Journal of Inequalities in Pure and Applied Mathematics

CONVEX FUNCTIONS IN A HALF-PLANE, II

NICOLAE R. PASCU

Green Mountain College One College Circle Poultney, VT 05764, USA.

EMail: pascun@greenmtn.edu URL: http://www.greenmtn.edu/faculty/pascu_nicolae.asp

volume 6, issue 4, article 125, 2005.

Received 13 August, 2005; accepted 17 October, 2005.

Communicated by: H.M. Srivastava

©2000 Victoria University ISSN (electronic): 1443-5756 241-05

Abstract

In the present paper we obtain new sufficient conditions for the univalence and convexity of an analytic function defined in the upper half-plane. In particular, in the case of hydrodynamically normalized functions, we obtain by a different method a known result concerning the convexity and univalence of an analytic function defined in a half-plane.

2000 Mathematics Subject Classification: 30C45. Key words: Univalent function, Convex function, Half-plane.

I dedicate this paper to the memory of my dear father, Professor Nicolae N. Pascu.

Contents

1	Introduction	3
2	Main Results	6
References		

Convex Functions in a Half-plane, II

Nicolae R. Pascu

J. Ineq. Pure and Appl. Math. 6(4) Art. 125, 2005 http://jipam.vu.edu.au

1. Introduction

In the present paper, we continue the work in [4], by obtaining new sufficient conditions for the convexity and univalence for analytic functions defined in the upper half-plane (Theorems 2.2, 2.3 and 2.4). In particular, under the additional hypothesis (1.2) below, they become necessary and sufficient conditions for convexity and univalence in a half-plane (Corollary 2.5), obtaining thus by a different method the results in [5] and [6].

We begin by establishing the notation and with some preliminary results needed for the proofs.

We denote by $D = \{z \in \mathbb{C} : \text{Im } z > 0\}$ the upper half-plane in \mathbb{C} and for $\varepsilon \in (0, \frac{\pi}{2})$ we let T_{ε} be the angular domain defined by:

(1.1)
$$T_{\varepsilon} = \left\{ z \in \mathbb{C}^* : \frac{\pi}{2} - \varepsilon < \arg(z) < \frac{\pi}{2} + \varepsilon \right\}.$$

We say that a function $f: D \to \mathbb{C}$ is *convex* if f is univalent in D and f(D) is a convex domain.

For an arbitrarily chosen positive real number $y_0 > 0$ we denote by \mathcal{A}_{y_0} the class of functions $f : D \to \mathbb{C}$ analytic in the upper half-plane D satisfying $f(iy_0) = 0$ and such that $f'(z) \neq 0$ for any $z \in D$. In particular, for $y_0 = 1$ we will denote $\mathcal{A}_1 = \mathcal{A}$.

We will refer to the following normalization condition for analytic functions $f: D \to \mathbb{C}$ as the *hydrodynamic normalization*:

(1.2)
$$\lim_{z \to \infty, z \in D} \left(f(z) - z \right) = ai,$$

J. Ineq. Pure and Appl. Math. 6(4) Art. 125, 2005 http://jipam.vu.edu.au

where $a \ge 0$ is a non-negative real number, and we will denote by \mathcal{H}_1 the class of analytic functions $f : D \to \mathbb{C}$ satisfying this condition in the particular case a = 0.

For analytic functions satisfying the above normalization condition, J. Stankiewicz and Z. Stankiewicz obtained (see [5] and [6]) the following necessary and sufficient condition for convexity and univalence in a half-plane:

Theorem 1.1. *If the function* $f \in \mathcal{H}_1$ *satisfies:*

(1.3)
$$f'(z) \neq 0, \quad \text{for all } z \in D$$

and

(1.4)
$$\operatorname{Im} \frac{f''(z)}{f'(z)} > 0, \quad \text{for all } z \in D,$$

then f is a convex function.

In order to prove our main result we need the following results from [2]:

Lemma 1.2. If the function $f : D \to D$ is analytic in D, then for any $\varepsilon \in (0, \frac{\pi}{2})$ the following limits exist and we have the equalities:

$$\lim_{z \to \infty, z \in T_{\varepsilon}} \frac{f(z)}{z} = \lim_{z \to \infty, z \in T_{\varepsilon}} f'(z) = c,$$

where $c \ge 0$ is a non-negative real number. Moreover, for any $z \in D$ we have the inequality

(1.5) $\operatorname{Im} f(z) \ge c \operatorname{Im} z,$

J. Ineq. Pure and Appl. Math. 6(4) Art. 125, 2005 http://jipam.vu.edu.au

and if there exists $z_0 \in D$ such that we have equality in the inequality (1.5), then there exists a real number a such that

$$f(z) = cz + a$$
, for all $z \in D$.

Lemma 1.3. If the function $f : D \to D$ is analytic in D and hydrodynamically normalized, then for any $\varepsilon \in (0, \frac{\pi}{2})$ and any natural number $n \ge 2$ we have

$$\lim_{z \to \infty, z \in T_{\varepsilon}} \left(z^n f^{(n)}(z) \right) = 0$$

Convex Functions in a Half-plane, II

Nicolae R. Pascu

J. Ineq. Pure and Appl. Math. 6(4) Art. 125, 2005 http://jipam.vu.edu.au

2. Main Results

Let us consider the family of domains $D_{r,s}$ in the complex plane, defined by

$$D_{r,s} = \{ z \in \mathbb{C} : |z| < r, \ \operatorname{Im} z > s \}$$

where r and s are positive real numbers, 0 < s < r (see Figure 1).

Let us note that for any r > 1 and 0 < s < 1 we have the inclusion $D_{r,s} \subset D$, and that for any $z \in D$ arbitrarily fixed, there exists $r_z > 0$ and $s_z > 0$ such that $z \in D_{r,s}$ for any $r > r_z$ and any $0 < s < s_z$ (for example, we can choose r_z and s_z such that they satisfy the conditions $r_z > |z|$ and $s_z \in (0, \text{Im } z)$).

We denote by $\Gamma_{r,s} = c_r \cup d_s$ the boundary of the domain $D_{r,s}$, where c_r and d_s are the arc of the circle, respectively the line segment, defined by:

$$\begin{cases} c_r = \{ z \in \mathbb{C} : |z| = r, \ z \ge s \} \\ d_s = \{ z \in \mathbb{C} : |z| \le r, \ z = s \} \end{cases}$$

The curve $\Gamma_{r,s}$ has an exterior normal vector at any point, except for the points a and b (with $\arg a < \arg b$) where the line segment d_s and the arc of the circle c_r meet (see Figure 1). The exterior normal vector to the curve $f(c_r)$ at the point f(z), with $z = re^{it} \in c_r$, $t \in (\arg a, \arg b)$, has the argument

(2.1)
$$\varphi(t) = \arg(zf'(z))$$

and the exterior normal vector to the curve $f(d_s)$ at the point f(z), with $z = x + is \in d_s$, $x \in (\operatorname{Re} b, \operatorname{Re} a)$, has the argument

(2.2)
$$\psi(x) = -\frac{\pi}{2} + \arg f'(x+is).$$

J. Ineq. Pure and Appl. Math. 6(4) Art. 125, 2005 http://jipam.vu.edu.au

Figure 1: The domain D_{rs} .

J. Ineq. Pure and Appl. Math. 6(4) Art. 125, 2005 http://jipam.vu.edu.au

Definition 2.1. We say that the function $f \in A$ is convex on the curve $\Gamma_{r,s}$ if the argument of the exterior normal vector to the curve $f(\Gamma_{r,s}) - \{f(a), f(b)\}$ is an increasing function.

Remark 1. In particular, the condition in the above theorem is satisfied if the functions φ and ψ defined by (2.1)–(2.2) are increasing functions.

Let us note that for $z = re^{it} \in c_r$, we have:

$$\frac{\partial}{\partial t}\log\left(re^{it}f'\left(re^{it}\right)\right) = i\left(\frac{re^{it}f''\left(re^{it}\right)}{f'\left(re^{it}\right)} + 1\right) = \frac{\partial}{\partial t}\ln\left|re^{it}f'\left(re^{it}\right)\right| + i\varphi'\left(t\right),$$

and for $z \in d_s$:

$$\frac{\partial}{\partial x}\log f'\left(x+is\right) = \frac{f''\left(x+is\right)}{f'\left(x+is\right)} = \frac{\partial}{\partial x}\ln\left|f'\left(x+is\right)\right| + i\psi'\left(x+is\right).$$

We obtain therefore

$$\varphi'(t) = \frac{re^{it}f''(re^{it})}{f'(re^{it})} + 1,$$

for $re^{it} \in c_r$, and

$$\psi'(x+is) = \frac{f''(x+is)}{f'(x+is)},$$

for $x + is \in d_s$, and from the previous observation it follows that if the function $f \in A$ satisfies the inequalities

(2.3)
$$\begin{cases} \frac{zf''(z)}{f'(z)} + 1 > 0, \quad z \in c_r \\ \frac{f''(z)}{f'(z)} > 0, \qquad z \in d_s \end{cases},$$

Quit

Page 8 of 17

J. Ineq. Pure and Appl. Math. 6(4) Art. 125, 2005 http://jipam.vu.edu.au

the function f is convex on the curve $\Gamma_{r,s}$, and therefore $f(D_{r,s})$ is a convex domain.

Since the function f has in the domain $D_{r,s}$ bounded by the curve $\Gamma_{r,s}$ a simple zero, from the argument principle it follows that the total variation of the argument of the function f on the curve $\Gamma_{r,s}$ is 2π , and therefore f is injective on the curve $\Gamma_{r,s}$. From the principle of univalence on the boundary, it follows that the function f is univalent $D_{r,s}$.

We obtained the following:

Theorem 2.1. If the function f belongs to the class A and there exist real numbers 0 < s < 1 < r such that conditions (2.3) are satisfied, then the function f is univalent in the domain $D_{r,s}$ and $f(D_{r,s})$ is a convex domain.

More generally, we have the following:

Theorem 2.2. If the function $f : D \to \mathbb{C}$ belongs to the class \mathcal{A} and there exist real numbers $0 < s_0 < 1 < r_0$ such that:

(2.4)
$$\operatorname{Re} \frac{zf''(z)}{f'(z)} + 1 > 0$$

for any $z \in D$ with $|z| > r_0$, and

$$\operatorname{Im} \frac{f''(z)}{f'(z)} > 0$$

for any $z \in D$ with $\text{Im } z < s_0$, then the function f is convex and univalent in the half-plane D.

J. Ineq. Pure and Appl. Math. 6(4) Art. 125, 2005 http://jipam.vu.edu.au

Proof. Let z_1 and z_2 be arbitrarily fixed distinct points in the half-plane D. For any $r > r^* = \max \{ |z_1|, |z_2| \}$ and any $s \in (0, s^*)$, where $s^* = \min \{ \operatorname{Im} z_1, \operatorname{Im} z_2 \}$, the points z_1 and z_2 belong to the domain $D_{r,s}$.

From the hypothesis (2.4) and (2.5) and using the Remark 1 it follows that for any $r > r_0$ and $s \in (0, s_0)$ the function f is univalent in the domain $D_{r,s}$, and that $f(D_{r,s})$ is a convex domain.

Therefore, choosing $r > \max \{r_0, r^*\}$ and $s \in (0, s_1)$, where $s_1 = \min \{s_0, s^*\}$, it follows that the points z_1 and z_2 belong to the domain $D_{r,s}$, and since the function f is univalent in the domain $D_{r,s}$, we obtain that $f(z_1) \neq f(z_2)$.

Since z_1 and z_2 were arbitrarily chosen in the half-plane D, it follows that the function f is univalent in D, concluding the first part of the proof.

In order to show that f(D) is a convex domain, we consider w_1 and w_2 arbitrarily fixed distinct points in f(D), and let $z_1 = f^{-1}(w_1)$ and $z_2 = f^{-1}(w_2)$ be their preimages.

Repeating the above proof it follows that the points z_1 and z_2 belong to the domain $D_{r,s}$ (for any $r > \max\{r_0, r^*\}$ and $s \in (0, s_1)$, where $s_1 = \min\{s_0, s^*\}$, in the notation above), and therefore we obtain that $w_1 = f(z_1) \in f(D_{r,s})$ and $w_2 = f(z_2) \in f(D_{r,s})$.

Since $f(D_{r,s})$ is a convex domain, it follows that the line segment $[w_1, w_2]$ is also contained in the domain $f(D_{r,s})$, and since $f(D_{r,s}) \subset f(D)$, we obtain that $[w_1, w_2] \subset f(D)$.

Since $w_1, w_2 \in f(D)$ were arbitrarily chosen, it follows that f(D) is a convex domain, concluding the proof.

Remark 2. The point $z_0 = i$, in which the functions f belonging to the class $\mathcal{A} = \mathcal{A}_1$ are normalized can be replaced by any point $z_0 = iy_0$, with $y_0 > iy_0$.

Convex Functions in a Half-plane, II

Nicolae R. Pascu

J. Ineq. Pure and Appl. Math. 6(4) Art. 125, 2005 http://jipam.vu.edu.au

0. Repeating the proof of the previous theorem with this new choice for the normalization condition, we obtain the following result which generalizes the previous theorem:

Theorem 2.3. If the function $f : D \to \mathbb{C}$ belongs to the class \mathcal{A}_{y_0} for some $y_0 > 0$, and there exist real numbers $0 < s_0 < y_0 < r_0$ such that

$$\begin{cases} \frac{zf''(z)}{f'(z)} + 1 > 0, \quad z \in D, \ |z| > r_0 \\ \frac{f''(z)}{f'(z)} > 0, \qquad z \in D, \ z \in (0, s_0) \end{cases}$$

,

then the function f is univalent and convex in the half-plane D.

Remark 3. By noticing that the function $f : D \to \mathbb{C}$ is convex and univalent in D if and only the function $\tilde{f} : D \to \mathbb{C}$, $\tilde{f}(z) = f(z) - f(iy_0)$ is convex and univalent in D, for any arbitrarily chosen point $y_0 > 0$, and replacing the function f in the previous theorem by $\tilde{f}(z) = f(z) - f(iy_0)$, we can eliminate from the hypothesis of this theorem the condition $f(iy_0) = 0$, obtaining the following more general result:

Theorem 2.4. If the function $f : D \to \mathbb{C}$ is analytic in D, satisfies $f'(z) \neq 0$ for all $z \in D$ and there exist real numbers $0 < s_0 < r_0$ such that the following inequalities hold:

(2.6)
$$\begin{cases} \frac{zf''(z)}{f'(z)} + 1 > 0, \quad z \in D, \ |z| > r_0 \\ \frac{f''(z)}{f'(z)} > 0, \qquad z \in D, \ z \in (0, s_0) \end{cases}$$

J. Ineq. Pure and Appl. Math. 6(4) Art. 125, 2005 http://jipam.vu.edu.au

then the function f is convex and univalent in the half-plane D. **Example 2.1.** For $a \in \mathbb{R}$, consider the function $f_a : D \to \mathbb{C}$ defined by

$$f_a\left(z\right) = z^a, \quad z \in D,$$

where we have chosen the determination of the power function corresponding to the principal branch of the logarithm, that is:

$$z^a = e^{a\log z}, \quad z \in D,$$

where $\log z$ denotes the principal branch of the logarithm (with $\log i = i\frac{\pi}{2}$). We have

$$f'_{a}(i) = ai^{a-1} \\ = a\left(\cos\frac{(a-1)\pi}{2} + i\sin\frac{(a-1)\pi}{2}\right) \\ \neq 0,$$

for any $a \neq 0$.

For an arbitrarily chosen $z \in D$ we have:

$$\frac{f_{a}''(z)}{f_{a}'(z)} = (a-1) \frac{1}{z} \\ = -\frac{(a-1) z}{|z|^{2}} \\ > 0$$

J. Ineq. Pure and Appl. Math. 6(4) Art. 125, 2005 http://jipam.vu.edu.au

for any a < 1, and also

$$\frac{zf_{a}''(z)}{f_{a}'(z)} + 1 = (a - 1) + 1$$

= a
> 0

for any a > 0.

It follows that the hypotheses of the previous theorem are satisfied for any $a \in (0, 1)$, and according to this theorem it follows that the function $f_a(z) = z^a$ $(z \in D)$ is convex and univalent in the half-plane D for any $a \in (0, 1)$.

It is easy to see that the function $f_a(z) = z^a$, $z \in D$, is convex and univalent for any $a \in (-1,0) \cup (0,1)$, and therefore the previous theorem gives only sufficient conditions for the convexity and univalence of an analytic function defined in the upper half-plane D.

Remark 4. As shown in [4], the condition

$$\frac{f''(z)}{f'(z)} > 0, \quad z \in D,$$

is a necessary condition (but not also a sufficient one) for an analytic function in D to be convex and univalent in D.

However, in the case of a hydrodynamically normalized function, as shown in Theorem 1.1 (see [5] and [6]), this becomes also a sufficient condition for the convexity and the univalence in the half-plane D. We recall that the hydrodynamic normalization used by Stankiewicz in is given by

(2.7)
$$\lim_{z \to \infty, z \in D} \left(f\left(z\right) - z \right) = 0.$$

J. Ineq. Pure and Appl. Math. 6(4) Art. 125, 2005 http://jipam.vu.edu.au

In particular, in the case of analytic and hydrodynamically normalized functions in the upper half-plane, from Theorem 2.4 we can obtain as a consequence a new proof of the last cited result, namely a necessary and sufficient condition for the convexity and the univalence of an analytic, hydrodynamically normalized function defined in the half-plane, as follows:

Corollary 2.5. If the function $f : D \to \mathbb{C}$ is analytic and hydrodynamically normalized by (1.2) in the half-plane D, and it satisfies

(2.8)
$$f'(z) \neq 0 \quad \text{for all } z \in D$$

and

(2.9)
$$\operatorname{Im} \frac{f''(z)}{f'(z)} > 0, \quad \text{for all } z \in D,$$

then the function f is convex and univalent in the half-plane D.

Proof. Since f satisfies the hydrodynamic normalization condition

$$\lim_{z \to \infty, z \in D} (f(z) - z - ai) = 0,$$

for some $a \ge 0$, it follows that for any $\varepsilon' > 0$ there exists r > 0 such that for $z \in D$ with |z| > r we have:

$$\left|\operatorname{Im}\left(f(z) - z - ai\right)\right| \le \left|f\left(z\right) - z - ai\right| < \varepsilon',$$

and therefore we obtain

$$\operatorname{Im} f\left(z\right) > \operatorname{Im} z + a - \varepsilon',$$

Go Back

Close

Quit

Page 14 of 17

J. Ineq. Pure and Appl. Math. 6(4) Art. 125, 2005 http://jipam.vu.edu.au for any $z \in D$ with |z| > r.

Choosing $y_0 = \max\{r, \varepsilon - a\}$ and considering the auxiliary function $g: D \to \mathbb{C}$ defined by

$$g\left(z\right) = f(z + 2iy_0)$$

it follows that for all $z \in D$ we have:

$$g(z) = f(z + 2iy_0)$$

> $z + 2y_0 + a - \varepsilon$
> $y_0 > 0$,

which shows that $g: D \to D$.

Since the function f is hydrodynamically normalized, the function g is also hydrodynamically normalized, and from Lemma 1.2 we obtain

$$\lim_{z \to \infty, z \in T_{\varepsilon}} f'(z + 2iy_0) = \lim_{z \to \infty, z \in T_{\varepsilon}} g'(z)$$
$$= \lim_{z \to \infty, z \in T_{\varepsilon}} \frac{g(z)}{z} = 1,$$

since from the hydrodynamic normalization condition we have

$$\lim_{z \to \infty, z \in D} \frac{g(z)}{z} - 1 = \lim_{z \to \infty, z \in D} \frac{g(z) - z}{z}$$
$$= \frac{\lim_{z \to \infty, z \in D} g(z) - z}{\lim_{z \to \infty, z \in D} z}$$
$$= \frac{ai}{\lim_{z \to \infty, z \in D} z} = 0,$$

J. Ineq. Pure and Appl. Math. 6(4) Art. 125, 2005 http://jipam.vu.edu.au

and therefore we obtain $\lim_{z\to\infty,z\in T_{\varepsilon}}\frac{g(z)}{z}=1$, for any $\varepsilon\in(0,\frac{\pi}{2})$.

From Lemma 1.3, applied to the function g in the particular case n = 2, we obtain:

$$\lim_{z \to \infty, z \in T_{\varepsilon}} \left[z^2 g''(z) \right] = 0,$$

for any $\varepsilon \in (0, \frac{\pi}{2})$, and therefore we obtain

$$\lim_{z \to \infty, z \in T_{\varepsilon}} \left[z^2 f''(z) \right] = \lim_{z \to \infty, z \in T_{\varepsilon}} \left[(z - 2iy_0)^2 g''(z - 2iy_0) \frac{z^2}{(z - 2iy_0)^2} \right] = 0.$$

Since $\lim_{z\to\infty,z\in D} f'(z) = 1$, we obtain

$$\lim_{z \to \infty, z \in T_{\varepsilon}} \frac{z f''(z)}{f'(z)} = 0,$$

for any $\varepsilon \in (0, \frac{\pi}{2})$.

It follows that for any $\varepsilon \in (0, \frac{\pi}{2})$ arbitrarily fixed, there exists $r_0 > 0$ such that

$$\frac{zf''(z)}{f'(z)} + 1 > 0$$

for any $z \in T_{\varepsilon}$ with $|z| > r_0$.

Following the proof Theorem 2.4 it can be seen that this inequality together with the hypotheses (2.8) and (2.9) suffices for the proof, and therefore the function f is convex and univalent in the half-plane D, concluding the proof.

J. Ineq. Pure and Appl. Math. 6(4) Art. 125, 2005 http://jipam.vu.edu.au

References

- [1] F.G. AVHADIEV, Some univalent mappings of the half-plane (Russian), *Trudy Sem. Kraev. Zadačam Vyp.*, **11** (1974), 3–8.
- [2] N.R. PASCU, Some properties of Caratheodory functions in the half-plane (to appear).
- [3] N.N. PASCU, On univalent functions in a half-plane, *Studia Univ. "Babeş-Bolyai", Math.*, **46**(2) (2001), 93–96.
- [4] N.N. PASCU AND N.R. PASCU, Convex functions functions in a halfplane, J. Inequal. Pure Appl. Math., 4(5) (2003), Art. 102. [ONLINE http://jipam.vu.edu.au/article.php?sid=343].
- [5] J. STANKIEWICZ AND Z. STANKIEWICZ, On the classes of functions regular in a half-plane I, *Bull. Polish Acad. Sci. Math.*, **39**(1-2) (1991), 49– 56.
- [6] J. STANKIEWICZ, Geometric properties of functions regular in a halfplane, *Current Topics in Analytic Function Theory*, World Sci. Publishing, River Edge NJ, pp. 349–362 (1992).

J. Ineq. Pure and Appl. Math. 6(4) Art. 125, 2005 http://jipam.vu.edu.au