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Abstract

In the present paper we obtain new sufficient conditions for the univalence and
convexity of an analytic function defined in the upper half-plane. In particular,
in the case of hydrodynamically normalized functions, we obtain by a different
method a known result concerning the convexity and univalence of an analytic
function defined in a half-plane.

2000 Mathematics Subject Classification: 30C45.
Key words: Univalent function, Convex function, Half-plane.

I dedicate this paper to the memory of my dear father, Professor Nicolae N. Pascu.

Contents
1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Main Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
References

http://jipam.vu.edu.au/
mailto:pascun@greenmtn.edu
http://jipam.vu.edu.au/
http://www.ams.org/msc/


Convex Functions in a
Half-plane, II

Nicolae R. Pascu

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 3 of 17

J. Ineq. Pure and Appl. Math. 6(4) Art. 125, 2005

http://jipam.vu.edu.au

1. Introduction
In the present paper, we continue the work in [4], by obtaining new sufficient
conditions for the convexity and univalence for analytic functions defined in
the upper half-plane (Theorems2.2, 2.3and2.4). In particular, under the addi-
tional hypothesis (1.2) below, they become necessary and sufficient conditions
for convexity and univalence in a half-plane (Corollary2.5), obtaining thus by
a different method the results in [5] and [6].

We begin by establishing the notation and with some preliminary results
needed for the proofs.

We denote byD = {z ∈ C : Im z > 0} the upper half-plane inC and for
ε ∈

(
0, π

2

)
we letTε be the angular domain defined by:

(1.1) Tε =
{
z ∈ C∗ :

π

2
− ε < arg (z) <

π

2
+ ε

}
.

We say that a functionf : D → C is convexif f is univalent inD andf(D)
is a convex domain.

For an arbitrarily chosen positive real numbery0 > 0 we denote byAy0 the
class of functionsf : D → C analytic in the upper half-planeD satisfying
f (iy0) = 0 and such thatf ′ (z) 6= 0 for anyz ∈ D. In particular, fory0 = 1 we
will denoteA1 = A.

We will refer to the following normalization condition for analytic functions
f : D → C as thehydrodynamic normalization:

(1.2) lim
z→∞,z∈D

(f (z)− z) = ai,
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wherea ≥ 0 is a non-negative real number, and we will denote byH1 the class
of analytic functionsf : D → C satisfying this condition in the particular case
a = 0.

For analytic functions satisfying the above normalization condition, J.
Stankiewicz and Z. Stankiewicz obtained (see [5] and [6]) the following nec-
essary and sufficient condition for convexity and univalence in a half-plane:

Theorem 1.1. If the functionf ∈ H1 satisfies:

(1.3) f ′(z) 6= 0, for all z ∈ D

and

(1.4) Im
f ′′(z)

f ′(z)
> 0, for all z ∈ D,

thenf is a convex function.

In order to prove our main result we need the following results from [2]:

Lemma 1.2. If the functionf : D → D is analytic inD, then for anyε ∈
(
0, π

2

)
the following limits exist and we have the equalities:

lim
z→∞,z∈Tε

f (z)

z
= lim

z→∞,z∈Tε

f ′ (z) = c,

wherec ≥ 0 is a non-negative real number.
Moreover, for anyz ∈ D we have the inequality

(1.5) Im f (z) ≥ c Im z,
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and if there existsz0 ∈ D such that we have equality in the inequality (1.5),
then there exists a real numbera such that

f (z) = cz + a, for all z ∈ D.

Lemma 1.3. If the functionf : D → D is analytic inD and hydrodynamically
normalized, then for anyε ∈ (0, π

2
) and any natural numbern ≥ 2 we have

lim
z→∞,z∈Tε

(
znf (n)(z)

)
= 0.
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2. Main Results
Let us consider the family of domainsDr,s in the complex plane, defined by

Dr,s = {z ∈ C : |z| < r, Im z > s} ,

wherer ands are positive real numbers,0 < s < r (see Figure1).
Let us note that for anyr > 1 and0 < s < 1 we have the inclusionDr,s ⊂ D,

and that for anyz ∈ D arbitrarily fixed, there existsrz > 0 andsz > 0 such
thatz ∈ Dr,s for anyr > rz and any0 < s < sz (for example, we can choose
rz andsz such that they satisfy the conditionsrz > |z| andsz ∈ (0, Im z)).

We denote byΓr,s = cr ∪ ds the boundary of the domainDr,s, wherecr and
ds are the arc of the circle, respectively the line segment, defined by:{

cr = {z ∈ C : |z| = r, z ≥ s}

ds = {z ∈ C : |z| ≤ r, z = s}
.

The curveΓr,s has an exterior normal vector at any point, except for the
pointsa andb (with arg a < arg b) where the line segmentds and the arc of the
circle cr meet (see Figure1). The exterior normal vector to the curvef(cr) at
the pointf(z), with z = reit ∈ cr, t ∈ (arg a, arg b), has the argument

(2.1) ϕ (t) = arg (zf ′ (z)) ,

and the exterior normal vector to the curvef(ds) at the pointf(z), with z =
x+ is ∈ ds, x ∈ (Re b,Re a), has the argument

(2.2) ψ (x) = −π
2

+ arg f ′ (x+ is) .
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Figure 1: The domainDrs.
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Definition 2.1. We say that the functionf ∈ A is convex on the curveΓr,s if
the argument of the exterior normal vector to the curvef(Γr,s) − {f(a), f(b)}
is an increasing function.

Remark 1. In particular, the condition in the above theorem is satisfied if the
functionsϕ andψ defined by (2.1)–(2.2) are increasing functions.

Let us note that forz = reit ∈ cr, we have:

∂

∂t
log

(
reitf ′

(
reit

))
= i

(
reitf ′′ (reit)

f ′ (reit)
+ 1

)
=

∂

∂t
ln

∣∣reitf ′
(
reit

)∣∣+ iϕ′ (t) ,

and forz ∈ ds:

∂

∂x
log f ′ (x+ is) =

f ′′ (x+ is)

f ′ (x+ is)
=

∂

∂x
ln |f ′ (x+ is)|+ iψ′ (x+ is) .

We obtain therefore

ϕ′(t) =
reitf ′′ (reit)

f ′ (reit)
+ 1,

for reit ∈ cr, and

ψ′ (x+ is) =
f ′′ (x+ is)

f ′ (x+ is)
,

for x+ is ∈ ds, and from the previous observation it follows that if the function
f ∈ A satisfies the inequalities

(2.3)


zf ′′ (z)

f ′ (z)
+ 1 > 0, z ∈ cr

f ′′ (z)

f ′ (z)
> 0, z ∈ ds

,
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the functionf is convex on the curveΓr,s, and thereforef(Dr,s) is a convex
domain.

Since the functionf has in the domainDr,s bounded by the curveΓr,s a
simple zero, from the argument principle it follows that the total variation of the
argument of the functionf on the curveΓr,s is 2π, and thereforef is injective
on the curveΓr,s. From the principle of univalence on the boundary, it follows
that the functionf is univalentDr,s.

We obtained the following:

Theorem 2.1. If the functionf belongs to the classA and there exist real num-
bers0 < s < 1 < r such that conditions (2.3) are satisfied, then the functionf
is univalent in the domainDr,s andf(Dr,s) is a convex domain.

More generally, we have the following:

Theorem 2.2. If the functionf : D → C belongs to the classA and there exist
real numbers0 < s0 < 1 < r0 such that:

(2.4) Re
zf ′′ (z)

f ′ (z)
+ 1 > 0

for anyz ∈ D with |z| > r0, and

(2.5) Im
f ′′ (z)

f ′ (z)
> 0

for anyz ∈ D with Im z < s0, then the functionf is convex and univalent in
the half-planeD.
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Proof. Let z1 andz2 be arbitrarily fixed distinct points in the half-planeD. For
anyr > r∗ = max {|z1| , |z2|} and anys ∈ (0, s∗), wheres∗ = min {Im z1, Im z2},
the pointsz1 andz2 belong to the domainDr,s.

From the hypothesis (2.4) and (2.5) and using the Remark1 it follows that
for any r > r0 ands ∈ (0, s0) the functionf is univalent in the domainDr,s,
and thatf(Dr,s) is a convex domain.

Therefore, choosingr > max {r0, r∗} ands ∈ (0, s1), wheres1 = min {s0, s
∗},

it follows that the pointsz1 andz2 belong to the domainDr,s, and since the func-
tion f is univalent in the domainDr,s, we obtain thatf (z1) 6= f (z2).

Sincez1 andz2 were arbitrarily chosen in the half-planeD, it follows that
the functionf is univalent inD, concluding the first part of the proof.

In order to show thatf (D) is a convex domain, we considerw1 andw2 arbi-
trarily fixed distinct points inf (D), and letz1 = f−1 (w1) andz2 = f−1 (w2)
be their preimages.

Repeating the above proof it follows that the pointsz1 and z2 belong to
the domainDr,s (for any r > max {r0, r∗} and s ∈ (0, s1), wheres1 =
min {s0, s

∗}, in the notation above), and therefore we obtain thatw1 = f(z1) ∈
f(Dr,s) andw2 = f(z2) ∈ f(Dr,s).

Sincef(Dr,s) is a convex domain, it follows that the line segment[w1, w2]
is also contained in the domainf(Dr,s), and sincef(Dr,s) ⊂ f (D), we obtain
that [w1, w2] ⊂ f (D).

Sincew1, w2 ∈ f(D) were arbitrarily chosen, it follows thatf (D) is a con-
vex domain, concluding the proof.

Remark 2. The pointz0 = i, in which the functionsf belonging to the class
A = A1 are normalized can be replaced by any pointz0 = iy0, with y0 >
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0. Repeating the proof of the previous theorem with this new choice for the
normalization condition, we obtain the following result which generalizes the
previous theorem:

Theorem 2.3. If the functionf : D → C belongs to the classAy0 for some
y0 > 0, and there exist real numbers0 < s0 < y0 < r0 such that

zf ′′ (z)

f ′ (z)
+ 1 > 0, z ∈ D, |z| > r0

f ′′ (z)

f ′ (z)
> 0, z ∈ D, z ∈ (0, s0)

,

then the functionf is univalent and convex in the half-planeD.

Remark 3. By noticing that the functionf : D → C is convex and univalent
in D if and only the functionf̃ : D → C, f̃(z) = f(z) − f(iy0) is convex
and univalent inD, for any arbitrarily chosen pointy0 > 0, and replacing the
functionf in the previous theorem bỹf(z) = f(z) − f(iy0), we can eliminate
from the hypothesis of this theorem the conditionf(iy0) = 0, obtaining the
following more general result:

Theorem 2.4. If the functionf : D → C is analytic inD, satisfiesf ′(z) 6= 0
for all z ∈ D and there exist real numbers0 < s0 < r0 such that the following
inequalities hold:

(2.6)


zf ′′ (z)

f ′ (z)
+ 1 > 0, z ∈ D, |z| > r0

f ′′ (z)

f ′ (z)
> 0, z ∈ D, z ∈ (0, s0)

,
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then the functionf is convex and univalent in the half-planeD.

Example 2.1.For a ∈ R, consider the functionfa : D → C defined by

fa (z) = za, z ∈ D,

where we have chosen the determination of the power function corresponding
to the principal branch of the logarithm, that is:

za = ea log z, z ∈ D,

wherelog z denotes the principal branch of the logarithm (withlog i = iπ
2
).

We have

f ′a(i) = aia−1

= a

(
cos

(a− 1)π

2
+ i sin

(a− 1)π

2

)
6= 0,

for anya 6= 0.
For an arbitrarily chosenz ∈ D we have:

f ′′a (z)

f ′a (z)
= (a− 1)

1

z

= −(a− 1) z

|z|2

> 0

http://jipam.vu.edu.au/
mailto:pascun@greenmtn.edu
http://jipam.vu.edu.au/


Convex Functions in a
Half-plane, II

Nicolae R. Pascu

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 13 of 17

J. Ineq. Pure and Appl. Math. 6(4) Art. 125, 2005

http://jipam.vu.edu.au

for anya < 1, and also

zf ′′a (z)

f ′a (z)
+ 1 = (a− 1) + 1

= a

> 0

for anya > 0.
It follows that the hypotheses of the previous theorem are satisfied for any

a ∈ (0, 1), and according to this theorem it follows that the functionfa(z) = za

(z ∈ D) is convex and univalent in the half-planeD for anya ∈ (0, 1).
It is easy to see that the functionfa(z) = za, z ∈ D, is convex and univalent

for any a ∈ (−1, 0) ∪ (0, 1), and therefore the previous theorem gives only
sufficient conditions for the convexity and univalence of an analytic function
defined in the upper half-planeD.

Remark 4. As shown in [4], the condition

f ′′ (z)

f ′ (z)
> 0, z ∈ D,

is a necessary condition (but not also a sufficient one) for an analytic function
in D to be convex and univalent inD.

However, in the case of a hydrodynamically normalized function, as shown
in Theorem1.1 (see [5] and [6]), this becomes also a sufficient condition for
the convexity and the univalence in the half-planeD. We recall that the hydro-
dynamic normalization used by Stankiewicz in is given by

(2.7) lim
z→∞,z∈D

(f (z)− z) = 0.
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In particular, in the case of analytic and hydrodynamically normalized func-
tions in the upper half-plane, from Theorem2.4we can obtain as a consequence
a new proof of the last cited result, namely a necessary and sufficient condition
for the convexity and the univalence of an analytic, hydrodynamically normal-
ized function defined in the half-plane, as follows:

Corollary 2.5. If the functionf : D → C is analytic and hydrodynamically
normalized by (1.2) in the half-planeD, and it satisfies

(2.8) f ′(z) 6= 0 for all z ∈ D

and

(2.9) Im
f ′′ (z)

f ′ (z)
> 0, for all z ∈ D,

then the functionf is convex and univalent in the half-planeD.

Proof. Sincef satisfies the hydrodynamic normalization condition

lim
z→∞,z∈D

(f (z)− z − ai) = 0,

for somea ≥ 0, it follows that for anyε′ > 0 there existsr > 0 such that for
z ∈ D with |z| > r we have:

|Im (f(z)− z − ai)| ≤ |f (z)− z − ai| < ε′,

and therefore we obtain

Im f (z) > Im z + a− ε′,
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for anyz ∈ D with |z| > r.
Choosingy0 = max {r, ε− a} and considering the auxiliary functiong :

D → C defined by
g (z) = f(z + 2iy0)

it follows that for allz ∈ D we have:

g (z) = f (z + 2iy0)

> z + 2y0 + a− ε

> y0 > 0,

which shows thatg : D → D.
Since the functionf is hydrodynamically normalized, the functiong is also

hydrodynamically normalized, and from Lemma1.2we obtain

lim
z→∞,z∈Tε

f ′(z + 2iy0) = lim
z→∞,z∈Tε

g′(z)

= lim
z→∞,z∈Tε

g (z)

z
= 1,

since from the hydrodynamic normalization condition we have

lim
z→∞,z∈D

g (z)

z
− 1 = lim

z→∞,z∈D

g (z)− z

z

=
lim

z→∞,z∈D
g(z)− z

limz→∞,z∈D z

=
ai

lim
z→∞,z∈D

z
= 0,
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and therefore we obtain lim
z→∞,z∈Tε

g(z)
z

= 1, for anyε ∈ (0, π
2
).

From Lemma1.3, applied to the functiong in the particular casen = 2, we
obtain:

lim
z→∞,z∈Tε

[
z2g′′ (z)

]
= 0,

for anyε ∈ (0, π
2
), and therefore we obtain

lim
z→∞,z∈Tε

[
z2f ′′ (z)

]
= lim

z→∞,z∈Tε

[
(z − 2iy0)

2g′′(z − 2iy0)
z2

(z − 2iy0)
2

]
= 0.

Since lim
z→∞,z∈D

f ′(z) = 1, we obtain

lim
z→∞,z∈Tε

zf ′′ (z)

f ′ (z)
= 0,

for anyε ∈ (0, π
2
).

It follows that for anyε ∈ (0, π
2
) arbitrarily fixed, there existsr0 > 0 such

that
zf ′′ (z)

f ′ (z)
+ 1 > 0,

for anyz ∈ Tε with |z| > r0.
Following the proof Theorem2.4 it can be seen that this inequality together

with the hypotheses (2.8) and (2.9) suffices for the proof, and therefore the
function f is convex and univalent in the half-planeD, concluding the proof.
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