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ABSTRACT. This paper is a corrigendum on a paper published in an earlier volume of JIPAM,
ŚNote on an open problemŠ, published in JIPAM, Vol. 8, No. 2. (2007), Article 58.http:
//jipam.vu.edu.au/article.php?sid=871 .
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The conditions∫ b

x

f(t)dt ≤
∫ b

x

(t− a)dt

(
resp.

∫ b

x

f(t)dt ≥
∫ b

x

(t− a)dt

)
, ∀x ∈ [a, b],

given in Lemma 1.1, Theorem 2.1 and Theorem 2.3 [1] are not sufficient to prove the following
results

f(x) ≤ x− a (resp.f(x) ≥ x− a) .

And clearly, the mistake appears in line 5 of the proof of Lemma 1.1 [1].
It is easy to give counter examples for the above lemma. If we choose,f(x) = 1

3
, a = 0

andb = 1, then the first part of the assumptions of Lemma 1.1 givesx ≤ 1
3

and also, since
f(x) ≤ x− a, we have1

3
≤ x. This is a contradiction.

In fact, the following conditionsf ′(x) ≥ 1 (resp.f ′(x) ≥ 1), ∀ x ∈ (a, b) should be added
in the first (resp. second) part of the assumptions of Lemma 1.1, Theorem 2.1 and Theorem 2.3.
Therefore, Lemma 1.1 becomes:

Lemma 1. Letf(x) be a nonnegative function, continuous on[a, b] and differentiable on(a, b).
If

∫ b

x
f(t)dt ≤

∫ b

x
(t− a)dt, ∀x ∈ [a, b], andf ′(x) ≥ 1, ∀x ∈ (a, b), then,

(1) f(x) ≤ x− a.

I would like to express deep gratitude to Tibor Pogany and Quôc Anh Ngô for their comments and the successful completion of this note.
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If
∫ b

x
f(t)dt ≥

∫ b

x
(t− a)dt, ∀x ∈ [a, b], andf ′(x) ≤ 1, ∀x ∈ (a, b), then

(2) f(x) ≥ x− a.

Proof. In order to prove (1), set

G(x) =

(∫ b

x

[f(t)− (t− a)]dt

)
(x− a− f(x)) , ∀x ∈ [a, b],

we have

G′(x) = (x− a− f(x))2 +

(∫ b

x

[f(t)− (t− a)]dt

)
(1− f ′(x)) .

If
∫ b

x
f(t)dt ≤

∫ b

x
(t − a)dt, andf ′(x) ≥ 1, thenG′(x) ≥ 0, G(x) increases andG(x) ≤ 0,

sinceG(b) = 0, that is,x− a− f(x) ≥ 0, so thatf(x) ≤ x− a.

Similarly, if
∫ b

x
f(t)dt ≥

∫ b

x
(t− a)dt andf ′(x) ≤ 1, we obtainG′(x) ≥ 0, andG(x) ≤ 0, that

is, f(x) ≥ x− a. �

Remark 1. In the second part of Example 2.1, the functionf(t) = t − π
2

+ cos t should be
replaced byf(t) = t− π

2
− sin t.
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