CORRIGENDUM OF THE PAPER ENTITLED: NOTE ON AN OPEN PROBLEM

LAZHAR BOUGOFFA
Department of Mathematics
Faculty Science
Al-Imam muhammad Ibn Saud Islamic University
P.O.Box 84880, Riyadh 11681, Saudi Arabia
bougoffa@hotmail.com

Received 22 July, 2007; accepted 04 December, 2007
Communicated by P.S. Bullen

[^0]Key words and phrases: Corrigendum.
2000 Mathematics Subject Classification 26D15.

The conditions

$$
\int_{x}^{b} f(t) d t \leq \int_{x}^{b}(t-a) d t \quad\left(\text { resp. } \int_{x}^{b} f(t) d t \geq \int_{x}^{b}(t-a) d t\right), \quad \forall x \in[a, b]
$$

given in Lemma 1.1, Theorem 2.1 and Theorem 2.3 [1] are not sufficient to prove the following results

$$
f(x) \leq x-a \quad(\text { resp. } f(x) \geq x-a)
$$

And clearly, the mistake appears in line 5 of the proof of Lemma 1.1 [1].
It is easy to give counter examples for the above lemma. If we choose, $f(x)=\frac{1}{3}, a=0$ and $b=1$, then the first part of the assumptions of Lemma 1.1 gives $x \leq \frac{1}{3}$ and also, since $f(x) \leq x-a$, we have $\frac{1}{3} \leq x$. This is a contradiction.

In fact, the following conditions $f^{\prime}(x) \geq 1$ (resp. $\left.f^{\prime}(x) \geq 1\right), \forall x \in(a, b)$ should be added in the first (resp. second) part of the assumptions of Lemma 1.1, Theorem 2.1 and Theorem 2.3. Therefore, Lemma 1.1 becomes:

Lemma 1. Let $f(x)$ be a nonnegative function, continuous on $[a, b]$ and differentiable on (a, b). If $\int_{x}^{b} f(t) d t \leq \int_{x}^{b}(t-a) d t, \forall x \in[a, b]$, and $f^{\prime}(x) \geq 1, \forall x \in(a, b)$, then,

$$
\begin{equation*}
f(x) \leq x-a \tag{1}
\end{equation*}
$$

[^1]If $\int_{x}^{b} f(t) d t \geq \int_{x}^{b}(t-a) d t, \forall x \in[a, b]$, and $f^{\prime}(x) \leq 1, \forall x \in(a, b)$, then
(2)

$$
f(x) \geq x-a .
$$

Proof. In order to prove (1), set

$$
G(x)=\left(\int_{x}^{b}[f(t)-(t-a)] d t\right)(x-a-f(x)), \quad \forall x \in[a, b]
$$

we have

$$
G^{\prime}(x)=(x-a-f(x))^{2}+\left(\int_{x}^{b}[f(t)-(t-a)] d t\right)\left(1-f^{\prime}(x)\right) .
$$

If $\int_{x}^{b} f(t) d t \leq \int_{x}^{b}(t-a) d t$, and $f^{\prime}(x) \geq 1$, then $G^{\prime}(x) \geq 0, G(x)$ increases and $G(x) \leq 0$, since $G(b)=0$, that is, $x-a-f(x) \geq 0$, so that $f(x) \leq x-a$.
Similarly, if $\int_{x}^{b} f(t) d t \geq \int_{x}^{b}(t-a) d t$ and $f^{\prime}(x) \leq 1$, we obtain $G^{\prime}(x) \geq 0$, and $G(x) \leq 0$, that is, $f(x) \geq x-a$.
Remark 1. In the second part of Example 2.1, the function $f(t)=t-\frac{\pi}{2}+\cos t$ should be replaced by $f(t)=t-\frac{\pi}{2}-\sin t$.

References

[1] L. BOUGOFFA, Note on an open problem, J. Inequal. Pure \& Appl. Math., 8(2) (2007), Art. 58. [ONLINE http://jipam.vu.edu.au/article.php?sid=871].

[^0]: AbSTRACT. This paper is a corrigendum on a paper published in an earlier volume of JIPAM,
 ŚNote on an open problemŠ, published in JIPAM, Vol. 8, No. 2. (2007), Article 58. http:
 //jipam.vu.edu.au/article.php?sid=871

[^1]: I would like to express deep gratitude to Tibor Pogany and Quôc Anh Ngô for their comments and the successful completion of this note. 241-07

