Journal of Inequalities in Pure and Applied Mathematics

SOME ESTIMATES ON THE WEAKLY CONVERGENT SEQUENCE COEFFICIENT IN BANACH SPACES

FENGHUI WANG AND HUANHUAN CUI

Department of Mathematics Luoyang Normal University Luoyang 471022, China.

EMail: wfenghui@163.com

P A

volume 7, issue 5, article 161, 2006.

Received 21 September, 2006; accepted 13 October, 2006.

Communicated by: S.S. Dragomir

©2000 Victoria University ISSN (electronic): 1443-5756 241-06

Abstract

In this paper, we study the weakly convergent sequence coefficient and obtain its estimates for some parameters in Banach spaces, which give some sufficient conditions for a Banach space to have normal structure.

2000 Mathematics Subject Classification: 46B20.

Key words: Weakly convergent sequence coefficient; James constant; Von Neumann-Jordan constant; Modulus of smoothness.

The authors would like to thank the referee for his helpful suggestions.

Contents

1	Introduction	3
2	Main Results	5
Refe	erences	

Some Estimates on the Weakly Convergent Sequence Coefficient in Banach Spaces

J. Ineq. Pure and Appl. Math. 7(5) Art. 161, 2006 http://jipam.vu.edu.au

1. Introduction

A Banach space X said to have (weak) normal structure provided for every (weakly compact) closed bounded convex subset C of X with $\operatorname{diam}(C) > 0$, contains a nondiametral point, i.e., there exists $x_0 \in C$ such that $\sup\{||x - x_0|| : x \in C\} < \operatorname{diam}(C)$. It is clear that normal structure and weak normal structure coincides when X is reflexive.

The weakly convergent sequence coefficient WCS(X), a measure of weak normal structure, was introduced by Bynum in [3] as the following.

Definition 1.1. The weakly convergent sequence coefficient of X is defined by

(1.1) WCS(X)= $\inf \left\{ \frac{\operatorname{diam}_a(\{x_n\})}{r_a(\{x_n\})} : \{x_n\} \text{ is a weakly convergent sequence} \right\},$

where diam_a({ x_n }) = lim sup_{$k\to\infty$} { $||x_n - x_m|| : n, m \ge k$ } is the asymptotic diameter of { x_n } and $r_a({x_n}) = inf{lim sup_{n\to\infty} ||x_n - y|| : y \in co({x_n}) is the asymptotic radius of {<math>x_n$ }.

One of the equivalent forms of WCS(X) is

$$WCS(X) = \inf \left\{ \lim_{n,m,n \neq m} \|x_n - x_m\| : x_n \xrightarrow{w} 0, \|x_n\| = 1 \right\}$$

and
$$\lim_{n,m,n \neq m} \|x_n - x_m\| \text{ exists}$$

Some Estimates on the Weakly Convergent Sequence Coefficient in Banach Spaces

J. Ineq. Pure and Appl. Math. 7(5) Art. 161, 2006 http://jipam.vu.edu.au

Obviously, $1 \le WCS(X) \le 2$, and it is well known that WCS(X) > 1 implies that X has a weak normal structure.

The constant R(a, X), which is a generalized García-Falset coefficient [10], was introduced by Domínguez [7] as: For a given real number a > 0,

(1.2)
$$R(a, X) = \sup\left\{\liminf_{n \to \infty} \|x + x_n\|\right\},$$

where the supremum is taken over all $x \in X$ with $||x|| \le a$ and all weakly null sequences $\{x_n\} \subseteq B_X$ such that

(1.3)
$$\lim_{n,m,n\neq m} \|x_n - x_m\| \le 1.$$

We shall assume throughout this paper that B_X and S_X to denote the unit ball and unit sphere of X, respectively. $x_n \xrightarrow{w} x$ stands for weak convergence of sequence $\{x_n\}$ in X to a point x in X.

Some Estimates on the Weakly Convergent Sequence Coefficient in Banach Spaces

J. Ineq. Pure and Appl. Math. 7(5) Art. 161, 2006 http://jipam.vu.edu.au

2. Main Results

The *James constant*, or the *nonsquare constant*, was introduced by Gao and Lau in [8] as

$$J(X) = \sup\{ ||x + y|| \land ||x - y|| : x, y \in S_X \}$$

= sup{ ||x + y|| \land ||x - y|| : x, y \in B_X }

A relation between the constant R(1, X) and the James constant J(X) can be found in [6, 12]:

$$R(1,X) \le J(X).$$

We now state an inequality between the James constant J(X) and the weakly convergent sequence coefficient WCS(X).

Theorem 2.1. Let X be a Banach space with the James constant J(X). Then

(2.1)
$$WCS(X) \ge \frac{J(X) + 1}{(J(X))^2}.$$

Proof. If J(X) = 2, it suffices to note that $WCS(X) \ge 1$. Thus our estimate is a trivial one.

If J(X) < 2, then X is reflexive. Let $\{x_n\}$ be a weakly null sequence in S_X . Assume that $d = \lim_{n,m,n \neq m} ||x_n - x_m||$ exists and consider a normalized functional sequence $\{x_n^*\}$ such that $x_n^*(x_n) = 1$. Note that the reflexivity of X guarantees, by passing through the subsequence, that there exists $x^* \in X^*$ such that $x_n^* \xrightarrow{w} x^*$. Let $0 < \epsilon < 1$ and choose N large enough so that $|x^*(x_N)| < \epsilon/2$ and

$$d - \epsilon < \|x_N - x_m\| < d + \epsilon$$

J. Ineq. Pure and Appl. Math. 7(5) Art. 161, 2006 http://jipam.vu.edu.au

for all m > N. Note that

$$\lim_{n,m,n\neq m} \left\| \frac{x_n - x_m}{d + \epsilon} \right\| \le 1 \qquad \text{and} \qquad \left\| \frac{x_N}{d + \epsilon} \right\| \le 1$$

Then by the definition of R(1, X), we can choose M > N large enough such that

$$\left\|\frac{x_N + x_M}{d + \epsilon}\right\| \le R(1, X) + \epsilon \le J(X) + \epsilon, \qquad |(x_M^* - x^*)(x_N)| < \epsilon/2,$$

and $|x_N^*(x_M)| < \epsilon$. Hence

$$|x_M^*(x_N)| \le |(x_M^* - x^*)(x_N)| + |x^*(x_N)| < \epsilon.$$

Put $\alpha = J(X)$,

$$x = \frac{x_N - x_M}{d + \epsilon}$$
, and $y = \frac{x_N + x_M}{(d + \epsilon)(\alpha + \epsilon)}$.

It follows that $||x|| \le 1$, $||y|| \le 1$, and also that

$$\begin{aligned} |x+y|| &= \frac{1}{(d+\epsilon)(\alpha+\epsilon)} \left\| (\alpha+1+\epsilon)x_N - (\alpha-1+\epsilon)x_M \right\| \\ &\geq \frac{1}{(d+\epsilon)(\alpha+\epsilon)} \left((\alpha+1+\epsilon)x_N^*(x_N) - (\alpha-1+\epsilon)x_N^*(x_M) \right) \\ &\geq \frac{\alpha+1-\epsilon}{(d+\epsilon)(\alpha+\epsilon)}, \end{aligned}$$

Some Estimates on the Weakly Convergent Sequence Coefficient in Banach Spaces

J. Ineq. Pure and Appl. Math. 7(5) Art. 161, 2006 http://jipam.vu.edu.au

$$\|x - y\| = \frac{1}{(d+\epsilon)(\alpha+\epsilon)} \|(\alpha+1+\epsilon)x_M - (\alpha-1+\epsilon)x_N\|$$

$$\geq \frac{1}{(d+\epsilon)(\alpha+\epsilon)} ((\alpha+1+\epsilon)x_M^*(x_M) - (\alpha-1+\epsilon)x_M^*(x_N))$$

$$\geq \frac{\alpha+1-\epsilon}{(d+\epsilon)(\alpha+\epsilon)}.$$

Thus, from the definition of the James constant,

$$J(X) \ge \frac{\alpha + 1 - \epsilon}{(d + \epsilon)(\alpha + \epsilon)} = \frac{J(X) + 1 - \epsilon}{(d + \epsilon)(J(X) + \epsilon)}$$

Letting $\epsilon \to 0$, we get

$$d \ge \frac{J(X)+1}{(J(X))^2}.$$

Since the sequence $\{x_n\}$ is arbitrary, we get the inequality (2.1).

As an application of Theorem 2.1, we can obtain a sufficient condition for X to have normal structure in terms of the James constant.

Corollary 2.2 ([4, Theorem 2.1]). Let X be a Banach space with $J(X) < (1 + \sqrt{5})/2$. Then X has normal structure.

The modulus of smoothness [14] of X is the function $\rho_X(\tau)$ defined by

$$\rho_X(\tau) = \sup\left\{\frac{\|x + \tau y\| + \|x - \tau y\|}{2} - 1 : x, y \in S_X\right\}.$$

Some Estimates on the Weakly Convergent Sequence Coefficient in Banach Spaces

J. Ineq. Pure and Appl. Math. 7(5) Art. 161, 2006 http://jipam.vu.edu.au

It is readily seen that for any $x, y \in S_X$,

$$||x \pm y|| \le ||x \pm \tau y|| + (1 - \tau) \qquad (0 < \tau \le 1),$$

which implies that $J(X) \leq \rho_X(\tau) + 2 - \tau$.

In [2], Baronti et al. introduced a constant $A_2(X)$, which is defined by

$$A_2(X) = \rho_X(1) + 1 = \sup\left\{\frac{\|x+y\| + \|x-y\|}{2} : x, y \in S_X\right\}.$$

It is worth noting that $A_2(X) = A_2(X^*)$.

We now state an inequality between the modulus of smoothness $\rho_X(\tau)$ and the weakly convergent sequence coefficient WCS(X).

Theorem 2.3. Let X be a Banach space with the modulus of smoothness $\rho_X(\tau)$. Then for any $0 < \tau \le 1$,

(2.2)
$$WCS(X) \ge \frac{\rho_X(\tau) + 2}{(\rho_X(\tau) + 1)(\rho_X(\tau) - \tau + 2)}.$$

Proof. Let $0 < \tau \leq 1$. If $\rho_X(\tau) = \tau$, it suffices to note that

$$\frac{\rho_X(\tau) + 2}{(\rho_X(\tau) + 1)(\rho_X(\tau) - \tau + 2)} = \frac{\tau + 2}{2(\tau + 1)} \le 1.$$

Thus our estimate is a trivial one.

If $\rho_X(\tau) < \tau$, then X is reflexive. Let $\{x_n\}$ be a weakly null sequence in S_X . Assume that $d = \lim n, m, n \neq m ||x_n - x_m||$ exists and consider a normalized

Some Estimates on the Weakly Convergent Sequence Coefficient in Banach Spaces

J. Ineq. Pure and Appl. Math. 7(5) Art. 161, 2006 http://jipam.vu.edu.au

functional sequence $\{x_n^*\}$ such that $x_n^*(x_n) = 1$. Note that the reflexivity of X guarantees that there exists $x^* \in X^*$ such that $x_n^* \xrightarrow{w} x^*$. Let $\epsilon > 0$ and x_M, x_N, x and y selected as in Theorem 2.1. Similarly, we get

$$||x \pm \tau y|| \ge \frac{\alpha(\tau) + \tau - \epsilon}{(d + \epsilon)(\alpha(\tau) + \epsilon)},$$

where $\alpha(\tau) = \rho_X(\tau) + 2 - \tau$. Then by the definition of $\rho_X(\tau)$, we obtain

$$\rho_X(\tau) \ge \frac{\alpha(\tau) + \tau - \epsilon}{(d+\epsilon)(\alpha(\tau) + \epsilon)} - 1.$$

Letting $\epsilon \to 0$,

$$\rho_X(\tau) + 1 \ge \frac{\alpha(\tau) + \tau}{d\alpha(\tau)} = \frac{\rho_X(\tau) + 2}{d(\rho_X(\tau) - \tau + 2)},$$

which gives that

$$d \ge \frac{\rho_X(\tau) + 2}{(\rho_X(\tau) + 1)(\rho_X(\tau) - \tau + 2)}.$$

Since the sequence $\{x_n\}$ is arbitrary, we get the inequality (2.2).

It is known that if $\rho_X(\tau) < \tau/2$ for some $\tau > 0$, then X has normal structure (see [9]). Using Theorem 2.3, We can improve this result in the following form:

Corollary 2.4. Let X be a Banach space with

$$\rho_X(\tau) < \frac{\tau - 2 + \sqrt{\tau^2 + 4}}{2}$$

for some $\tau \in (0,1]$. Then X has normal structure. In particular, if $A_2(X) < (1 + \sqrt{5})/2$, then X and its dual X^{*} have normal structure.

Some Estimates on the Weakly Convergent Sequence Coefficient in Banach Spaces

J. Ineq. Pure and Appl. Math. 7(5) Art. 161, 2006 http://jipam.vu.edu.au

In connection with a famous work of Jordan-von Neumann concerning inner products, the *Jordan-von Neumann constant* $C_{NJ}(X)$ of X was introduced by Clarkson (cf. [1, 11]) as

$$C_{\rm NJ}(X) = \sup\left\{\frac{\|x+y\|^2 + \|x-y\|^2}{2(\|x\|^2 + \|y\|^2)} : x, y \in X \text{ and not both zero}\right\}.$$

A relationship between J(X) and $C_{NJ}(X)$ is found in ([11] Theorem 3): $J(X) \le \sqrt{2C_{NJ}(X)}$.

In [5], Dhompongsa et al. proved the following inequality (2.3). We now restate this inequality without the ultra product technique and the fact $C_{NJ}(X) = C_{NJ}(X^*)$.

Theorem 2.5 ([5] Theorem 3.8). Let X be a Banach space with the von Neumann-Jordan constant $C_{NJ}(X)$. Then

(2.3)
$$(WCS(X))^2 \ge \frac{2C_{\rm NJ}(X) + 1}{2(C_{\rm NJ}(X))^2}.$$

Proof. If $C_{NJ}(X) = 2$, it suffices to note that $WCS(X) \ge 1$. Thus our estimates is a trivial one.

If $C_{\rm NJ}(X) < 2$, then X is reflexive. Let $\{x_n\}$ be a weakly null sequence in S_X . Assume that $d = \lim_{n,m,n \neq m} ||x_n - x_m||$ exists and consider a normalized functional sequence $\{x_n^*\}$ such that $x_n^*(x_n) = 1$. Note that the reflexivity of X gurantees that there exists $x^* \in X^*$ such that $x_n^* \xrightarrow{w} x^*$. Let $\epsilon > 0$ and choose N large enough so that $|x^*(x_N)| < \epsilon/2$ and

$$d - \epsilon < \|x_N - x_m\| < d + \epsilon$$

Some Estimates on the Weakly Convergent Sequence Coefficient in Banach Spaces

J. Ineq. Pure and Appl. Math. 7(5) Art. 161, 2006 http://jipam.vu.edu.au

for all m > N. Note that

$$\lim_{n,m,n\neq m} \left\| \frac{x_n - x_m}{d + \epsilon} \right\| \le 1 \quad \text{and} \quad \left\| \frac{x_N}{d + \epsilon} \right\| \le 1.$$

Then by the definition of R(1, X), we can choose M > N large enough such that

$$\left\|\frac{x_N - x_M}{d + \epsilon}\right\| \le R(1, X) + \epsilon \le \sqrt{2C_{\rm NJ}(X)} + \epsilon, \quad |(x_M^* - x^*)(x_N)| < \epsilon/2,$$

and $|x_N^*(x_M)| < \epsilon$. Hence

$$\begin{split} |x_M^*(x_N)| < |(x_M^* - x^*)(x_N))| + |x^*(x_N)| < \epsilon. \\ \text{Put } \alpha = \sqrt{2C_{\text{NJ}}(X)}, \, x = \alpha^2(x_N - x_M), \, y = x_N + x_M. \text{ It follows that } \|x\| \leq \alpha^2(d + \epsilon), \, \|y\| \leq (\alpha + \epsilon)(d + \epsilon), \text{ and also that} \end{split}$$

$$||x + y|| = ||(\alpha^{2} + 1)x_{N} - (\alpha^{2} - 1)x_{M}||$$

$$\geq (\alpha^{2} + 1)x_{N}^{*}(x_{N}) - (\alpha^{2} - 1)x_{N}^{*}(x_{M})$$

$$\geq \alpha^{2} + 1 - 3\epsilon,$$

$$||x - y|| = ||(\alpha^{2} + 1)x_{M} - (\alpha^{2} - 1)x_{N}||$$

$$\geq (\alpha^{2} + 1)x_{M}^{*}(x_{M}) - (\alpha^{2} - 1)x_{M}^{*}(x_{N})$$

$$\geq \alpha^{2} + 1 - 3\epsilon.$$

Thus, from the definition of the von Neumann-Jordan constant,

$$C_{\rm NJ}(X) \ge \frac{2(\alpha^2 + 1 - 3\epsilon)^2}{2(\alpha^4(d+\epsilon)^2 + (\alpha+\epsilon)^2(d+\epsilon)^2)}$$
$$= \frac{1}{(d+\epsilon)^2} \cdot \frac{(\alpha^2 + 1 - 3\epsilon)^2}{\alpha^4 + (\alpha+\epsilon)^2}.$$

Some Estimates on the Weakly Convergent Sequence Coefficient in Banach Spaces

J. Ineq. Pure and Appl. Math. 7(5) Art. 161, 2006 http://jipam.vu.edu.au

Since ϵ is arbitrary and $\alpha = \sqrt{2C_{\rm NJ}(X)}$, we get

$$C_{\mathrm{NJ}}(X) \geq \frac{1}{d^2} \left(1 + \frac{1}{\alpha^2} \right) = \frac{2C_{\mathrm{NJ}}(X) + 1}{d^2 \cdot 2C_{\mathrm{NJ}}(X)},$$

which implies that

$$d^2 \ge \frac{2C_{\rm NJ}(X) + 1}{2(C_{\rm NJ}(X))^2}.$$

Since the sequence $\{x_n\}$ is arbitrary, we obtain the inequality (2.3).

Using Theorem 2.5, we can get a sufficient condition for X to have normal structure in terms of the von Neumann-Jordan constant.

Corollary 2.6 ([6, Theorem 3.16], [13, Theorem 2]). Let X be a Banach space with $C_{NJ}(X) < (1 + \sqrt{3})/2$. Then X and its dual X^{*} have normal structure.

Some Estimates on the Weakly Convergent Sequence Coefficient in Banach Spaces

J. Ineq. Pure and Appl. Math. 7(5) Art. 161, 2006 http://jipam.vu.edu.au

References

- [1] J.A. CLARKSON, The von Neumann-Jordan constant for the Lebesgue space, *Ann. of Math.*, **38** (1937) 114–115.
- [2] M. BARONTI, E. CASINI AND P.L. PAPINI, Triangles inscribed in a semicircle, in Minkowski planes, and in normed spaces, J. Math. Anal. Appl., 252 (2000), 124–146.
- [3] W.L. BYNUM, Normal structure coefficients for Banach spaces, *Pacific. J. Math.*, **86** (1980), 427–436.
- [4] S. DHOMPONGSA, A. KAEWKHAO AND S. TASENA, On a generalized James constant, J. Math. Anal. Appl., 285 (2003), 419–435.
- [5] S. DHOMPONGSA, T. DOMINGUEZ BENAVIDES, A. KAEWCHAROEN, A. KAEWKHAO AND B. PANYANAK, The Jordan[•]Cvon Neumann constants and fixed points for multivalued nonexpansive mappings, *J. Math. Anal. Appl.*, **320** (2006), 916–927.
- [6] S. DHOMPONGSA AND A. KAEWKHAO, A note on properties that imply the fixed point property, *Abstr. Appl. Anal.*, 2006 (2006), Article ID 34959.
- [7] T. DOMINGUEZ BENAVIDES, A geometrical coefficient impling the fixed point prpperty and stability results, *Houston J. Math.*, 22 (1996) 835– 849.
- [8] J. GAO AND K. S. LAU, On two classes Banach spaces with uniform normal structure, *Studia Math.*, **99** (1991), 41–56.

Some Estimates on the Weakly Convergent Sequence Coefficient in Banach Spaces

J. Ineq. Pure and Appl. Math. 7(5) Art. 161, 2006 http://jipam.vu.edu.au

- [9] J. GAO, Normal structure and smoothness in Banach spaces, *J. Nonlinear Functional Anal. Appl.*, **10** (2005), 103–115.
- [10] J. GARCIA-FALSET, Stability and fixed point for nonexpansive mappings, *Houston J. Math.*, 20 (1994) 495–506.
- [11] M. KATO, L. MALIGRANDA AND Y. TAKAHASHI, On James and Jordan-von Neumann constants and normal structure coefficient of Banach spaces, *Studia Math.*, **114** (2001), 275–295.
- [12] E.M. MAZCUÑÁN-NAVARRO, Geometry of Banach spaces in metric fixed point theory, Ph.D. thesis, University of Valencia, Valencia, 2003.
- [13] S. SAEJUNG, On James and von Neumann-Jordan constants and sufficient conditions for the fixed point property, J. Math. Anal. Appl., 323 (2006), 1018–1024.
- [14] J. LINDENSTRAUSS, On the modulus of smoothness and divergent series in Banach spaces, *Michigan Math. J.*, **10** (1963), 241–252.

Some Estimates on the Weakly Convergent Sequence Coefficient in Banach Spaces

J. Ineq. Pure and Appl. Math. 7(5) Art. 161, 2006 http://jipam.vu.edu.au