{3 \sqrt{3}}{2}\right)^{\mu} \cdot\left(\frac{2 r s}{R^{2}}\right)^{1-\mu} \Longleftrightarrow\left(\frac{s}{R}\right)^{\mu} \geq\left(\frac{3 \sqrt{3}}{2}\right)^{\mu} \cdot\left(\frac{2 r}{R}\right)^{1-\mu} \tag{3.3}
\end{equation*}
$$

Furthermore, by Lemma 2.3 , the inequality (3.3) holds if and only if the following two inequalities

$$
\begin{equation*}
\left(\frac{\sqrt{(1-x)(3+x)^{3}}}{2}\right)^{\mu} \geq\left(\frac{3 \sqrt{3}}{2}\right)^{\mu}\left(1-x^{2}\right)^{1-\mu} \quad(0 \leq x<\sqrt{2}-1) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{5-x^{2}}{2}\right)^{\mu} \geq\left(\frac{3 \sqrt{3}}{2}\right)^{\mu}\left(1-x^{2}\right)^{1-\mu} \quad(\sqrt{2}-1 \leq x<1) \tag{3.5}
\end{equation*}
$$

hold. In other words,

$$
\begin{equation*}
\mu \leq \min _{0 \leq x<1} G(x) \tag{3.6}
\end{equation*}
$$

where

$$
G(x)= \begin{cases}G_{1}(x) & (0 \leq x<\sqrt{2}-1) \tag{3.7}\\ G_{2}(x) & (\sqrt{2}-1 \leq x<1)\end{cases}
$$

while $G_{1}(x)$ and $G_{2}(x)$ are defined by (2.9) and (2.15) respectively.
By Lemma 2.6 and Lemma 2.7, it follows that

$$
\min _{0 \leq x<1} G(x)=G(\sqrt{2}-1)
$$

Thus the first inequality of (1.3) holds, and the best constant μ for inequality (1.3) is

$$
\mu_{0}=\frac{2 \ln (2-\sqrt{2})+\ln 2}{4 \ln 2-3 \ln 3}
$$

(ii) By applying a similar method to (i), it follows that the second inequality of (1.3) is equivalent to

$$
\begin{equation*}
\left(\frac{s}{R}\right)^{\lambda} \leq\left(\frac{3 \sqrt{3}}{2}\right)^{\lambda} \cdot\left(\frac{2 r}{R}\right)^{1-\lambda} \tag{3.8}
\end{equation*}
$$

By Lemma 2.5, the inequality (3.8) holds if and only if the following inequality holds:

$$
\begin{equation*}
\left(\frac{\sqrt{(1-x)(3+x)^{3}}}{2}\right)^{\lambda} \leq\left(\frac{3 \sqrt{3}}{2}\right)^{\lambda}\left(1-x^{2}\right)^{1-\lambda} \quad(-1<x \leq 0) \tag{3.9}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\lambda \geq \sup _{-1<x \leq 0} G_{1}(x) \tag{3.10}
\end{equation*}
$$

where $G_{1}(x)$ is given by (2.9).
By Lemma 2.6, it follows that $\lambda \geq 1$. Moreover, the second inequality of (1.3) holds when $\lambda_{0}=1$. Thus the second inequality of (1.3) holds and the best constant λ for inequality (1.3) is $\lambda_{0}=1$. The proof of Theorem 1.1 is hence completed.

References

[1] O. BOTTEMA, R.Z̆. DJORDJEVIĆ, R.R. JANIĆ, D.S. MITRINOVIĆ, AND P.M. VASIĆ. Geometric Inequality. Wolters-Noordhoff Publishing, Groningen, The Netherlands, 1969.
[2] S.-L. CHEN, Inequalities involving R, r, s in acute-angled triangle, Geometric Inequalties in China, Jiangsu Educational Press, Nanjing (1996), No. 72-81. (in Chinese)
[3] S.-L. CHEN, The simplified method to prove inequalities in triangle, Studies of Inequalities, Tibet People's Press, Lhasa (2000), 3-8. (in Chinese)
[4] S.-L. CHEN, A new method to prove one kind of inequalities-equate substitution method, Fujian High-School Mathematics, No. 20-23, 1993(3). (in Chinese)
[5] Y.-D. WU. The best constant for a geometric inequality, J. Inequal. Pure Appl. Math., 6(4) (2005), Art. 111. [ONLINE http://jipam.vu.edu.au/article.php?sid=585].
[6] X.-Z. YANG and H.-Y. YIN, The comprehensive investigations of trigonometric inequalities for half-angles of triangle in China, Studies of Inequalities, Tibet People's Press, Lhasa (2000), No.123174. (in Chinese)

[^0]: The authors would like to thank Prof. Zhi-Hua Zhang and Dr. Zhi-Gang Wang for their careful reading and making some valuable suggestions in the preparation of this paper.

 239-08

